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Abstract
One of the classical approaches for estimating the frequencies and damping factors in a spec-
trally sparse signal is the MUltiple SIgnal Classification (MUSIC) algorithm, which exploits
the low-rank structure of an autocorrelation matrix. Low rank matrices have also received
considerable attention recently in the context of optimization algorithms with partial obser-
vations, and nuclear norm minimization (NNM) has been widely used as a popular heuristic
of rank minimization for low-rank matrix recovery problems. On the other hand, it has been
shown that NNM can be viewed as a special case of atomic norm minimization (ANM), which
has achieved great success in solving line spectrum estimation problems. However, as far as
we know, the general ANM (not NNM) considered in many existing works can only handle
frequency estimation in undamped sinusoids. In this work, we aim to fill this gap and deal
with damped spectrally sparse signal recovery problems. In particular, inspired by the dual
analysis used in ANM, we offer a novel optimization-based perspective on the classical MU-
SIC algorithm and propose an algorithm for spectral estimation that involves searching for
the peaks of the dual polynomial corresponding to a certain NNM problem, and we show
that this algorithm is in fact equivalent to MUSIC itself. Building on this connection, we also
extend the classical MUSIC algorithm to the missing data case. We provide exact recovery
guarantees for our proposed algorithms and quantify how the sample complexity depends on
the true spectral parameters. In particular, we provide a parameter-specific recovery bound
for low-rank matrix recovery of jointly sparse signals rather than use certain incoherence
properties as in existing literature. Simulation results also indicate that the proposed al-
gorithms significantly outperform some relevant existing methods (e.g., ANM) in frequency
estimation of damped exponentials. Spectral estimation, nuclear norm minimization, atomic
norm minimization, MUSIC algorithm, low-rank matrix completion
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Abstract

One of the classical approaches for estimating the frequencies and damping factors in a spectrally
sparse signal is the MUltiple SIgnal Classification (MUSIC) algorithm, which exploits the low-rank struc-
ture of an autocorrelation matrix. Low-rank matrices have also received considerable attention recently in
the context of optimization algorithms with partial observations, and nuclear norm minimization (NNM)
has been widely used as a popular heuristic of rank minimization for low-rank matrix recovery prob-
lems. On the other hand, it has been shown that NNM can be viewed as a special case of atomic norm
minimization (ANM), which has achieved great success in solving line spectrum estimation problems.
However, as far as we know, the general ANM (not NNM) considered in many existing works can only
handle frequency estimation in undamped sinusoids. In this work, we aim to fill this gap and deal with
damped spectrally sparse signal recovery problems. In particular, inspired by the dual analysis used in
ANM, we offer a novel optimization-based perspective on the classical MUSIC algorithm and propose an
algorithm for spectral estimation that involves searching for the peaks of the dual polynomial correspond-
ing to a certain NNM problem, and we show that this algorithm is in fact equivalent to MUSIC itself.
Building on this connection, we also extend the classical MUSIC algorithm to the missing data case. We
provide exact recovery guarantees for our proposed algorithms and quantify how the sample complexity
depends on the true spectral parameters. In particular, we provide a parameter-specific recovery bound
for low-rank matrix recovery of jointly sparse signals rather than use certain incoherence properties as in
existing literature. Simulation results also indicate that the proposed algorithms significantly outperform
some relevant existing methods (e.g., ANM) in frequency estimation of damped exponentials. Spectral
estimation, nuclear norm minimization, atomic norm minimization, MUSIC algorithm, low-rank matrix
completion.

1 Introduction

In this paper, we consider the problem of identifying the frequencies and damping factors contained in a
spectrally sparse signal, namely, a superposition of a few complex sinusoids with damping, either from a
complete set of uniform samples (which we refer to as full observations) or from a random set of partial
uniform samples (which we refer to as the missing data case). This kind of signal arises in many applica-
tions, such as nuclear magnetic resonance spectroscopy [1, 2], radar processing [3, 4], modal analysis [5, 6],
and electric motor fault detection [7]. It is well known that the frequencies and damping factors can be
identified by the classical spectrum estimation approaches, such as Prony’s method [8], the Matrix Pen-
cil method [9], and the MUltiple SIgnal Classification (MUSIC) algorithm [10, 11], when full observations
are available. However, in many real-world applications, obtaining such full observations with high speed
uniform sampling is of high cost and technically prohibitive. Lower-rate, nonuniform sampling can be an
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appealing alternative [12, 6, 13, 14, 15] and results in the partial observations (missing data) discussed in
this work.

The MUSIC algorithm, which is widely used in signal processing [16, 17], was first proposed by Schmidt
as an improvement to Pisarenko’s method [10]. MUSIC exploits the low-rank structure of an autocorrelation
matrix, which is divided into the noise subspace and signal subspace via an eigenvalue decomposition. The
spectral parameters are then identified by searching for the zeros of a noise-space correlation function [18].
The MUSIC algorithm can be used either for spectral analysis of one signal (the single measurement vector,
or SMV, problem) or for multiple measurement vector (MMV) problems involving joint sparse frequency
estimation [14]. However, a limitation of these classical spectral estimation methods is that they are not
compatible with the random sampling or compression protocols that can be used to reduce the front-end
sampling burden. One recent work [19] does adapt the MUSIC algorithm to the setting with noisy missing
data, the authors provide asymptotic theoretical guarantees on the performance of a singular value decom-
position (SVD) on the noisy partially observed data matrix. In contrast, in this work we consider two
settings—the (noiseless and noisy) full observation case and the noiseless missing data case—and establish
non-asymptotic theoretical guarantees for our proposed algorithms.

We focus on both the SMV and MMV settings in this paper. Samples of the spectrally sparse vector-
valued signal (MMV setting) considered in this work can be arranged into a low-rank matrix while samples
of the spectrally sparse scalar-valued signal (SMV setting) can be used to form a Hankel matrix, which is
also a low-rank matrix. Low-rank matrices have received considerable attention recently in the context of
optimization algorithms with partial observations. In particular, low-rank matrix recovery from missing data
appears in many practical problems such as matrix completion [20, 21], low-rank approximation [22, 23],
system identification [24, 25], and image denoising [26, 27]. A common approach for recovering a low-
rank matrix is known as rank minimization. However, rank minimization problems are, in general, NP-hard.
Fortunately, a popular heuristic of rank minimization problems, nuclear norm minimization (NNM), performs
very well in low-rank matrix recovery when certain conditions on the measurement system are satisfied [20].
Recently, it has been shown that NNM for low-rank matrix recovery can be viewed as a special case of
atomic norm minimization (ANM) when the atoms are composed of rank one matrices [28, 29]. ANM is a
general optimization framework for decomposing structured signals and matrices into sparse combinations of
continuously-parameterized atoms from some dictionary, and one of the primary successes of ANM has been
in solving the line spectrum estimation problem in both the complete and missing data cases. Most of the
theory for ANM in line spectrum estimation has relied on insight gained from analyzing the dual solution
to the ANM problem. However, as far as we know, the general ANM (not NNM) formulation considered in
many existing works can only handle frequency estimation in undamped sinusoids [28, 30, 14, 13, 31]. This
is due to the existence of an SDP form for ANM when there is no damping contained in the signals. In this
work, we aim to fill this gap and identify both the frequencies and damping factors contained in a spectrally
sparse signal.

The fact that NNM is a special case of ANM suggests that ANM-type dual analysis can also be used for
NNM. In particular, in this paper, we propose an algorithm for spectral estimation that involves searching
for the peaks of the dual polynomial corresponding to the NNM problem. We name this algorithm NN-
MUSIC (nuclear norm minimization view of MUSIC), and we highlight the fact that in the full observation
case, NN-MUSIC is in fact equivalent to MUSIC itself. We also provide one such development in this paper:
unlike classical MUSIC, the NN-MUSIC algorithm can be naturally generalized to the missing data case, and
so we also propose and analyze such a Missing Data MUSIC (MD-MUSIC) algorithm in this paper. MD-
MUSIC is not equivalent to first using NNM to complete the missing data and second running conventional
MUSIC on the full data matrix; rather, it involves extracting frequency estimates directly from the NNM
dual polynomial, and we demonstrate that it can succeed even when “two-step” algorithms fail. Both NN-
MUSIC and MD-MUSIC can deal with damped sinusoids. Our simulations also illustrate the advantage of
these two proposed algorithms over ANM in frequency estimation of damped sinusoids.

Using our analytical framework, we also provide exact recovery guarantees for both NN-MUSIC and
MD-MUSIC. For NN-MUSIC, our theorem indicates that we can perfectly identify the spectral parameters
by searching for the locations in the damping-frequency plane where the `2-norm of the dual polynomial
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achieves 1, as long as the true spectral parameters are distinct from each other and the number of uniform
samples is larger than the number of spectral parameters. For MD-MUSIC, our theory shows that we can
perfectly identify the spectral parameters with high probability by searching for the locations in the damping-
frequency plane where the `2-norm of the dual polynomial achieves 1 if the number of random samples is
sufficiently large, the true spectral parameters are distinct from each other, and the number of uniform
samples (from which the random samples are drawn) is larger than the number of spectral parameters. It
is even possible to get perfect parameter recovery without exact data recovery. Moreover, we provide a
parameter-specific recovery bound for low-rank matrix recovery of jointly sparse signals, that is, we quantify
how the sample complexity depends on the true spectral parameters rather than use certain incoherence
properties as in existing literature.

