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Abstract
Many industries are evaluating the use of the Internet of Things (IoT) technology with big
data to perform remote monitoring and predictive maintenance on their mission-critical assets
and equipment, for which mechanical bearings are their indispensable components. Although
many data-driven methods have been applied to bearing fault diagnosis, most of them belong
to the supervised learning paradigm that requires a large amount of labeled training data to
be collected in advance. However, in practical applications, obtaining accurate labels based
on real-time bearing conditions can be more challenging than simply collecting large amounts
of unlabeled data using multiple sensors. In this paper, we thus propose a semi-supervised
learning scheme for bearing fault diagnosis using variational autoencoder (VAE)-based deep
generative models, which can effectively utilize a dataset when only a small subset of data
have labels. Finally, a series of experiments were conducted using the University of Cincin-
nati Intelligent Maintenance System (IMS) Center dataset and the Case Western Reserve
University (CWRU) bearing dataset. The experimental results show that the proposed semi-
supervised learning schemes outperformed some mainstream supervised and semi-supervised
benchmarks with the same percentage of labeled data samples. Additionally, the proposed
methods can mitigate the label inaccuracy issues when identifying naturally-evolved bearing
faults.
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Abstract— Many industries are evaluating the use of the Internet of
Things (IoT) technology with big data to perform remote monitoring
and predictive maintenance on their mission-critical assets and
equipment, for which mechanical bearings are their indispensable
components. Although many data-driven methods have been ap-
plied to bearing fault diagnosis, most of them belong to the su-
pervised learning paradigm that requires a large amount of labeled
training data to be collected in advance. However, in practical
applications, obtaining accurate labels based on real-time bearing
conditions can be more challenging than simply collecting large
amounts of unlabeled data using multiple sensors. In this paper, we
thus propose a semi-supervised learning scheme for bearing fault
diagnosis using variational autoencoder (VAE)-based deep generative models, which can effectively utilize a dataset
when only a small subset of data have labels. Finally, a series of experiments were conducted using the University
of Cincinnati Intelligent Maintenance System (IMS) Center dataset and the Case Western Reserve University (CWRU)
bearing dataset. The experimental results show that the proposed semi-supervised learning schemes outperformed some
mainstream supervised and semi-supervised benchmarks with the same percentage of labeled data samples. Additionally,
the proposed methods can mitigate the label inaccuracy issues when identifying naturally-evolved bearing faults.

Index Terms— Bearing fault, generative model, semi-supervised learning, variational autoencoders.

I. INTRODUCTION

THE Internet of Things (IoT) is a system that connects
many devices together and transfers their data over a

network [1]. By connecting these devices, such as simple
sensors, smartphones, and wearables to automated systems,
it is possible to gather information, analyse it, and take
appropriate actions to learn from a process or fulfill a specific
task. According to [2], companies in many industries are
evaluating the ability to use IoT technology to perform remote
monitoring and predictive maintenance on their mission-critical
applications. In particular, a key functional component of assets
and equipment in many industries is the mechanical bearing,
which is responsible for a variety of applications such as planes,
vehicles, production machinery, wind turbines, air-conditioning
systems, elevator hoists, among others.

These IoT-based bearing diagnosis tasks typically collect a
large amount of data from their interconnected sensors, such
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as the frequently-used vibration [3], [4], acoustic [5], [6], and
motor current [7], [8] sensors. These signals are typically rich
in high-dimensional features related to bearing defects, which
makes it well-suited to leverage deep learning algorithms to
extract these fault features and thereafter perform anomaly
detection [9]–[11]. Despite their success, most of the existing
models are developed in the form of supervised learning, which
requires a large set of labeled data collected in advance for
each distinct operating condition.

Since data is typically collected by means of sensors without
human intervention, it might not be difficult to obtain a
sufficient amount of data for supervised bearing fault diagnosis
[12]. However, the process of labeling the collected samples
can be time-consuming [13], [14] and expensive [13]–[18],
and it also requires human knowledge/expertise on the system
states [12]. Therefore, the bearing dataset, especially the faulty
data, are usually not labeled in real industrial applications [14],
[19]. Even attempts are made to label these unlabeled samples,
the accuracy of these labels cannot be guaranteed, since they
are also subject to confirmational data biases of the engineers
interpreting the data [17]. Therefore, both label scarcity and
label accuracy issues will pose challenges to the mainstream
supervised learning approaches for bearing fault diagnosis.

A promising approach to overcome these challenges is to
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Fig. 1. Architecture of variational autoencoders [20].

apply semi-supervised learning algorithms that leverage the lim-
ited labeled data and the massive unlabeled data simultaneously
[12]–[19]. Specifically, semi-supervised learning considers the
classification problem when only a small part of the data
has labels, and so far only a few semi-supervised learning
paradigms have been applied to bearing fault diagnosis. For
instance, the support vector data description method in [19]
uses cyclic spectral coherent domain indicators to construct
a feature space and fit a hypersphere, which then calculates
the Euclidean distance in order to distinguish the faulty data
from the healthy ones. In addition, both [15] and [16] use
graph-based methods to construct graphs connecting similar
samples in the dataset, so class labels can be propagated from
labeled nodes to unlabeled nodes through the graph. However,
these methods are very sensitive to graph structure and need to
analyze the graph’s Laplacian matrix, which limits the scope
of these methods. [12] uses α-shape instead of a graph-based
method to capture the data structure, and the α-shape is mainly
used to perform surface estimation and to reduce the efforts
required for parameter tuning.