The remainder of this paper is organized as follows. In Section 2, we introduce both the SMV and
MMV settings considered in this paper. In Section 3, we review the classical MUSIC algorithm as well
as its variants. In Section 4, we offer a novel optimization-based perspective on the MUSIC algorithm by
highlighting the fact that the proposed NN-MUSIC algorithm is equivalent to MUSIC in the full observation
case. We also generalize it to the missing data case and propose the MD-MUSIC algorithm to support the
idea that this connection between NNM and MUSIC could lead to future developments and understanding.
The proofs for theoretical guarantees are presented in Section 5. In Section 6, we explore the recovery
performance of the proposed NN-MUSIC and MD-MUSIC algorithms with numerical simulations. Finally,
we conclude this work and discuss future directions in Section 7.

2 Signal Models

We are interested in identifying the frequencies and damping factors contained in a spectrally sparse signal,
which can be a scalar-valued signal in the SMV setting or a vector-valued signal in the MMV setting. We
first introduce the SMV and MMV settings that are considered in this work. Throughout this work, we use
superscript “◦” to denote row vectors, and superscripts “>” and “H” to denote transpose and conjugate
transpose, respectively.

2.1 Single Measurement Vector (SMV) setting

In the SMV setting, a scalar-valued, continuous-time signal is assumed to have the form

y(t) = x(t) + e(t), x(t) =

K∑
k=1

ckr
t
ke
j2πfkt, (1)

where {ck}, {rk}, {fk} and e(t) are the unknown complex coefficients, damping ratios, frequency parameters,
and additive observation noise, respectively. Such signals appear in many applications, such as radar, sonar,
and communications. Without loss of generality, we assume the frequencies {fk} belong to the interval [0, 1),
the damping ratios {rk} belong to the interval [0, 1], the complex coefficients ck 6= 0, and e(t) ∼ CN (0, σ2).

2.2 Multiple Measurement Vector (MMV) setting

In the MMV setting, we consider a vector-valued signal y◦(t) ∈ C1×N , which is a superposition of K damped
sinusoids with additive observation noise e◦(t) ∈ C1×N . More precisely,

y◦(t) = x◦(t) + e◦(t), x◦(t) =

K∑
k=1

ckr
t
ke
j2πfktφ>k , (2)

with ck 6= 0, fk ∈ [0, 1) and rk ∈ [0, 1] being the k-th complex coefficient, frequency, and damping factor,
respectively. Here, each φk ∈ CN is a normalized vector (‖φk‖2 = 1) that can be viewed as the mode shape
in modal analysis problems [5, 6].
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Suppose we take M uniform samples and arrange y◦m = y◦(m) as the m-th row of a data matrix

Y ∈ CM×N . Define X? ,
[
(x◦0)> (x◦1)> · · · (x◦M−1)>

]>
and E ,

[
(e◦0)> (e◦1)> · · · (e◦M−1)>

]>
as the

noiseless data matrix and observation noise matrix, respectively. Then, we have

Y =
[
(y◦0)> (y◦1)> · · · (y◦M−1)>

]>
=

K∑
k=1

c̃ka(rk, fk)φ>k + E = ArfDc̃Φ
> + E = X? + E (3)

with1

a(r,f),


√

1−r2
1−r2M [1 rej2πf1· · · rM−1ej2πf(M−1)]>, r<1,

1√
M

[1 ej2πf1 · · · ej2πf(M−1)]>, r=1,
(4)

and

c̃k ,

ck
√

1−r2Mk
1−r2k

, rk < 1,

ck
√
M, rk = 1,

k = 1, . . . ,K.

In addition, we define Arf , [a(r1, f1), · · · ,a(rK , fK)], Dc̃ , diag([c̃1, · · · , c̃K ]), and Φ , [φ1, · · · ,φK ].
Let yn, xn and en denote the n-th column of Y, X? and E, respectively. It can be seen that

yn=xn + en=

K∑
k=1

c̆n,ka(rk, fk) + en, n = 1, . . . , N, (5)

where c̆n,k = c̃kφn,k with φn,k being the (n, k)-th entry of Φ. In this model, the observed data consists of
N observed length-M signals, each comprised of K damped sinusoids. The N signals share the same set of
unknown frequencies and damping factors, but each has a unique set of coefficients.

3 Prior Work

In this section, we review the classical MUSIC algorithm [10, 11] as well as its two variants, Damped MUSIC
(DMUSIC) [32] and MUSIC adapted to missing data with Gaussian white noise (denoted as MN-MUSIC) [19].

3.1 MUltiple SIgnal Classification (MUSIC) algorithm

3.1.1 SMV MUSIC via autocorrelation matrix

By sampling the scalar-valued, continuous-time signal y(t), defined in (1), at M equally spaced times, one
can define a vector y(t) ∈ CM as

y(t) , [y(t) y(t+ 1) · · · y(t+M − 1)]
>
, (6)

which has the autocorrelation matrix Ry , E{y(t)y(t)H}.
The classical MUSIC algorithm aims to identify the unknown frequencies {fk} by constructing (and then

decomposing) an estimate of the autocorrelation matrix Ry without damping, namely, in the case where
all rk = 1 [33]. This requires M > K. Specifically, consider a full set of uniform observations {y(t)} with
t = 0, 1, . . . , L − 1, for some L > M . Then, the following sample autocorrelation matrix can be used to
approximate Ry:

R̂y =
1

L−M + 1

L−M∑
t=0

y(t)y(t)H . (7)

1Note that we abbreviate a(r, f) to a(f) when r = 1.
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Let [Ûs Ûn] denote the orthonormal eigenvectors of R̂y. In particular, suppose Ûs ∈ CM×K (signal space)

and Ûn ∈ CM×(M−K) (noise space) are associated with the K largest eigenvalues and the M −K smallest

eigenvalues of R̂y, respectively. Then, we summarize the classical MUSIC algorithm in Algorithm 1.

Algorithm 1 MUSIC

1: procedure Input({y(t)}L−1
t=0 , K)

2: compute the autocorrelation matrix R̂y as in (7) and its eigenvectors Ûn

3: compute the pseudospectrum: 1/‖ÛH
n a(f)‖22, where a(f) is defined in (4) with r = 1

4: localize the K largest local maxima of pseudospectrum to get f̂k
5: return f̂k
6: end procedure

The intuition behind the MUSIC algorithm comes from the fact that, as a consequence of the scalar-valued
signal model in (1), the vector-valued signal y(t) in (6) can be expressed as

y(t) =
K∑
k=1

√
Mcke

j2πfkta(fk) + e(t) = Afc(t) + e(t)

with

Af = [a(f1), a(f2), · · · ,a(fK)],

c(t) =
√
M [c1e

j2πf1t, c2e
j2πf2t, · · · , cKej2πfKt]>,

e(t) = [e(t), e(t+ 1), · · · , e(t+M − 1)]>,

where a(f) is defined in (4) with r = 1. Then, the autocorrelation matrix becomes

Ry = E{y(t)y(t)H} = AfRcA
H
f + σ2IM

if c(t) is uncorrelated with e(t). Here, Rc , E{c(t)c(t)H} is the autocorrelation matrix of c(t) and IM
denotes the M ×M identity matrix. Note that the coefficients {ck} may be uncorrelated (Rc is diagonal) or
may contain completely correlated pairs (Rc is singular). We are interested in the first case, namely, Rc is
diagonal and positive definite since ck 6= 0.2 On the other hand, the rank of Af is K when all the frequencies
{fk} are distinct and M ≥ K. It follows that the rank of AfRcA

H
f is K. Let {λm}, m = 1, . . . ,M denote

the non-increasing eigenvalues of AfRcA
H
f . Then, we have λK+1 = · · · = λM = 0. As a consequence, the

determinant of AfRcA
H
f is det(AfRcA

H
f ) = det(Ry − σ2IM ) = 0, which implies that λym = σ2, m =

K + 1, . . . ,M, where λym is the m-th non-increasing eigenvalue of Ry. Denoting um as the m-th eigenvector
of Ry corresponding to eigenvalue λym, we have

Ryum = λymum, m = 1, . . . ,M. (8)

Replacing Ry = AfRcA
H
f + σ2IM into the above equation (8), we have

AfRcA
H
f um = (λym − σ2)um = 0 or AH

f um = 0

when λym = σ2, or equivalently, m = K + 1, . . . ,M . Then, a(f), which is defined in (4), is orthogonal to

um, m = K + 1, . . . ,M (columns of Ûn), when f = fk, k = 1, . . . ,K. Therefore, we can identify the

frequencies by localizing the K peaks of the pseudospectrum 1/‖ÛH
n a(f)‖22.