Moreover, the semi-supervised deep ladder network is
also applied in [13] to identify the failure of the primary
parallel shaft helical gear in an induction motor system. The
ladder network is implemented by modeling hierarchical latent
variables to integrate supervised and unsupervised learning
strategies. However, the unsupervised components of the ladder
network may not help in a semi-supervised environment if those
raw data do not show obvious clustering on the 2-D manifold,
which is usually the case for vibration signals. Although GAN
has been also used for semi-supervised learning in [14], [17],
[18], it is reported in [21] that good generators and good
semi-supervised classifiers cannot be obtained simultaneously.
Additionally, the well-known difficulty in training GANs has
further impacted their applications to practical semi-supervised
learning tasks [10].

The motivation of the proposed research is both broad and
specific, as we strive to solve the problem of bearing fault
diagnosis through a solid theoretical explanation, and leverage
the fault features of both labeled and unlabeled data to make
the classifier more accurate and robust. Therefore, we adopt a
deep generative model based on solid Bayesian theory and use
scalable variational inference in a semi-supervised environment.
Although some existing work using variational autoencoders
(VAE) for bearing fault diagnosis can be found in [22]–[24],
they only use the discriminative features in the latent space for
dimension reduction, and then use these features to train other
external classifiers. In this work, however, we also take an
integrated approach to train the VAE model itself as a classifier

by also exploiting its generative capabilities.
This paper tackles both label scarcity and label accuracy is-

sues in bearing fault diagnosis. Detailed technical contributions
of this work are summarized as follows:

1) Semi-supervised deep generative model implementation:
This paper applies two semi-supervised VAE-based deep
generative models to leverage properties of both the
labeled and unlabeled data for bearing fault diagnosis.
To mitigate the “KL vanishing” problem in VAE models
and further promote the accuracy and robustness of the
semi-supervised classifier, this study also adapt the KL
cost annealing techniques [25], [26] on top of the original
model presented in [27].

2) Strong performance mitigating the label scarcity issue:
This work utilizes the CWRU dataset to create test
scenarios where only a small subset of data for each fault
category has labels, which corresponds to the label scarcity
issue discussed in [12]–[19] for real-world applications.
The results show that the M2 model can greatly outper-
form the baseline unsupervised and supervised learning
algorithms. Additionally, the VAE-based semi-supervised
generative M2 model also compares favorably against four
state-of-the-art semi-supervised learning methods.

3) Solid performance mitigating the label accuracy issue:
This study also uses the IMS dataset with naturally-evolved
bearing defects to create test scenarios with the label
accuracy issue discussed in [17]. The results demonstrate
that incorrect labeling will inevitably reduce the classifier
performance of supervised learning algorithms, while
adopting semi-supervised deep generative models can be
an effective way to mitigate the label accuracy issue. This
conclusion can be supported by M2 model’s consistent
dominance over CNN when a lot of healthy data were
mislabeled as faulty ones.

The rest of the paper is organized as follows. In Section II, we
introduce some of the background knowledge of VAE. Next, in
Section III, we present the architecture of two VAE-based deep
generative models in the semi-supervised setting, with detailed
discussions on leveraging a dataset including both labeled
and unlabeled data. In Section IV, two comparative studies of
the proposed models against other popular machine learning
and deep learning algorithms are performed using both the
University of Cincinnati’s Center for Intelligent Maintenance
Systems (IMS) dataset [28] and the Case Western Reserve
University (CWRU) bearing dataset [29]. Section V concludes
the paper by highlighting its technical contributions.

II. BACKGROUND OF VARIATIONAL AUTOENCODERS

The variational inference technique is often used in the
training and prediction process, which is effective for solving
the posterior of the distribution obtained from neural networks
[20]. The VAE’s architecture is demonstrated in Fig. 1, which
specifies a joint distribution pθ(x, z) = pθ(x|z)p(z) over
observations x and latent variables z, which are usually sampled
from a prior density p(z) subject to a multivariate unit Gaussian
distribution N (0, I). These latent variables are also related to
the observed variables x through the likelihood pθ(x|z), which
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can be regarded as a probabilistic decoder, or generator, to
decode z into a distribution over the observation x. A neural
network parameterized by θ will be used to model the decoder.

After specifying the decoding process, it is necessary to
perform inference, or to calculate the posterior pθ(z|x) of latent
variables z given the observations x. In addition, we also seek to
optimize the model parameters θ with respect to pθ(x), which
is obtained by marginalizing out the latent variables z in the
likelihood function pθ(x, z). Since the prior p(z) is a Gaussian
non-conjugate process, the true posterior pθ(z|x) becomes
analytically intractable. Therefore, the technique of variational
inference should be used to approximate a posterior qφ(z|x)
with optimized variational parameters φ, which minimizes
the Kullback-Leibler (KL) divergence of the approximated
posterior to the true posterior. This posterior approximation
qφ(z|x) can be also observed as an encoder with distribution
N (z|µφ(x),diag(σ2

φ(x))), of which µφ(x) and σφ(x) will
be also optimized using neural networks.

By definition, the KL divergence measures the similarity
between two distributions, which is expressed as an expectation
of the log of the first distribution minus the log of the second
distribution. Thus the KL divergence of the approximated
posterior qφ(z|x) with respect to the true posterior pθ(z|x) is
shown Eqn. (1), after applying the Bayes’ theorem.