2As is stated in [11], in general, Rc will be “merely” positive definite to reflect the arbitrary degrees of pair-wise correlations
occurring between the coefficients.
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3.1.2 SMV MUSIC via Hankel matrix

As an alternative to the above autocorrelation matrix, a certain Hankel matrix can also be used in the MUSIC
algorithm [18].3 In particular, from the same full set of uniform observations {y(t)} with t = 0, 1, . . . , L− 1,
one can formulate the Hankel matrix

Hy =


y(0) y(1) · · · y(N − 1)
y(1) y(2) · · · y(N)

...
...

...
y(M − 1) y(M) · · · y(L− 1)

 (9)

for some positive integers M and N satisfying M + N = L + 1. Then define the noise-space correlation
function R(f) and imaging function J(f) as

R(f) = ‖UH
n a(f)‖2, J(f) =

1

‖UH
n a(f)‖2

with a(f) = 1√
M

[1 ej2πf1 · · · ej2πf(M−1)]> as defined in (4). Here, Un spans the noise subspace and contains

the left singular vectors of Hy corresponding to the M − K smallest singular values. The frequencies can
then be estimated by identifying the K local minima of the noise-space correlation function R(f) or the K
local maxima of the imaging function J(f).

Note that the sample autocorrelation matrix in (7) and the Hankel matrix in (9) are related by R̂y =
1

L−M+1HyH
H
y . Thus, the eigenvectors of R̂y are the same as the left singular vectors of Hy up to a unitary

transform. Therefore, the MUSIC algorithm based on the autocorrelation matrix and the Hankel matrix are
equivalent since the imaging function J(f) is equivalent to the pseudospectrum in Algorithm 1.

3.1.3 MMV MUSIC via data matrix

The MUSIC algorithm is also widely used in MMV problems [38, 39, 40]. Given a multiple measurement
matrix Y = [y1, · · · ,yN ] (see Section 3.3), one can directly compute an SVD of Y to obtain the noise space
Un from the left singular vectors of Y and then identify the frequency parameters by localizing the peaks
of the imaging function. In particular, denote Y = [Us Un] Σ [Vs Vn]H as an SVD of the data matrix
Y. For the same reason, one can estimate the frequencies by finding the peaks of the imaging function
J(f) = 1

‖UH
n a(f)‖2 .

3.2 Damped MUSIC (DMUSIC)

In the general model of (1), the complex-valued sinusoids are damped and decay over time. For this more
general case, the DMUSIC algorithm introduced in [32] aims to estimate both the frequencies {fk} and
damping ratios {rk} directly using the rank-deficiency and Hankel properties of (9). Similar to classical
MUSIC, DMUSIC involves constructing the noise subspace matrix Un by computing an SVD of the Hankel
matrix Hy. Then, the (rk, fk) pairs are identified by finding the peaks of the imaging function

J(r, f) =
1

‖UH
n a(r, f)‖2

(10)

with a(r, f) defined in (4).
The intuition behind DMUSIC is that the Hankel matrix in (9) can be rewritten as

Hy = ArfDc(A
N
rf )> +He,

3Indeed, Hankel structure has been widely used in a variety of algorithms for spectral estimation in the literature [34, 35,
36, 37].
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where He is a Hankel matrix formulated with {e(t)}, t = 0, . . . , L − 1, and Dc is a diagonal matrix with

diagonal entries being the scaled coefficients ck. Precisely, the k-th diagonal entry of Dc is
ck
√

(1−r2Mk )(1−r2Nk )

(1−r2k)
.

Arf and AN
rf are Vandermonde matrices defined as

Arf , [a(r1, f1), · · · ,a(rK , fK)], AN
rf , [aN (r1, f1), · · · ,aN (rK , fK)],

with

a(r, f),

√
1− r2

k

1− r2M
k

[1 rej2πf1 · · · rM−1ej2πf(M−1)]>,

aN (r, f),

√
1− r2

k

1− r2N
k

[1 rej2πf1 · · · rN−1ej2πf(N−1)]>. (11)

Note that we add a subscript “N” in (11) to distinguish aN (r, f) ∈ CN from a(r, f) ∈ CM . When M,N ≥ K
and all the (rk, fk) pairs are distinct, Arf and AN

rf are full rank. Then, Hx , ArfDc(A
N
rf )> is of rank K.

Now, consider the case when there is no noise, i.e., Hy = Hx. Denote an SVD of Hy as

Hy = [Us Un]Σ

[
VH
s

VH
n

]
.

One can show that the range spaces of Hy, Arf , and Us are all equal when there is no noise. Then, a(r, f)
is orthogonal to the columns of Un when (r, f) = (rk, fk), k = 1, . . . ,K. If noise exists, the orthogonal
relationship between a(r, f) and Un no longer holds. However, one can identify all the (rk, fk) pairs by
finding the peaks of the imaging function defined in (10), that is, searching for a(r, f) that are most nearly
orthogonal to the noise space Un.

3.3 MN-MUSIC for missing and noisy data

The classical MUSIC algorithm has also been adapted to the missing data case with Gaussian white noise
(denoted as MN-MUSIC) for applications such as direction of arrival (DOA) estimation [19]. The authors
consider the MMV setting as introduced in Section 3.1.3. More precisely, consider an observed M×N matrix
Y = [y1, · · · ,yN ], where yn is defined in (5) and repeated as follows

yn =

K∑
k=1

c̆n,ka(fk) + en, n = 1, . . . , N,

with r = 1 since undamped signals are considered in [19].
Assume we partially observe the entries of Y with i.i.d. Bernoulli randomly sampled locations Ω ⊂

{1, . . . ,M} × {1, . . . , N}. Let YΩ be the projection matrix of Y on the index set Ω, i.e

YΩij =

{
Yij , (i, j) ∈ Ω,

0, else.

Then in MN-MUSIC, an SVD is directly performed on YΩ to get the signal space matrix Us, which contains
the left singular vectors of YΩ corresponding to the K largest singular values. Finally, the frequencies are
estimated by finding the peaks of ‖UH

s a(f)‖22, which is essentially same as in Sections 3.1 and 3.2.

4 Main Results

In this section we outline a connection between MUSIC and low-rank matrix optimization using nuclear norm
minimization (NNM), and based on this connection we propose an extension of MUSIC that is appropriate
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for the missing data case. Our interest in NNM here is specifically due to its connection with MUSIC.
There are, of course, alternative low-rank optimization problems that can also be used for spectral analysis.
Among these, atomic norm minimization (ANM) has been proposed and analyzed for solving the undamped
line spectrum estimation problem in both the full and missing data cases [14, 30]. Moreover, a low-rank
Hankel matrix recovery problem has recently been considered for damped spectral analysis [41]; that work
involves solving the NNM (12) and (16) with an extra Hankel constraint on X. While these alternative
frameworks have some benefits, we believe that our work sheds light on a more fundamental problem, given
the considerable attention that MUSIC has received over the last several decades. This understanding may
lead to new developments for MUSIC and other optimization algorithms for spectral analysis in the future.

4.1 Optimization connection to MUSIC in the full data case

In this section, we consider both the SMV and MMV settings. Given a set of uniform samples from the
signal model (1) in the SMV setting and the data matrix X? = ArfDc̃Φ

> or its noisy version Y (3) in the
MMV setting, our goal is to identify the frequencies {fk} and damping factors {rk}. Note that in the SMV
setting, we can construct a Hankel matrix as in (9). As is shown in Section 3.2, this Hankel matrix Hx can
be decomposed as Hx , ArfDc(A

N
rf )> and is of rank K when there is no noise. One can observe that both

X? and Hx are low-rank matrices and have the same type of decompositions. Therefore, the analysis on X?

can also be applied to Hx, which implies that the algorithms we build using X? in the MMV scenario also
work for the SMV scenario.

Assume that X? is given and K � M,N , note that X? in (3) is low rank. Inspired by the low-rank
property of X? and the dual analysis that is commonly used in atomic norm minimization (ANM) [28, 30],
let us consider the following nuclear norm minimization (NNM)

X̂ = arg min
X
‖X‖∗ s. t. X = X?. (12)

Although this problem has a trivial solution (namely, X̂ = X?), it is interesting because we can compute
the corresponding dual feasible point Q, which is a solution of the dual problem, via the Lagrange function
of (12) and thus identify the frequencies and damping factors that are contained in the spectrally sparse
signal x◦(t) in (2). In particular, the Lagrange function is given as

L(X,Q) = ‖X‖∗ + 〈X? −X,Q〉R = ‖X‖∗ − 〈X,Q〉R + 〈X?,Q〉R,

with Q being the dual variable. 〈·, ·〉R is defined as the real inner product, i.e.,

〈X?,Q〉R = Re(〈X?,Q〉) = Re(Tr(QHX?))

with Tr(·) denoting the trace of a matrix. Then, the subgradient of L(X,Q) with respect to X is

∂L(X,Q)

∂X
= ∂‖X‖∗ −Q,

where ∂‖X‖∗ is the subdifferential of the nuclear norm and given as

∂‖X‖∗ = ∂‖X?‖∗ = {Z : Z = UX?VH
X? + W, UH

X?W = 0, WVX? = 0, ‖W‖ ≤ 1}

since X̂ = X = X?. Here, we use ‖W‖ to denote the spectral norm of the matrix W. Note that X? =
UX?SX?VH

X? is a truncated SVD of X? with UX? ∈ CM×K , SX? ∈ RK×K and VX? ∈ CN×K . We

can also construct a Q ∈ ∂‖X‖∗ by letting 0 ∈ ∂L(Q,X)
∂X according to the zero-gradient condition in the

Karush-Kuhn-Tucker (KKT) conditions [?]. Finally, we have

Q = UX?VH
X? + W (13)
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with UH
X?W = 0, WVX? = 0, ‖W‖ ≤ 1. Note that the dual solution to (12) is not unique. In particular,

one can verify that any Q ∈ ∂‖X?‖∗ is a dual solution since 〈X?,Q〉R = ‖X?‖∗.4
Given a dual feasible point Q = UX?VH

X?+W, we define the dual polynomial as

Q(r, f) , QHa(r, f), (14)

which is inspired by the dual analysis in ANM. The following theorem guarantees that we can identify
the true rk’s and fk’s by localizing the places where ‖Q(r, f)‖2 achieves 1. Moreover, it also indicates
that one does not need a separation condition in this full data noiseless setting. (In some previous work
on optimization-based spectral estimation [14], one needs the minimum separation ∆f , which is defined in
Corollary 4.1, to be on the order of 1

M even for the full data noiseless setting.)

Theorem 4.1. Let RF denote the set of the true damping factor and frequency pairs, i.e.,

RF = {(r1, f1), · · · , (rK , fK)}.

Given the full data matrix X? as in (3), compute its truncated SVD X? = UX?SX?VH
X? . For all Q ∈ ∂‖X?‖∗

with ‖W‖ < 1, the dual polynomial defined in (14) satisfies

‖Q(rk, fk)‖2 = 1, ∀ (rk, fk) ∈ RF ,
‖Q(r, f)‖2 < 1, ∀ (r, f) /∈ RF ,

if M ≥ K + 1, all the (rk, fk) pairs in RF are distinct, and Φ ∈ CN×K is of rank K.

The proof of Theorem 4.1 is given in Section 5.1. Note that for the case when ‖W‖ = 1, one may
get ‖Q(r, f)‖2 = 1 for some (r, f) /∈ RF , i.e., having some false peaks when checking the norm of the
dual polynomial. To remove these false peaks, one can solve the following least squares problem. Denote

{(r̂k, f̂k)}K̂k=1 as the damping factor and frequency pairs estimated by localizing the places where ‖Q(r, f)‖2 =
1. (To localize the places where ‖Q(r, f)‖2 = 1, one can use the findpeaks function in Matlab.) Define

Ârf , [a(r̂1, f̂1), · · · ,a(r̂K , f̂K)]. Then the least squares problem

min
Φc

‖X? − ÂrfΦc‖F

can be used to remove the false peaks. The (r̂k, f̂k) pairs corresponding to zero rows of Φc can be viewed as
false estimates.

Based on the above analysis, we propose the following algorithm, named NN-MUSIC (nuclear norm
minimization view of MUSIC algorithm), to estimate the damping factors {rk} and frequencies {fk} of the
damped sinusoids from the data matrix X?. Note that the step with the highest computational cost is the
SVD step, and this needs to be performed only once.

Algorithm 2 NN-MUSIC

1: procedure Input(X? ∈ CM×N )
2: compute truncated SVD of X?: X? = UX?SX?VH

X?

3: form the dual feasible point: Q = UX?VH
X?

4: form the dual polynomial: Q(r, f) = QHa(r, f)

5: localize the places where ‖Q(r, f)‖2 =1 to get (r̂k, f̂k)

6: return (r̂k, f̂k)
7: end procedure

4When using CVX with the default solver SDPT3 to solve the SDP form of the NNM problem (12), we observe that it
returns both the primal solution and a minimum norm dual solution, namely, Q = UX?VH

X? , due to the use of a Conjugate
Gradient based algorithm [?, ?].
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Note that Algorithm 2 is essentially equivalent to the MUSIC (in the undamped case) and DMUSIC (in
the damped case) algorithms outlined in Section 3. This is due to the fact that ‖Q(r, f)‖2 = ‖UH

X?a(r, f)‖2.5

When there is no noise, the DMUSIC algorithm and its variants characterize the spectral parameters by
locating the zeros of a noise-space correlation function or the peaks of the imaging function, and the pro-
posed NN-MUSIC algorithm identifies the spectral parameters by localizing the (r, f) pairs where ‖Q(r, f)‖2
achieves 1. While MUSIC has been classically understood from an algebraic perspective (owing to its closed
form), we believe the derivation of NN-MUSIC offers a novel optimization-based perspective on MUSIC that
could lead to future developments and understanding.

We also stress that this connection to MUSIC is unique to NNM and does not apply in general to ANM. In
particular, the connection arises specifically because the dual feasible point Q = UX?VH

X? of NNM induces
a dual polynomial that satisfies ‖Q(r, f)‖2 = ‖UH

X?a(r, f)‖2. On the other hand, the dual feasible point of
ANM formulations does not admit the structure Q = UX?VH

X? , in general.
Finally, consider the case when the given data matrix Y contains some additive white Gaussian noise,

i.e., Y = X? + E with E denoting the measurement noise. Then, we can solve the following nuclear norm
denoising program

min
X

1

2
‖Y −X‖2F + λ‖X‖∗, (15)

where λ is a regularization parameter. As is shown in the simulation, we can estimate the (r, f) pairs by
localizing the peaks of the norm of the corresponding dual polynomial. We leave the robust performance
analysis of this framework for future work. In particular, it would be interesting to characterize the parameter
estimation performance of program (15) in terms of the signal-to-noise ratio and the separation of the true
frequencies, similar to the analysis in [42].

4.2 Extension to the missing data case

Unlike the classical formulation of MUSIC, the optimization-based derivation of NN-MUSIC allows it to be
naturally extended to the missing data case. In particular, assume that we partially observe the entries of
the full data matrix X? in (3) with uniformly random sampled locations Ω ⊂ {1, . . . ,M} × {1, . . . , N}. Let
XΩ = PΩ(X) be the projection matrix of X on the index set Ω, i.e

XΩij = P(i,j)(X) =

{
Xij , (i, j) ∈ Ω,

0, else.

Notice that recovering the missing entries of the matrix X? reduces to a matrix completion problem [20],
commonly formulated via the following NNM

X̂ = arg min
X
‖X‖∗ s. t. XΩ = X?

Ω, (16)

which can be solved by the corresponding semi-definite program (SDP)

min
X,T,D

1

2
Tr(T) +

1

2
Tr(D) s. t.

[
T X

XH D

]
� 0, XΩ = X?

Ω. (17)

The dual problem of (17) is given by

max
Q
〈QΩ,X

?
Ω〉R s. t. ‖QΩ‖2 ≤ 1. (18)

Therefore, we can define the dual polynomial as Q(r, f) , QHa(r, f), where Q is the dual solution. Similar
to Theorem 4.1, the following theorem guarantees that we can identify the true rk’s and fk’s by localizing
the places where ‖Q(r, f)‖2 achieves 1.

5This fact is key to building the connection between MUSIC and nuclear norm minimization. This is why we construct
Q = UX?VH

X? explicitly in line 3 of Algorithm 2; this corresponds to a choice of W = 0 in (13). Note that other constructions

of Q with W 6= 0 will still work for localizing the (r, f) pairs but will not equal ‖UH
Xa(r, f)‖2.
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Theorem 4.2. Suppose X? is a data matrix of the form (3) and all the (rk, fk) pairs are distinct. Given

the uniformly partial random observed data matrix X?
Ω. For any data matrix X̂ obtained by solving the

NNM problem (16), we denote UX̂SX̂VH
X̂

as a truncated SVD of X̂. Denote QΩ as the projection matrix

of the dual solution Q on the index set Ω. Then, QΩ has the form QΩ = UX̂VH
X̂

+ W with UH
X̂

W =

0, WVX̂ = 0, and ‖W‖ ≤ 1 for some matrix W. Here, we consider dual solutions with Q = QΩ.6 If the

range space of X̂ contains the range space of X? (i.e., R(X̂) ⊇ R(X?)) and ‖W‖ < 17, the dual polynomial
Q(r, f) = QHa(r, f) satisfies

‖Q(r, f)‖2 = 1, ∀ (r, f) ∈ RF , or ∀ (r, f) /∈ RF with a(r, f) ∈ R(UX̂),

‖Q(r, f)‖2 < 1, ∀ (r, f) /∈ RF with a(r, f) /∈ R(UX̂).