After moving log pθ(x) to the left hand side of Eqn. (1),
it can be written as the sum of a defined term known as
the evidence lower bound (ELBO) and the KL divergence,
which satisfies DKL [qφ(z|x)‖pθ(z|x)]≥ 0. Specifically, based
on Jensen’s inequality, the optimal qφ(z|x) that maximizes the
ELBO is pθ(z|x), which also simultaneously makes the KL
divergence term equal to zero. Therefore, maximizing Eqn. (2)
with respect to θ and the variational parameters φ is analogous
to minimizing the KL divergence, and this optimization can
be performed using stochastic gradient descent.

III. SEMI-SUPERVISED DEEP GENERATIVE MODELS
BASED ON VARIATIONAL AUTOENCODERS

This section presents two semi-supervised deep generative
models based on VAE [27]. When only a small subset of
training data have labels, both models can exploit VAE’s
generative power to enhance the classifier’s performance. By
learning a good variational approximation of the posterior,
the VAE’s encoder can embed the input data x as a set of
low-dimension latent features z. The approximated posterior
qφ(z|x) is formed by a nonlinear transformations, which can be
modeled as a deep neural network f(z;x,φ) with variational
parameters φ. Similarly, the VAE’s generator takes a set of
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Fig. 2. Illustration of the latent-feature discriminative M1 model.

latent variables z and reproduces the observations x using
pθ(x|z), which can be also modeled as a deep neural network
g(x; z,θ) parameterized by θ.

A. Latent-feature discriminative M1 model
The M1 model [27] trains the VAE-based encoder and

decoder in an unsupervised manner. The trained encoder will
provide an embedding of input data x in the latent space,
which is defined by the latent variables z. In most cases, the
dimension of z is much smaller than that of x, and these
low-dimensional features can often increase the accuracy of
supervised learning models.

As shown in Fig. 2, after training the M1 model, the actual
classification task will be carried out in an external classifier,
such as support vector machine (SVM), polynomial regression,
etc. Specifically, the VAE encoder will only process the labeled
data xl to determine their corresponding latent variable zl, then
they are combined with their corresponding labels yl to train
this external classifier. The M1 model is considered a semi-
supervised method, since it leverages all available data to train
the VAE-based encoder and decoder in an unsupervised manner,
and thereafter it also takes the labeled data (zl, yl) to train an
external classifier in a supervised fashion. When compared with
purely supervised learning methods that can only be trained
using a small subset of data with labels, the M1 model usually
promotes more accurate classification, since the VAE structure
is also able to learn from the vast majority of unlabeled data,
enabling the extraction of more representative latent features
to train its subsequent classifier.

B. Semi-Supervised Generative M2 model
As briefly mentioned earlier, the major limitation of the

M1 model is the disjoint nature of its training process, as
it needs to train the VAE network first and thereafter the

DKL [qφ(z|x)‖pθ(z|x)] = Ez∼qφ(z|x) [log qφ(z|x)− log p(z|x)]
= Ez∼qφ(z|x)[log qφ(z|x)− log p(z)− log pθ(x|z)] + log pθ(x) (1)

log pθ(x) = −Ez∼qφ(z|x) [log qφ(z|x)− log p(z)− log pθ(x|z)] +DKL [qφ(z|x)‖pθ(z|x)]
= Ez∼qφ(z|x) [log pθ(z|x) + log pθ(x|z)− log qφ(z|x)]︸ ︷︷ ︸

Evidence Lower Bound (ELBO)

+DKL [qφ(z|x)‖pθ(z|x)]︸ ︷︷ ︸
≥0

(2)
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Fig. 3. Illustration of the semi-supervised generative M2 model.

external classifier. Specifically, the initial VAE training phase
of the M1 model’s VAE-based encoder and decoder is a purely
unsupervised process and does not involve any scarce labels yl,
which is completely separated from the subsequent classifier
training phase that actually takes yl. To address this issue,
another semi-supervised deep generative model, referred to
as the M2 model, is also proposed in [27]. The M2 model
can handle two situations at the same time: one where the
data have labels, and the other where these labels are not
available. Therefore, there are also two ways to construct the
approximated posterior q and its variational objective.

1) Variational Objective with Unlabeled Data: When labels
are not available, two separate posteriors qφ(y|x) and qφ(z|x)
will be approximated during the VAE training stage, where
z is still the latent variables similar to the M1 model, while
y is the unobserved label yu. This newly defined posterior
approximation qφ(y|x) will be used to construct the best
classifier as our inference model [27]. Given the observations
x, the two approximated posteriors of the corresponding class
labels y and latent variables z can be defined as

qφ(y|x) = Cat (y|πφ(x))
qφ(z|x) = N

(
z|µφ(x),diag

(
σ2
φ(x)

)) (3)

where Cat (y|πφ(x)) is the concatenated multinomial distribu-
tion, πφ(x) can be modeled by a neural network parameterized
by φ. Combining the above two posteriors, a joint posterior
approximation can be defined as

qφ(y, z|x) = qφ(z|x)qφ(y|x) (4)

Therefore, the revised ELBOU that determines the varia-
tional objective of the unlabeled data can be written as Eqn.
(5), where L(x, y) is the original ELBO in Eqn. (2).

2) Variational Objective with Labeled Data: Since the goal of
semi-supervised learning is to train a classifier using a limited
amount of labeled data and the vast majority of unlabeled
data, it would be beneficial to also include the scarce labels
in the training process of this deep generative M2 model.
Similarly, Eqn. (6) shows the revised ELBOL that determines
the variational objective for the labeled data.