The above theorem is proved in Section 5.2. Note that one can even localize the true (r, f) pairs from

the dual polynomial when we do not have perfectly recovered data matrix (i.e., X̂ 6= X?). For the case when

we do have perfect data recovery, i.e., X̂ = X?, we can further conclude that ‖Q(r, f)‖2 = 1 only when
(r, f) ∈ RF and ‖Q(r, f)‖2 < 1 as long as (r, f) /∈ RF . Moreover, we can also quantify sample complexity
needed for perfect data recovery in terms of the explicit parameters such as damping ratios and frequencies
instead of some incoherence property. We summarize these results in the following corollary.

Corollary 4.1. Suppose X? is a data matrix of the form (3) and all the (rk, fk) pairs are distinct. Given
the uniformly partial random observed data matrix X?

Ω, suppose |Ω| ≥ c1µ1csK log4(MN) for some nu-

merical constants c1 > 0 and cs , max{M,N}. Here, µ1 ≥ max
{

M
L(M,r,f) ,

µ2

σ2
min(Φ)

}
denotes an incoher-

ence parameter with µ2 , max1≤n≤N

(∑K
k=1 |φnk|2

)
N
K , L(M, r, f) is a function of M , r, f and defined as

L(M, r, f) , min
1≤k≤K

1
rk

[
γM (rk)− c2

∆f
(1 + r2M

k )
]

with c2 being a constant and

γM (rk) ,

{
r2Mk −1

2 log(rk) , rk < 1,

M, rk = 1,

and ∆f , mink 6=l |fk − fl| denotes the minimum separation between true frequencies, where |fk − fl| is the
wrap-around distance on the unit circle. Then, X? is the unique solution of (16) with probability at least

1 − (MN)−2. Moreover, when X̂ =X? is the unique solution to (16), the dual solution Q has the form
Q = UX?VH

X? + W, where UH
X?W = 0, WVX? = 0, and ‖W‖ ≤ 1. In this case, if ‖W‖ < 1, then the

dual polynomial satisfies

‖Q(rk, fk)‖2 = 1, ∀ (rk, fk) ∈ RF ,
‖Q(r, f)‖2 < 1, ∀ (r, f) /∈ RF .

The proof for Corollary 4.1 relies on some of the results in [46]. However, those results do not extend
directly to the damped exponential case. Rather than use a certain incoherence property as in [46], we
incorporate the damping ratios {rk} into the signal and develop theoretical guarantees that explicitly depend
on the parameters, i.e., damping ratios and minimum frequency separation. In particular, we explicitly bound
the minimal singular value of ÃH

rfÃrf with the function L(M, r, f) by exploiting the Vandermonde structure

of Ãrf [47], instead of giving an incoherence property depending on just the minimal singular value of

6Recall that we observe CVX with the default solver SDPT3 always returns a dual solution with minimal energy, so the
entries of Q outside the index Ω are always 0, i.e., we have Q = QΩ.

7Same as in the full data case, when ‖W‖ = 1, one may get ‖Q(r, f)‖2 = 1 for some (r, f) /∈ RF with a(r, f) /∈ R(U
X̂

),
i.e., having some false peaks when checking the norm of dual polynomial. Again, one can remove these false peaks by solving
a least squares problem.
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ÃH
rfÃrf as in [46]. Note that L(M, r, f) = M − 2c2

∆f
is on the order of M when there is no damping (i.e.,

r = 1) and the frequencies are well separated (∆f = O( 1
M )). In the case where r < 1, the sample complexity

|Ω| scales inversely with L(M, r, f) = min
1≤k≤K

1
rk

[
r2Mk −1

2 log(rk) −
c2
∆f

(1 + r2M
k )

]
, which increases monotonically

with rk when the constant c2 is sufficiently small. Therefore, it can be seen that the sample complexity |Ω|
decreases if the minimum frequency separation ∆f increases or the the damping ratio rk increases. Please
see Section 5.3 for details and Section 6.3 for supporting experiments.

Note that the set Ω is chosen uniformly at random from all subsets of {1, . . . ,M} × {1, . . . , N} with a
given cardinality |Ω|. Since the columns of Φ ∈ CN×K are assumed to be normalized, we have 1 ≤ µ2 ≤ N
according to the definition of µ2. In particular, µ2 = 1 when all the entries of Φ have magnitude 1√

N
and

µ2 = N when Φ has a row containing all 1’s with all other rows being 0. Due to the normalized columns
in Φ, we also have that σ2

min(Φ) ≤ 1. Therefore, it can be seen from the above theorem that when there is
no damping (or only light damping, i.e., rk is close to 1) and the frequencies are well separated, and µ2 is
close to 1, we can bound µ1 by a constant and thus the number of measurements needed for perfect recovery
is comparable to best case bounds for rank-K matrix completion. Specifically, state-of-the-art bounds [43]
for low-rank matrix completion from uniform random samples involve a dependence on a certain coherence
parameter (equal to the maximum leverage score of the matrix); when this coherence parameter is small, the
sample complexity is |Ω| = O(max(M,N)K) (up to logarithmic factors). The significance to Corollary 4.1
is that the sample complexity is not stated in terms of the matrix coherence; rather, the dependence on the
damping ratios and minimum frequency separation is explicitly revealed. We also note that this is quite
distinct from the work [46], in which the theoretical guarantees are built on a different incoherence property
rather than the explicit parameters such as frequencies.

Inspired by Algorithm 2 and the above analysis, we propose the following Missing Data MUSIC algorithm,
named MD-MUSIC, to identify the damping factors {rk} and frequencies {fk} from the partially observed
data matrix X?

Ω. Note that any off-the-shelf SDP solver could be used to solve the SDP in (17)8.

Algorithm 3 MD-MUSIC

1: procedure Input(X?
Ω ∈ CM×N )

2: compute X̂ and Q by solving the SDP (17)
3: form the dual polynomial: Q(r, f) = QHa(r, f)

4: localize the places where ‖Q(r, f)‖2 =1 to get (r̂k, f̂k)

5: return X̂ and (r̂k, f̂k)
6: end procedure

Finally, we note that one could also consider an alternative approach wherein one first solves the NNM
problem in (17) and then uses Algorithm 2 to identify the rk’s and fk’s using X̂. Interestingly, however, as
we demonstrate in Theorem 4.2, it is sometimes possible with MD-MUSIC to perfectly recover the rk’s and
fk’s even when exact recovery of X? fails. This implies that MD-MUSIC is actually more powerful than
the alternative approach mentioned above. We also conduct simulations to further present this interesting
phenomenon (parameter recovery without exact data matrix recovery) in Section 6.

8Primal-dual algorithms that are used in solvers such as CVX can return both the data matrix X̂ and the dual solution Q
of (17) and (18), respectively.
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5 Proofs

5.1 Proof for Theorem 4.1

Denote a truncated SVD of Arf as Arf = UArf
SArf

VH
Arf

. We first consider the case when W = 0, i.e.,

Q = UX?VH
X? . Note that

‖QHa(r, f)‖22 =‖UH
X?a(r, f)‖22 =a(r, f)HUX?UH

X?a(r, f) = a(r, f)HUX?SX?VH
X?VX?S−1

X?UH
X?a(r, f)

=a(r, f)HX?(X?)†a(r, f) = a(r, f)HArfDc̃Φ
>(Φ>)

†
D−1
c̃ A†rfa(r, f) = a(r, f)HArfA

†
rfa(r, f)

=a(r, f)HUArf
UH
Arf
a(r, f) =

〈
PUArf

(a(r, f)),a(r, f)
〉
,

where PUArf
(a(r, f)) , UArf

UH
Arf
a(r, f) is defined as the orthogonal projection of a(r, f) onto the range

space of UArf
, i.e., R(UArf

). Note that the third equality is obtained by plugging in I = SX?VH
X?VX?S−1

X?

while the fifth equality is obtained by plugging in X? = ArfDc̃Φ
> and (X?)† = (Φ>)†D−1

c̃ A†rf . Also, note

that Φ>(Φ>)
†

= I when Φ ∈ CN×K is of rank K, which gives the sixth equality. The seventh equality holds

due to ArfA
†
rf = UArf

SArf
VH
Arf

VArf
S−1
Arf

UH
Arf

= UArf
UH
Arf

.

• For all (rk, fk) ∈ RF , we have a(rk, fk) ∈ R(UArf
), which implies PUArf

(a(rk, fk)) = a(rk, fk).

Therefore, we have ‖QHa(rk, fk)‖22 = 〈a(rk, fk),a(rk, fk)〉 = 1.

• For all (r, f) /∈ RF , if we have a(r, f) /∈ R(UArf
), which implies PUArf

(a(r, f)) = a(r, f)−PU⊥
Arf

(a(r, f)),

we would then have

‖QHa(r, f)‖22 = 〈a(r, f),a(r, f)〉 −
〈
PU⊥

Arf

(a(r, f)),a(r, f)

〉
< 〈a(r, f),a(r, f)〉 = 1.

Thus, we only need to show a(r, f) /∈ R(UArf
) for all (r, f) /∈ RF . Define a Vandermonde matrix

Av
rf ∈ CM×K as

Av
rf , [av(r1, f1), · · · ,av(rK , fK)] (19)

with av(r, f) , [1 rej2πf1 · · · rM−1ej2πf(M−1)]>, which is the unnormalized version of a(r, f). Then, Arf

is the column-normalized version of Av
rf . Assuming M ≥ K, it follows that the first K rows of Av

rf form a

square Vandermonde matrix, denoted as AK
rf , whose determinant is given by [44, 45]

det(AK
rf ) =

∏
1≤i<k≤K

(rke
j2πfk − riej2πfi).