3) Combined Objective for the M2 Model: In Eqn. (6), the dis-
tribution qφ(y|x), which is used to construct the discriminative
classifier, is only included in the variational objective of the
unlabeled data. This is still an undesirable feature, since the
labeled data will not be involved in learning this distribution
or the variational parameter φ. Therefore, an additional loss
term should be superimposed on the combined model objective,
such that both the labeled and unlabeled data can contribute
to the training process. Hence, the final objective of the semi-
supervised deep generative M2 model is:

J α =
∑
x∼p̃u

U(x) +
∑

(x,y)∼p̃l

[L(x, y)− α · log qφ(y|x)] (7)

in which the hyper-parameter α controls the relative weight
between the generative and the discriminative learning. A rule
of thumb is to set α to be α = 0.1 · N in all experiments,
where N is the number of labeled data samples.

With this combined objective function, we can integrate a
large number of x as a mini-batch to enhance the stability of
training two neural networks used as an encoder and a decoder.
Finally, we’ll run stochastic gradient descent to update the
model parameters θ and the variational parameters φ. The
structure of the M2 model is presented in Fig. 3.

C. Model Implementations
1) M1 Model Implementation: The M1 model constructs its

encoder qφ(z|x) and decoder pθ(x|z) by using two deep neural
networks f(z;x,φ) and g(x; z,θ), respectively. The encoder
has 2 convolutional layers and 1 fully connected layer using
ReLu activation, aided by batch normalization and dropout
layers. The decoder consists of 1 fully connected layer followed
by 3 transpose convolutional layers, where the first 2 layers
use ReLU activation and the last layer uses linear activation.

Due to the “KL vanishing” problem, it is often difficult to
achieve a good balance between the likelihood and the KL
divergence, as the KL loss can be undesirably reduced to zero,
though it is expected to remain a small value. To overcome
this problem, the implementation of M1 model uses the “KL

ELBOU = Eqφ(y,z|x)
[
log pθ(x|y, z) + log pθ(y) + log pθ(z)− log qφ(y, z|x)

]
= Eqφ(y|x)

[
− L(x, y))− log qφ(y|x)

]
(5)

=
∑
y

qφ(y|x)(−L(x, y)) +H(qφ(y|x)) = −U(x)

ELBOL =Eqφ(z|x,y) [log pθ(x|y, z) + log pθ(y) + log pθ(z)− log qφ(z|x, y)]
=Eqφ(z|x) [log pθ(x|y, z) + log pθ(y) + log pθ(z)− log qφ(z|x)] = −L(x, y) (6)



5

cost annealing” or “β VAE” [25], which includes a new weight
factor β for the KL divergence. The revised ELBO function
for “β VAE” is

ELBO = Eqφ(z|x) [log pθ(x|z)]︸ ︷︷ ︸
Reconstruction

−β·DKL (qφ(z|x)‖p(z))︸ ︷︷ ︸
KL Regularization

(8)

During training, β will be manipulated to gradually increase
from 0 to 1. When β < 1, the latent variables z are trained with
an emphasis on capturing useful features for reconstructing the
observations x. When β = 1, the z learned in earlier epochs
can be taken as a good initialization, which enables more
informative latent features to be used by the decoder [26].

After training the M1 model that is able to balance its
reconstruction and generation features, the latent variable z
in latent space will be used as discriminative features for
the external classifier. This paper uses an SVM classifier,
though any personally preferred classifier can be also used.
The advantage of the M1 model is that the discriminative
feature extraction function of VAE can be used to reduce the
dimensionality of the input data to a lower value. In this study,
the input data has a dimension of 1,024, which will be reduced
to 128 in the latent space.

2) M2 Model Implementation: The deep generative M2 model
uses the same structure for qφ(z|x) as the M1 model, while
the decoder pθ(x|y, z) also has the same settings as M1’s
pθ(x|z). In addition, the classifier qφ(y|x) is comprised of 2
convolutional layers and 2 max-pooling layers with dropout
and ReLU activation, followed by the final Softmax layer.

Two independent neural networks are used, one for labeled
data and one for unlabeled data, with the same network
structure, but different input/output specifications and loss
functions. For instance, for labeled data, both xl and y are
considered as input to minimize the labeled (x, y) ∼ p̃l part
in Eqn. (7), and the output will be the reconstructed as x∗l
and y∗. For unlabeled data, xu is the only input to reconstruct
x′u. Other hyper-parameters of the M2 model are also selected
empirically. We use a batch size of 200 for training, the latent
variable z has a dimension of 128. For optimizer settings, we
use RMSprop with a 10−4 initial learning rate.

3) M1 vs. M2 Model: By comparing the M1 and M2 models,
it’s obvious to find that the significance of the M1 model lies
in its simpler and clear network structure, which is easy to
implement and saves training time. As shown in Fig. 2, the
M1 model is a simple and straightforward implementation of
VAE that only includes an encoder and a decoder trained in
an unsupervised manner, then the learned latent features and
labels (zl, yl) of the labeled data are subsequently used to train
an external classifier.

On the other hand, M2 deals with both labeled and unlabeled
data by using two identical encoder networks for both labeled
and unlabeled data. Additionally, it also has a built-in classifier
to perform inference on the approximated posterior qφ(y|x).
Therefore, despite the fact that the M2 model tends to have
a superior performance than the M1 model, it also suffers
from increased model complexity and prolonged training time.
Since both of them have their strengths and weaknesses, it is
worthwhile to compare how they perform in the context of
semi-supervised bearing.

TABLE I
CLASS LABELS SELECTED FROM THE CWRU DATASET

Class label
Fault location Fault diameter (mils)

Ball IR OR 0.007 0.014 0.021

1 3 – – 3 – –
2 3 – – – 3 –
3 3 – – – – 3

4 – 3 – 3 – –
5 – 3 – – 3 –
6 – 3 – – – 3

7 – – 3 3 – –
8 – – 3 – 3 –
9 – – 3 – – 3

10 Normal

IV. EXPERIMENTAL RESULTS USING THE CWRU DATASET

In this section, we seek to use the CWRU dataset to verify
the effectiveness of the two VAE-based semi-supervised deep
generative models for bearing fault diagnosis. The developed
diagnostic framework will be described in detail, and the
performance of the classifier will be first compared with
three baseline supervised/unsupervised algorithms, including
principal component analysis (PCA), autoencoder (AE), and
convolutional neural network (CNN). Then, we’ll also compare
the proposed methods against some state-of-the-art semi-
supervised learning algorithms, such as low density separation
(LDS) [30], safe semi-supervised support vector machine
(S4VM) [31], SemiBoost [32], and semi-supervised smooth
alpha layering (S3AL) [12].

A. CWRU Dataset
The CWRU dataset contains the vibration signals collected

from the drive-end bearing and fan-end bearing in a 2 hp
induction motor dyno setup [29]. Single-point defects are
manually created onto the bearing inner race (IR), outer race
(OR), and rolling elements by electro-discharge machining.
Different defect diameters of 7 mil, 14 mil, 21 mil, 28 mil, and
40 mil were used to simulate different levels of fault severity.
Two accelerometers mounted on the drive-end and fan-end
of the motor housing were used to collect vibration data at
a motor load of 0 to 3 hp and a motor speed from 1,720 to
1,797 rpm at a sampling frequency of 12 kHz or 48 kHz.

The purpose of the proposed bearing diagnostic model is to
reveal the location and severity of bearing defects, vibration
data collected for the same failure type but at different speeds
and load conditions will be considered to have the same class
label. Based on this standard, 10 classes are specified according
to the size and location of the bearing defect, and TABLE I
identifies a detailed list of all 10 classes featured in this study.

B. Data Preprocessing
The diagnosis process starts from data segmentation, which

divides the collected vibration signal into multiple segments
of equal length. For the CWRU dataset, the number of data
samples of the drive-end vibration signal for each kind of
bearing failure is approximately 120,000 at three different
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Fig. 4. Comparison of the original (top row) and the reconstructed (bottom row) bearing vibration signals after training the VAE M1 model.

speeds (i.e., 1,730 rpm, 1,750 rpm, and 1,772 rpm). Data
collected at these speeds constitute the complete data for each
class, which will be later segmented in a fixed window size of
1,024 samples (or 85.3 ms time span for a sampling rate of
12 kHz) and with a sliding rate of 0.2. Finally, the number of
training and test data segments is 12,900 and 900, respectively.

All test data will be labeled. Although the percentage of test
data appears to be small at first glance – approximately 7%,
only a maximum of 2,150 training data segments will have
labels in the later experiment, indicating the percentage of test
data to labeled training data is still around 30%.

After the initial data import and segmentation stage, these
data segments are still arranged in the order of their classes
labels (fault types). Therefore, data shuffling needs to be carried
out to ensure that both the training set and the test set can
represent the overall distribution of the CWRU dataset, which
enhances the model generalization and makes it less prone
to overfitting. Classical standardization techniques are also
implemented to the training and test set to ensure the vibration
data have zero mean and unit variance, which is enabled by
subtracting the mean of the original data and then dividing the
result by the original standard deviation.

C. Experimental Results
After training the VAE-based generative M1 model, the

reconstructed bearing vibration signal should be very similar
to the actual vibration signal, and their comparisons are
demonstrated in Fig. 4. Although a perfect reconstruction
may impact the VAE’s generative capabilities and reduce its
versatility, a reasonably close reconstruction with a small
error indicates that VAE has achieved a balance between
reconstruction and generation, which is critical to leverage
the generative features of the algorithm.

The network structure of the VAE-based deep generative M1
and M2 models have been discussed in detail in Section III. C.
In addition to implementing these models to perform bearing
fault diagnosis, other popular unsupervised learning schemes
such as PCA and autoencoder, as well as the supervised CNN,
are also trained to serve as baselines. Their parameters are
either selected to be consistent with the M1 and M2 model, or

obtained through parameter tuning. For example, we use the
same optimizer settings as the VAE model (RMSprop with an
initial learning rate of 10−4) to train both CNN and autoencoder
benchmarks. More details are provided as follows:

1) PCA+SVM: the PCA+SVM benchmark is trained using
low-dimensional features extracted from the labeled data
segments (each consists of 1,024 data samples) using
PCA. The dimension of the feature space is 128, which
is consistent with the M1 and M2 model’s latent space
dimension. The SVM uses a radial basis function (RBF)
kernel, and through modest parameter optimization, its
regularization parameter is set to C = 10. Additionally,
the kernel coefficient is set to “sample” (1/128/X.var()),
where X.var() is the variance of the input data.