Then, rank(Arf ) = rank(Av
rf ) = K if M ≥ K and (ri, fi) 6= (rk, fk) for all i 6= k. Similarly, we have

rank([Arf |a(r, f)]) = K + 1,

i.e., a(r, f) /∈ R(Arf ) = R(UArf
) if (r, f) /∈ RF , M ≥ K + 1 and all the (rk, fk) pairs in RF are distinct.

It remains to show the case when W 6= 0. In particular, we have ‖Q(r, f)‖22 = ‖UH
X?a(r, f)‖22 +

‖WHa(r, f)‖22.

• For all (rk, fk) ∈ RF , we have a(rk, fk) ∈ R(UArf
) = R(UX?), and so together with UH

X?W = 0, we
have ‖Q(rk, fk)‖22 = ‖UH

X?a(rk, fk)‖22 = 1.
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• For all (r, f) /∈ RF , we have a(r, f) /∈ R(UArf
) = R(UX?) as shown above. Denote W = U⊥X?SWV⊥X?

H

as a truncated SVD of W with UH
X?U⊥X? = 0, VH

X?V⊥X? = 0 and ‖SW ‖ = ‖W‖ ≤ 1. In the case
where ‖SW ‖ = ‖W‖ < 1, we have

‖Q(r, f)‖22 = ‖UH
X?a(r, f)‖22 + ‖SWU⊥X?

H
a(r, f)‖22 ≤ ‖UH

X?a(r, f)‖22 + ‖SW ‖2‖U⊥X?

H
a(r, f)‖22

< ‖UH
X?a(r, f)‖22 + ‖U⊥X?

H
a(r, f)‖22 ≤ 1.

This completes the proof of Theorem 4.1.

5.2 Proof for Theorem 4.2

Unlike in Corollary 4.1, we now focus on the case when the data matrix is not perfectly recovered, i.e.,
X̂ 6= X?. Again, with some fundamental Lagrange analysis, we can conclude that the dual solution Q = QΩ

with minimal energy belongs to the subdifferential of ‖X̂‖∗. Then, we have Q = QΩ = UX̂VH
X̂

+ W with

UH
X̂

W = 0, WVX̂ = 0, and ‖W‖ ≤ 1 for some matrix W. Note that Q = QΩ is a sparse matrix with zero

entries on the complement index of Ω, so W should be a non-zero matrix. Recall that X? = ArfDc̃Φ
> with

Arf = [a(r1, f1), · · · ,a(rK , fK)]. Then, we have

a(rk, fk) ∈ R(Arf ) = R(X?) ⊆ R(X̂) = R(UX̂), k = 1, . . . ,K.

• For all (rk, fk) ∈ RF , we have a(rk, fk) ∈ R(UX̂), and so together with UH
X̂

W = 0, we have

‖Q(rk, fk)‖22 = ‖UH
X̂
a(rk, fk)‖22 = 1.

• For all (r, f) /∈ RF , we have a(r, f) /∈ R(Arf ) = R(X?) as shown in Section 5.1. (1) If a(r, f) ∈
R(UX̂), we still have ‖Q(r, f)‖22 = 1 as above. This could result in false estimation of (r, f) pairs when

we localize the places where ‖Q(r, f)‖2 achieves 1. (2) If a(r, f) /∈ R(UX̂), denote W = U⊥
X̂

SWV⊥
X̂

H

as a truncated SVD of W with UH
X̂

U⊥
X̂

= 0, VH
X̂

V⊥
X̂

= 0 and ‖SW ‖ = ‖W‖ ≤ 1. Recall that W 6= 0.

In the case where ‖SW ‖ = ‖W‖ < 1, we have

‖Q(r, f)‖22 = ‖UH
X̂
a(r, f)‖22 + ‖SWU⊥

X̂

H
a(r, f)‖22 ≤ ‖UH

X̂
a(r, f)‖22 + ‖SW ‖2‖U⊥X̂

H
a(r, f)‖22

< ‖UH
X̂
a(r, f)‖22 + ‖U⊥

X̂

H
a(r, f)‖22 ≤ 1.

Thus, we finish the proof of Theorem 4.2.

5.3 Proof for Corollary 4.1

Define DcM ,
√
M diag([c1, c2, · · · , cK ]), Ãrf , 1√

M
Av
rf , where Av

rf is the unnormalized Vandermonde

matrix and defined in (19). Observe that the transpose of the noiseless data matrix X?
> , X?> = ΦDc̃A

>
rf =

ΦDcMÃ>rf can be viewed as the block Hankel matrix Xe introduced in [46], but with k1 = N and k2 = 1.
Define PT as the projection operator that acts on the tangent space of X?

>. Denote a truncated SVD of X?
>

as X?
> = UX?

>
SX?

>
VH

X?
>

. Then, [46, Lemma 1] can be adapted to provide us sufficient conditions that are

used to guarantee the unique optimality of X?. In particular, we can set A and AΩ as in [46, Lemma 1] as
the identity operator and the random sampling operator PΩ, respectively. Therefore, we need the following
condition ∥∥∥∥PT − NM

|Ω|
PTPΩPT

∥∥∥∥ ≤ 1

2
. (20)

Next, we verify that the above condition (20) holds with high probability under certain conditions. Define
A(n,m) ∈ RN×M as a matrix with the (n,m)-th entry being 1 and others being 0. We first quantify the
projection of A(n,m) onto the subspace T , the tangent space of X?

>. In particular, we have the following
lemma which utilizes a quite different incorence property than the one used in [46, Lemma 2].
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Lemma 5.1. For some constant µ1, if

σmin(ΦHΦ) ≥ µ2

µ1
and σmin(ÃH

rfÃrf ) ≥ 1

µ1
, (21)

then

‖UX?
>

UH
X?

>
A(n,m)‖2F ≤

µ1csK

NM
, ‖A(n,m)VX?

>
VH

X?
>
‖2F ≤

µ1csK

NM

hold for any (n,m) ∈ [N ] × [M ] with [N ] , {1, 2, . . . , N} and [M ] , {1, 2, . . . ,M}. We have defined

cs , max{N,M} and µ2 , max1≤n≤N

(∑K
k=1 |φnk|2

)
N
K . It follows that

‖PT (A(n,m))‖2F ≤ ‖UX?
>

UH
X?

>
A(n,m)‖2F + ‖A(n,m)VX?

>
VH

X?
>
‖2F ≤

2µ1csK

NM
. (22)

Proof. Note that UX?
>

(VX?
>

) and Φ (Ãrf ) determine the same column (row) space of X?
>. In particular,

we have

UX?
>

UH
X?

>
= Φ(ΦHΦ)−1ΦH , VX?

>
VH

X?
>

= Ãrf (ÃH
rfÃrf )−1ÃH

rf ,

which implies

‖UX?
>

UH
X?

>
A(n,m)‖2F =‖Φ(ΦHΦ)−1ΦHA(n,m)‖2F =

〈
(ΦHΦ)−1ΦHA(n,m),Φ

HA(n,m)

〉
≤‖(ΦHΦ)−1‖‖ΦHA(n,m)‖2F =

1

σmin(ΦHΦ)
‖ΦHA(n,m)‖2F

and

‖A(n,m)VX?
>

VH
X?

>
‖2F =‖A(n,m)Ãrf (ÃH

rfÃrf )−1ÃH
rf‖2F =

〈
A(n,m)Ãrf (ÃH

rfÃrf )−1,A(n,m)Ãrf

〉
≤‖(ÃH

rfÃrf )−1‖‖A(n,m)Ãrf‖2F =
1

σmin(ÃH
rfÃrf )

‖A(n,m)Ãrf‖2F .

Define µ2 , max1≤n≤N

(∑K
k=1 |φnk|2

)
N
K . Note that 1 ≤ µ2 ≤ N . Recall that A(n,m) ∈ RN×M is a

matrix with the (n,m)-th entry being 1 and all others being 0. Therefore, we can bound ‖ΦHA(n,m)‖2F and

‖A(n,m)Ãrf‖2F with

‖ΦHA(n,m)‖2F =

K∑
k=1

|φnk|2 ≤ µ2
K

N
, ‖A(n,m)Ãrf‖2F =

K∑
k=1

1

M
r2m
k ≤ K

M
.

Define cs , max(N,M). Then, if

σmin(ΦHΦ) ≥ µ2

µ1
, σmin(ÃH

rfÃrf ) ≥ 1

µ1
,

we can get

‖UX?
>

UH
X?

>
A(n,m)‖2F ≤

µ1K

N
=
µ1KM

NM
≤ µ1Kcs

NM
,

‖A(n,m)VX?
>

VH
X?

>
‖2F ≤

µ1K

M
=
µ1KN

NM
≤ µ1Kcs

NM
.