2) Autoencoder (AE): Thanks to the structural similarity
with VAE, the AE baseline inherits the same network
structure (encoder-decoder) as the M1 model, as well as
its SVM-based external classifier.

3) CNN: the CNN benchmark treats each time-series vibra-
tion data segment (consisting of 1,024 data samples) as a
2-D 32x32 image, which is a common practice to apply
the vanilla CNN on bearing fault diagnosis, as discussed
in detail in [33]. Specifically, the CNN baseline has two
convolution layers with ReLU activation, each with 2 ×
2 convolutions and 32 filters, followed by a 2 × 2 max-
pooling layer and a 0.25 dropout layer. Next, we have
a fully connected hidden layer with a dimensionality of
512, and the output of which is fed into a softmax layer.
The cross-entropy loss is adopted, and the batch size is
set to 10, which is also obtained via parameter tuning.

A total of 10 rounds of experiments are performed on the
same training and test sets shuffled randomly. Of the 129,000
training samples, only a small portion of the labels are actually
used in different algorithms to construct bearing fault classifiers.
Seven case studies were conducted using 50, 100, 300, 516, 860,
1,075, and 2,150 labels, representing 0.39%, 0.78%, 2.34%,
4%, 6.67%, 8.33%, and 16.67% of the training data have labels.

Tab. II lists the average accuracy and standard deviation
of different algorithms after 10 rounds of experiments, in
which the latent feature discriminant model (M1) performs
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TABLE II
EXPERIMENTAL RESULTS OF VAE-BASED SEMI-SUPERVISED CLASSIFICATION ON CWRU BEARING DATASET WITH LIMITED LABELS

N Labeled Data % PCA+SVM Autoencoder CNN VAE M1 VAE M2

50 0.39% 26.57± 0.38% 33.40± 1.24% 30.74± 2.88% 32.93± 2.01% 40.57± 2.91%
100 0.78% 33.77± 2.81% 37.96± 0.65% 34.50± 2.16% 36.91± 1.37% 60.04± 3.57%
300 2.34% 44.43± 1.59% 44.06± 2.61% 60.28± 3.42% 47.03± 1.22% 87.63± 2.80%
516 4% 53.27± 2.21% 50.88± 2.03% 75.41± 2.74% 57.06± 1.76% 94.16± 1.66%
860 6.67% 61.70± 2.31% 58.89± 1.81% 87.39± 0.93% 67.19± 1.70% 96.77± 0.38%
1075 8.33% 67.83± 1.27% 62.83± 1.61% 91.07± 1.46% 71.97± 1.40% 97.86± 0.51%
2150 16.67% 82.40± 1.47% 77.09± 0.98% 97.19± 0.99% 86.59± 1.43% 98.06± 0.88%

TABLE III
COMPARISON OF DIFFERENT SEMI-SUPERVISED LEARNING ALGORITHMS WITH DIFFERENT LABELED DATA PERCENTAGE ν

Algorithms ν = 5% ν = 10% ν = 20% Overall Rank

LDS [30] 69.60± 15.43% 74.49± 13.72% 77.90± 12.98% 74.21± 17.77% 6
S4VM [31] 70.85± 12.54% 87.52± 12.48% 92.44± 8.18% 83.60± 11.59% 5
SemiBoost [32] 79.32± 18.16% 85.59± 14.63% 90.76± 10.25% 85.22± 14.56% 4
S3AL [12] 85.60± 14.48% 90.47± 10.73% 94.25± 6.96% 90.10± 11.68% 2

VAE M1 78.75± 7.75% 88.53± 8.37% 92.40± 7.08% 86.56± 9.52% 3
VAE M2 87.17± 7.18% 97.82± 4.63% 99.80± 0.47% 94.93± 7.40% 1

TABLE IV
DATA CHARACTERISTICS OF EACH SCENARIO BASED ON [12]

Scenarios Signal length
Defect width Motor load

0.007 in 0.014 in 0 hp 1 hp

SCN1 1024 (100) 3 – 3 –
SCN2 1024 (100) 3 – – 3
SCN3 1024 (100) – 3 3 –
SCN4 1024 (100) – 3 – 3

as good as the unsupervised model (autoencoder), if not
better, showcasing that the M1 model’s latent space is able
to provide robust features to enable good classification. It
is also worth mentioning that, initially, the VAE-based M1
model has advantages over CNN until the number of labeled
samples is N = 100. Then the performance is degraded, which
contradicts the results obtained on the classic MNIST dataset in
[27]. One explanation for this deviation may be that the CWRU
dataset has many explicit feature representations, which can be
easily captured by some powerful supervised learning schemes.
Therefore, the CNN only requires 1,000 labeled training data
segments to achieve an accuracy over 90%.

However, by integrating the features learned in the M1 model
and the classification mechanism directly into the same model,
the conditional generated M2 model can obtain better results
than the CNN or M1 model using an external SVM classifier.
Specifically, to achieve a fault classification accuracy of about
95%, the M2 model only needs 4% (516) of the training
data segments to be labeled, while the best accuracy that
can be achieved using other benchmark algorithms is only
75.41% using the same amount of labeled data. In addition,
this significant accuracy improvement of around 20% is also
very consistent, since its standard deviation is as low as 1.66%.

Additionally, we also compare the proposed VAE-based M1
and M2 model against four state-of-the-art semi-supervised

learning methods, including LDS, S4VM, SemiBoost, and
S3AL. To make a fair comparison, we used the same CWRU
dataset, the same data preprocessing methods in terms of data
segmentation (signal length and number) and labeling (based
on defect width and motor speed/load), and the same labeled
data percentage as [12]. The fault classification accuracy and
standard deviation obtained using the CWRU dataset is shown
in TABLE III, where ν stands for the percentage of labeled
samples. The results for the four semi-supervised benchmark
studies were summarized in [12], and the data segmentation
and labeling details of which are presented in TABLE IV.

It can be observed from Table III that the best-performing
algorithm is the proposed VAE M2 method. Specifically, the
average accuracy of VAE M2 is 1.5%, 7.4%, and 5.6% better
than the second-best S3AL algorithm, when the percentage
of labeled data ν is 5%, 10%, and 20%, respectively. In
addition, the standard deviation of VAE M2 is also significantly
lower than the benchmark semi-supervised learning studies,
demonstrating the robustness and consistency of the VAE M2
model. Moreover, the VAE M1 model also secures third place
in this comparison, and its performance is just 1% to 2% shy of
S3AL when ν is 10% or 20%. Therefore, it can be concluded
that it is not only the adoption of VAE-based networks, but
also the integrated training approach of the M2 model that
contributed to the largest performance enhancement of deep
generative models in semi-supervised bearing fault diagnosis.

V. EXPERIMENTAL RESULTS USING THE IMS DATASET

A. IMS Dataset

In the previous CWRU dataset, bearing damage is artificially
initiated in order to accelerate the degradation process. There-
fore, the IMS bearing dataset, which contains data collected
from naturally evolved bearing defects, is also used in this
study to evaluate the performance of the VAE-based generative
models. The IMS dataset was collected on the test stand shown
in Fig. 5. Specifically, four double-row bearings are installed
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TABLE V
BEARING FAULT SCENARIOS AND THEIR DEGRADATION STARTING POINTS IN THE IMS DATASET [34]

Bearing Subset 1 Bearing 3 Subset 1 Bearing 4 Subset 2 Bearing 1 Subset 3 Bearing 3

Fault type Inner race Rolling element Outer race Outer race
Endurance duration 34 days 12 h 34 days 12 h 6 days 20 h 45 days 9 h
Number of files 2, 156 2, 156 984 4, 448
Degradation starting point AEC∗ 2, 027 1, 641 547 2367
Degradation starting point MAS-Kurtosis† 1, 910 1, 650 710 N/A
Degradation starting point HMM-DPCA‡ 2, 120 1, 760 539 N/A

∗AEC: auto-encoder-correlation-based (AEC) prognostic algorithm.
†MAS-Kurtosis: moving average spectral kurtosis.
‡HMM-DPCA: hidden Markov model with dynamic PCA.
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Fig. 5. Experimental setup collecting the IMS dataset [28].

on the same shaft, which is coupled to the motor shaft through
a rubber band. Each of the four bearings tested carries 6,000
lbs of radial load. The test can continue even if these bearings
show early implications of failure, since they are not used to
support the motor or any active rotational motion. In fact,
this test will not be terminated until the accumulation of
debris on the electromagnetic plug exceeds a certain level of
threshold [28]. This is a major distinction when compared to
the actual situation where the bearing supports the motor shaft
and transmission, since the test needs to be quickly stopped
after sensing abnormal conditions.

The IMS dataset consists of 3 subsets that were collected
when the motor was running at a constant speed of 2,000 rpm.
For subset 1, two high-sensitivity PCB 253B33 Quart ICP
accelerometers are installed to measure bearing vibrations in
both x and y directions, while subsets 2 and 3 only have one
accelerometer installed on each bearing. Data are acquired in
1-second windows and are stored in a separate file every ten
minutes. Each file contains 20,480 sampling points, except
for the first subset, which collects the first 92 files every five
minutes. As mentioned earlier, the IMS test may continue after
the bearing is degraded, and it is challenging to label when
such a bearing degradation actually happened. In [34], three
different algorithms are applied to estimate the degradation
starting point, the results demonstrate a high level of uncertainty
as the estimated starting points can deviate by more than 100
data segments using different methods. A detailed summary
of this finding in [34] is listed in TABLE V.

B. Data Preprocessing
The IMS dataset uses a fixed window size of 1,024 for

segmentation and collects data at a frequency of 20.48 kHz.

Due to the large amount of noise in the “Subset 3 Bearing
3” condition reported in [34], we only select the first 3 fault
conditions in TABLE V to evaluate the performance of semi-
supervised VAE models with label uncertainty. In addition, 210
consecutive files are selected for each fault condition. and the
last 15 of them are chosen after their degradation starting points
determined by the auto-encoder-correlation (AEC) algorithm.
For instance, data files 1,832 to 2,042 will be selected for the
“Subset 1 Bearing 3” scenario, since its estimated degradation
starting point is 2,027. On the other hand, healthy data are
picked from the first 110 files of “Subset 1 Bearing 3”.

Each fault scenario has 210 consecutive vibration data files,
of which the last 10 files will serve as the test set, and the
first 200 files will constitute the entire training set. Each file
contains 20,480 data points, which can be divided into 20
data segments. Therefore, each fault scenario has 4,000 data
segments, or all 4 categories (healthy, rolling elements, outer
race, inner race) have 16,000 data segments.