Then, we obtain (22).

15



Similar to Lemma 3 in [46], we would then have that condition (20) holds with probability at least
1− (NM)−4 if |Ω| ≥ c1µ1csK log(NM), where c1 ≥ 0 is a constant.

The remaining proof for Corollary 4.1 follows the corresponding proof steps for Theorem 1 in [46]. This
yields Corollary 4.1, which is similar to Theorem 1 in [46] but with different incoherence properties (21).

To obtain these different incoherence properties, we bound the minimum nonzero singular value of Φ and
Ãrf . It follows from Theorem 5 of [47] that

σmin(ÃH
rfÃrf ) = σ2

min(Ãrf ) =
1

M
σ2

min(Av
rf ) ≥ 1

M
L(M, r, f),

where L(M, r, f) is defined as

L(M, r, f) , min
1≤k≤K

1

rk

[
γM (rk)− c2

∆f
(1 + r2M

k )

]
with c2 being a constant and

γM (rk) ,

{
r2Mk −1

2 log(rk) , rk < 1,

M, rk = 1,
k = 1, . . . ,K.

Note that L(M, r, f) = M− 2c2
∆f

is on the order of M when there is no damping (i.e., r = 1) and the frequencies

are well separated (∆f = O( 1
M )). To satisfy the two assumptions in (21), we can let 1

ML(M, r, f) ≥
1
µ1
, and µ1 ≥ µ2

σ2
min(Φ)

, that is, µ1 ≥ max
{

M
L(M,r,f) ,

µ2

σ2
min(Φ)

}
.

With some fundamental Lagrange analysis as in Section 4.1, we can also conclude that the optimal dual
solution Q belongs to the subdifferential of ‖X̂‖∗, where X̂ is the optimal solution of (16). In the case

of exact recovery, i.e., X̂ = X?, the dual solution Q has the form Q = UX?VH
X? + W, where UH

X?W =
0, WVX? = 0, and ‖W‖ ≤ 1. Then, we are still able to identify the true rk’s and fk’s by localizing the
places where ‖Q(r, f)‖2 = ‖QHa(r, f)‖2 achieves 1 with Q being the optimal dual solution of (18) and

‖W‖ < 1 in the case when X̂ = X?. Thus, we finish the proof of Corollary 4.1.

6 Numerical Simulations

6.1 Full data case

In this experiment, we use synthetic data to test the proposed Algorithm 2 with K = 3. The true rk’s and
fk’s are set as r1 = 0.92, r2 = 0.98, r3 = 0.85 and f1 = 0.1, f2 = 0.4, f3 = 0.8. We set M = N = 50. The
data matrix X? is then generated as X? = ArfDc̃Φ

>, where Arf , and Dc̃ are generated according to their
definition in Section 2, Φ is generated as a Gaussian random matrix with normalized columns, and the ck’s
are set as K Gaussian random numbers with zero mean and unit variance. The first three columns of X?

are shown in Figure 1 (a). Given the above data matrix X?, we then use Algorithm 2 to identify all the rk’s
and fk’s. Figure 1 (b) displays a surface plot of ‖Q(r, f)‖2 and indicates that Algorithm 2 identifies all the
rk’s and fk’s perfectly.

Next, as a demonstration, we repeat the above experiment but with additive white Gaussian noise with
variance σ = 0.1 (SNR = 9.8806dB). The noiseless data and noisy data are shown in Figure 2 (a). We
set the regularization parameter9 as λ = 0.2σ

√
4MN log(M) = 3.9558 and then solve the nuclear norm

denoising program (15). As is shown in Figure 2 (b), we observe that the (r, f) pairs can still be estimated
by localizing the peaks of ‖Q(r, f)‖2. In particular, the estimated damping ratios and frequencies are given

as r̂1 = 0.92, r̂2 = 0.98, r̂3 = 0.79 and f̂1 = 0.1, f̂2 = 0.4, f̂3 = 0.8. Note that we leave the corresponding
theoretical guarantees for future work.

9Here, the regularization parameter is set according to [6].
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Figure 1: Noiseless full data: (a) The first three columns in data matrix X?. (b) The blue lines correspond
to the locations where ‖Q(r, f)‖2 achieves 1 while the red circles correspond to the true rk’s and fk’s. They
coincide because the recovery is perfect.

10 20 30 40 50

Y
(:
,
1)

-0.4

-0.2

0

0.2

0.4
Real Part

10 20 30 40 50

Y
(:
,
2)

-0.2

0

0.2

0.4

0.6

Samples
10 20 30 40 50

Y
(:
,
3)

-0.5

0

0.5

10 20 30 40 50

X
⋆
(:
,
1)

-0.4
-0.2

0
0.2
0.4

Real Part

10 20 30 40 50

X
⋆
(:
,
2)

-0.2

0

0.2

0.4

0.6

Samples
10 20 30 40 50

X
⋆
(:
,
3)

-0.5

0

0.5

(a)

1

r cos(2πf)

0

-1-1
-0.5

r sin(2πf)

0
0.5

1

1

0.8

0.6

0.4

0.2

0

||
Q
(r
,f

)|
| 2

Ground Truth

NN-MUSIC

(b) 40% missing

Figure 2: Noisy full data: (a) Left: noiseless data X?. Right: noisy data Y. (b) The blue lines correspond
to the peaks of ‖Q(r, f)‖2 while the red lines mark the position of the true rk’s and fk’s.

6.2 Missing data case

We repeat the above experiments with missing data, namely we identify the damping factors and frequencies
from the given partially observed data matrix X?

Ω by solving the NNM problem in (16).10 All parameters are
set same as in the noise-free setting of Section 6.1. After generating the full data matrix X?, we randomly
remove 20% and 40% of its entries. We then use Algorithm 3 to identify all the rk’s and fk’s from the partial
data. Figure 3 indicates that Algorithm 3 identifies all the rk’s and fk’s perfectly.

We notice that the data matrix X? is also well recovered in this case. In particular, we define the relative

recovery error of data matrix as RelErr , ‖X̂−X?‖F
‖X?‖F , where X? and X̂ denote the true full data matrix and

the recovered data matrix via NNM. In particular, we have RelErr = 4.7487× 10−10 when 20% of the data
is missing and RelErr = 3.5190× 10−8 when 40% of the data is missing. Moreover, as is shown in Figure 4,
we also observe that in some cases, the rk’s and fk’s can be perfectly recovered even if we do not perfectly
recover X?, which further supports our Theorem 4.2.

Finally, we investigate the minimal number of measurements needed for perfect recovery with various
numbers K of spectral components. We set M = 70 and N = 50. For each value of K, we randomly
pick K frequencies and damping ratios from a frequency set F = 0.05 : 0.05 : 0.95 and a damping ratio

10Note that CVX [?] can return the estimated data matrix X̂ as well as the dual solution Q by solving the SDP form in (17).
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Figure 3: Noiseless missing data: the blue lines correspond to the locations where ‖Q(r, f)‖2 achieves 1 while
the red circles correspond to the true rk’s and fk’s. They coincide because the recovery is perfect.
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Figure 4: Noiseless missing data: in some cases, the rk’s and fk’s can be perfectly recovered even when X?

is not. In this example, we have RelErr = 0.0412.

set R = 0.94 : 0.0025 : 1.11 Denote (r̂, f̂) and (r?, f?) as the recovered parameters and true parameters,
respectively. We consider the parameter recovery to be a success if

max
1≤k≤K

(|r̂k − r?k|)≤10−5, max
1≤k≤K

(|f̂k − f?k |)≤10−5. (23)

Similarly, we consider the data matrix recovery to be a success if the relative recovery error ‖X̂−X?‖F
‖X?‖F ≤ 10−5.

We perform 20 trials in this part of simulation. It can be seen in Figure 5 that the minimal number of
measurements needed for perfect data matrix recovery does scale roughly linearly with K, as indicated
in Corollary 4.1. We also notice a similar behavior appearing in parameters recovery. Figure 5 (c) again
indicates that we can still successfully recover the parameters in some cases where the data matrix is not
perfectly recovered.

11We choose 0.94 as the lowest damping ratio since we want to keep at least 1% energy at the end of uniform sampling.

Therefore, we have r = 0.01
1
M ≤ 0.94.
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Figure 5: Probability of successful recovery for (a) parameters (r, f) and (b) data matrix X?. (c) presents
the probability of successful recovery for parameters minus the probability of successful recovery for the data
matrix.