In order to simulate the challenges related to accurate data
labeling in practical applications, labels will be assigned starting
from the last of the 40,000 training data segments for each
fault scenario and proceed backward. For these data segments,
we should have the highest confidence in the accuracy of their
labels. Then, by labeling more preceding files, but with lower
confidence, more case studies can be performed. The purpose is
to investigate whether incorrect labeling will negatively impact
the accuracy of the supervised learning benchmark – CNN,
and to assess if semi-supervised deep generative models can
still improve the accuracy of the bearing fault classifier by
leaving these data segments unlabeled.

C. Experimental Results
A total of 10 rounds of independent semi-supervised exper-

iments were performed using the IMS dataset, and 10 case
studies are conducted by labeling the last 40, 100, 200, 400, 800,
1,000, 2,000, 4,000, and 8,000 data segments of the training set,
which accounts for 0.25%, 0.63%, 1.25%, 2.5%, 5%, 6.25%,
12.5%, 25%, and 50% of the training data, respectively.

TABLE VI presents the classification results after 10 rounds
of experiments. The performance of the M1 is better than that
of PCA, but it has almost the same performance as the vanilla
autoencoder. This shows that the VAE’s discriminant feature
space has no obvious advantage over the vanilla autoencoder’s
encoded space. Nevertheless, the performance of the M1 model
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TABLE VI
EXPERIMENTAL RESULTS OF SEMI-SUPERVISED CLASSIFICATION ON IMS BEARING DATASET WITH LIMITED LABELS

N Labeled Data % PCA+SVM Autoencoder CNN VAE M1 VAE M2

40 0.25% 61.60± 0.63% 64.54± 2.07% 59.08± 2.68% 72.01± 1.91% 66.27± 8.31%
100 0.63% 67.22± 1.15% 67.07± 1.49% 62.93± 4.10% 76.61± 1.48% 71.15± 6.24%
200 1.25% 70.31± 0.49% 73.42± 0.94% 68.64± 5.40% 78.74± 1.25% 76.54± 3.58%
400 2.50% 75.38± 0.90% 78.42± 1.17% 74.20± 3.17% 81.66± 1.02% 82.78± 2.21%
800 5.00% 77.85± 0.62% 84.81± 0.78% 78.73± 2.98% 85.03± 1.15% 88.45± 1.71%
1000 6.25% 78.19± 0.59% 85.83± 0.85% 81.29± 4.18% 86.61± 1.27% 89.66± 1.54%
2000 12.50% 78.50± 0.30% 86.61± 0.77% 86.62± 4.11% 87.20± 1.18% 90.87± 1.97%
4000 25.00% 78.96± 0.72% 83.72± 0.89% 87.74± 0.54% 85.14± 0.96% 92.01± 0.92%
8000 50.00% 79.06± 0.65% 84.00± 1.21% 81.56± 2.79% 85.36± 1.17% 88.11± 3.47%

is also superior to the supervised learning algorithm CNN. By
incorporating the vast majority of unlabeled data in the training
process, the improvement is approximately 5% to 15% when
the number of labeled data segments varies from N = 40 to
N = 1, 000, and the standard deviation is also much smaller.

Similar to the comparison results shown in TABLE II,
the classifier’s performance of the VAE-based M2 model is
superior to the other four algorithms, showing the advantage
of integrating the training process of the VAE model and its
built-in classifier. Critical observations can be drawn when the
number of labeled training data increases from N = 4, 000 to
N = 8, 000, the accuracy of the supervised algorithm CNN is
reduced by more than 6%, and the loss of the semi-supervised
VAE M2 model is 4%. The performance of unsupervised
learning algorithms, which do not use labels in their training
process, remains intact. This can be largely attributed to many
healthy data are incorrectly labeled as faulty data, which also
creates a dilemma that impairs the classifier’s accuracy using
either insufficient data or more data with inaccurate labels.
Specifically, the best attainable accuracy for three baselines
algorithms are 87.74% when N = 4, 000 and 84% when
N = 8, 000, while the VAE-based M2 model can achieve an
average of 92.01% and 88.11%, respectively.

In summary, the experimental results obtained using the
IMS dataset consistently supports the previous findings on
the CWRU dataset, that is, taking advantage of the large
amount of unlabeled data can effectively enhance the classifier’s
performance using semi-supervised VAE-based deep generative
models, especially the M2 model. In addition, the results
also imply that inaccurate labeling can reduce the accuracy
of supervised learning algorithms. Therefore, in diagnosing
naturally evolved bearing faults in real-world applications,
it is desirable to leverage semi-supervised learning methods,
which only requires a small set of data that we can label with
confidence while retaining the majority of data unlabeled.

VI. CONCLUSION

This paper implemented two semi-supervised deep generative
models based on VAE for bearing fault diagnosis with limited
labels. The results show that the M2 model can greatly
outperform the baseline unsupervised and supervised learning
algorithms, and this advantage can be up to 27% when only
2.3% of training data have labels. Additionally, the VAE-based
M2 model also compares favorably against four state-of-the-
art semi-supervised learning methods in terms of identifying

bearing faults using data with limited labels.
The CWRU dataset only contains vibration data from man-

ually initiated bearing defects, which is inconsistent with the
real-world scenario where these defects are evolved naturally
over time. Therefore, we also used the IMS dataset to verify
the performance of the two VAE-based semi-supervised deep
generative models. The results demonstrate that incorrect
labeling will reduce the classifier performance of mainstream
supervised learning algorithms, while adopting semi-supervised
deep generative models and keeping data with label uncertain-
ties unlabeled can be an effective way to mitigate this issue.
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