6.3 Data coherence

In this section, we conduct three numerical experiments to examine the influence of the minimum frequency
separation ∆f , the matrix Φ, and the damping ratio rk on the performance of missing data matrix recovery.
The standard literature on matrix completion [43] relates the recoverability of a matrix X? to its coherence,
defined as µ?0 , max {µ?1(X?), µ?2(X?)} with

µ?1(X?) ,
M

K
max

1≤m≤M

∥∥U>X?ecm
∥∥2

2
, µ?2(X?) ,

N

K
max

1≤n≤N

∥∥V>X?ecn
∥∥2

2
,

where X? = UX?SX?VH
X? is a truncated SVD of X?, and ecm ∈ RM and ecn ∈ RN denote canonical basis

vectors.
In the first experiment, we examine the influence of minimum frequency separation on the performance

of missing data recovery with M = 50, N = 30, K = 2 and |Ω| = 450, i.e., 70% of the data are missing. To
simplify the experiment, we set r1 = r2 = 1 and c1 = c2 = 1. We fix f1 = 0.1 and let f2 = f1 + ∆f with
various values of the minimum frequency separation ∆f . We generate Φ ∈ CN×K using normalized columns
from a discrete Fourier matrix, which implies µ?2 = 1 and ensures that µ?0 = µ?1. 104 trials are performed
in this experiment. Other settings are the same as in Section 6.2. It is shown in Figure 6 (a, b) that the
coherence parameter µ?0 decreases as the minimum frequency separation ∆f increases, which also explains
why the probability of successful data matrix recovery increases as ∆f increases.

In the second experiment, we examine the influence of the matrix Φ on the performance of missing
data recovery. We change N = 10 to make sure that the coherence parameter µ?0 is not too large. By
fixing ∆f = 1/M , we have µ?1 = 1 and thus µ?0 = µ?2. We again generate Φ ∈ CN×K using columns from
the discrete Fourier matrix, but we then replace its first entry φ1,1 with scalars in the range of [1, 10] and
then normalize its columns. Other settings are same as the first experiment. We conduct 500 trials in this
experiment. Figure 6 (c, d) shows that the coherence parameter µ?0 increases as φ1,1 increases, which also
explains why the probability of successful data matrix recovery decreases as φ1,1 increases.

In the third experiment, we examine the influence of the damping ratio on the performance of missing
data recovery. We fix ∆f = 1/M and repeat the first experiment with various values of r2. We conduct 100
trials in this experiment. As shown in Figure 6 (e, f), the coherence parameter µ?0 decreases as r2 increases,
which also explains why the probability of successful data matrix recovery increases as r2 increases. This is
to be expected since exponentials with smaller damping ratio are transient and their contribution tends to
fade quickly from the measured data. Moreover, Figure 6 (f) again indicates that we can successfully recover
the parameters in some cases where the data matrix is not perfectly recovered.

These numerical experiments give a sense of how spectral parameters influence the coherence, and thus,
recoverability of the data matrix. We stress again, however, that the significance of Corollary 4.1 is that the
sample complexity is not stated in terms of the matrix coherence (which may be difficult to immediately
relate to the more tangible signal parameters); rather, the dependence on the damping ratios and minimum
frequency separation is explicitly revealed in Corollary 4.1.
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Figure 6: Influence of minimum frequency separation ∆f , the matrix Φ, and damping ratio r2 on the
performance of missing data recovery: (a) coherence parameter of the data matrix X? and (b) probability
of successful data matrix recovery with respect to the minimum frequency separation ∆f . (c) coherence
parameter of the data matrix X? and (d) probability of successful data matrix recovery with respect to a
various of matrix Φ. (e) coherence parameter of the data matrix X? and (f) probability of successful data
matrix and damping ratio recovery with respect to the second damping ratio r2.

6.4 Comparison with existing algorithms

In this section, we implement a series of experiments to compare our proposed algorithms with three existing
methods: 1) NNM+MUSIC/ESPRIT, 2) MN-MUSIC, and 3) ANM. We define successful parameter recovery
as in (23).

6.4.1 NNM+MUSIC and NNM+ESPRIT

We use NNM+MUSIC to denote an alternative approach wherein one first solves the NNM problem in (17)

to get X̂ and then uses Algorithm 2 (or, equivalently, MUSIC) to identify the rk’s and fk’s from X̂.12 We
use NNM+ESPRIT to denote a similar two-stage approach but with MUSIC replaced by the Estimation
of Signal Parameters via Rotation Invariance Techniques (ESPRIT) algorithm. The true rk’s and fk’s are
set same as in Section 6.1. We set M = 50 and N = 20. To show the advantage of our MD-MUSIC over
NNM+MUSIC and NNM+ESPRIT, we present the probability of successful parameter recovery (defined
in (23)) in Table 1. In the “two-step” algorithms NNM+MUSIC and NNM+ESPRIT, we use the true K as
the number of frequencies when we implement the MUSIC or ESPRIT algorithm even though it is unknown
and needs to estimated in practice.

6.4.2 MN-MUSIC

Next, we compare our proposed MD-MUSIC algorithm with the MN-MUSIC algorithm introduced in Sec-
tion 3.3 [19] in a scenario where 20% of the noiseless data entries are missing. We observe that the MN-MUSIC

12A similar idea has also been considered in [41].
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Table 1: Comparison of the “one-step” MD-MUSIC algorithm and the “two-step” NNM+MUSIC and
NNM+ESPRIT algorithms for parameter recovery. We present the probability of successful recovery over
1000 trials.

10% missing 20% missing 30% missing 40% missing
MD-MUSIC 99.6% 96.9% 90.8% 78.8%

NNM+MUSIC 99.4% 96.3% 85.0% 56.2%
NNM+ESPRIT 98.8% 89.9% 66.6% 29.5%

algorithm never successfully recovers the frequencies and damping ratios since it performs an SVD directly
on the missing data.13

6.4.3 ANM

Finally, we compare the proposed NN-MUSIC and MD-MUSIC algorithms with ANM in the full and missing
data cases, respectively. In ANM, we solve the following SDP

min
X,u,D

1

2M
Tr(Toep(u)) +

1

2
Tr(D) s. t.

[
Toep(u) X

XH D

]
� 0, XΩ = X?

Ω,

where Toep(u) is a Hermitian Toeplitz matrix with the vector u being its first column. We use X = X?

instead of XΩ = X?
Ω in the full data case. Similar to NN-MUSIC and MD-MUSIC, given the dual solution

of the above SDP, we then formulate a dual polynomial and localize the places where the `2-norm of the
dual polynomial achieves 1 to extract the estimated frequencies. Since ANM can only recover frequencies,
we only compare the accuracy of estimated frequencies in this section. All the simulation results presented
in this section are an average over 100 trials.

In the full data case, we repeat the first experiment in Section 6.1 with N = 10 and with a variety of
M and ∆f . We firstly fix ∆f = 0.06 and set the true frequency and damping pairs as (r1, f1) = (0.86, 0.1),
(r2, f2) = (0.92, 0.16), and (r3, f3) = (0.98, 0.8). Then, we compare NN-MUSIC and ANM with a variety
of M . Next, we fix M = 20, r1 = 0.92, r2 = 0.98, and f1 = 0.1. Similar as in Section 6.3, we then let
f2 = f1 + ∆f with various values of ∆f . The simulation results are given in Figure 7. It can be seen that
the NN-MUSIC algorithm significantly outperforms ANM and can always recover the frequencies exactly, as
indicated in Theorem 4.1. This is because our data contains damping, which is not modeled in ANM.

In the missing data case, we randomly remove 20% or 40% of the data entries. We repeat the above two
experiments with these partially observed data matrices to compare MD-MUSIC and ANM. As shown in
Figure 8, MD-MUSIC still outperforms ANM significantly in most cases due to its ability to handle damped
signals. We also observe that ANM can have a higher probability of successful recovery once the number of
observed entries is too small, as shown in Figure 8 (c). However, the success probability in this case is still
significantly less than 1. Note that we have changed f2 from 0.16 to 0.2 in Figure 8 (a, c) to test with a
larger value of ∆f . Other parameters used in this part are the same as in the full data experiments.

7 Conclusion

In this work, we provide a convex optimization view for the classical MUSIC algorithm in spectral estimation
with damping. In particular, we build a connection between NNM and the classical MUSIC algorithm, which
inspires us to propose a new algorithm, named MD-MUSIC, for the missing data field. Theoretical results
are provided to guarantee the proposed algorithms. In particular, it is possible to get exact parameter
recovery with the MD-MUSIC algorithm even when we do not have perfect data recovery. Moreover, for

13No results are shown since MN-MUSIC never recovers successfully.
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Figure 7: Comparison of NN-MUSIC and ANM in the noiseless full data case, with damped exponentials.
(a) Probability of successful frequency recovery as a function of M , with fixed ∆f = 0.06 and K = 3. (b)
Probability of successful frequency recovery as a function of ∆f , with fixed M = 20 and K = 2.
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Figure 8: Comparison of MD-MUSIC and ANM in the noiseless missing data case and damped exponentials,
with (a, b) 20% or (c, d) 40% of the entries randomly removed. (a), (c) Probability of successful frequency
recovery as a function of M , with fixed ∆f = 0.1 and K = 3. (b), (d) Probability of successful frequency
recovery as a function of ∆f , with fixed M = 20 and K = 2.

the missing data case, we also quantify how the sample complexity depends on the true spectral parameters
rather than use certain incoherence properties as in existing literature. Meanwhile, numerical simulations
indicate that the proposed algorithms work very well and significantly outperform some relevant existing
methods in frequency estimation of damped exponentials. We leave the robust performance analysis on noisy
data for future work.
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