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Abstract

Deep learning is now playing a major role in designing photonic devices, including nanostruc-
tured photonics. In this paper, we investigate three models for designing nanophonic power
splitters with multiple splitting ratios. The first model is a forward regression model, wherein
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is an inverse regression model, in which the trained DNN constructs a structure with the
desired target performance given as input. The third model is a generative network, which
can randomly produce a series of optimized designs for a target performance. Focusing on
the nanophotonic power splitters, we show how the devices can be designed by these three
types of DNN models.
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Abstract—Deep learning is now playing a major role in de-
signing photonic devices, including nanostructured photonics. In
this paper, we investigate three models for designing nanophonic
power splitters with multiple splitting ratios. The first model is
a forward regression model, wherein the trained deep neural
network (DNN) is used within the optimization loop. The second
is an inverse regression model, in which the trained DNN
constructs a structure with the desired target performance given
as input. The third model is a generative network, which can
randomly produce a series of optimized designs for a target
performance. Focusing on the nanophotonic power splitters, we
show how the devices can be designed by these three types of
DNN models.

Index Terms—deep learning, neural networks, nanophotonics,
integrated photonics, inverse design, generative neural networks.

I. INTRODUCTION

Subwavelength nanostructured materials can be used to
control incident electromagnetic fields into specific transmitted
and reflected wavefronts. Recent nanophotonic devices have
used such complex structures to enable novel applications
in optics, integrated photonics, sensing, and computational
metamaterials in a compact and energy-efficient form [1]-
[12]. Recently, a compherensive review article [13] on silicon-
based miniaturized structures including nanophotonic devices
was published. Nevertheless, optimizing nanostructures with
a large number of possible combinations of parameters is a
challenging task in practice.

It is partly because finite-difference time-domain (FDTD)
methods for computing the electromagnetic field distribution
often require long simulation time, several minutes to hours
depending on the size and the mesh of the photonic device,
in order to estimate the optical transmission response. Even
though there are several techniques to accelerate FDTD sim-
ulations [14], for designing nanostructures to achieve a target
transmission profile, a large number of FDTD simulations
needs to be carried out in practice, e.g., in a meta-heuristic
manner.
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To resolve the issue, some optimization methods such as
direct binary search (DBS) [15] and particle swarm opti-
mization (PSO) [16] have been implemented to show some
success. More recently, an artificial intelligence using neural
networks (NN) has been integrated in an optimization process
that can accelerate optimization by reducing the required
number of numerical simulations. For example, in [17], [18],
we demonstrated how NNs can help to streamline the design
process, although the prediction accuracy was limited, due to
the shallow layer structure.

Deep learning methods are representation-learning tech-
niques obtained by composition of non-linear models that
transform the representation at the previous level into a higher
and slightly more abstract level in a hierarchical manner [19].
The main idea is that by cascading a large number of such
transformations, nearly arbitrary complex functions can be
learned in a data-driven fashion using deep neural networks
(DNN) [20]. The huge success of deep learning in model-
ing complex input-output relationship has attracted attention
from several scientific communities such as material discov-
ery and design [21], [22], high energy physics [23], single
molecule imaging [24], medical diagnosis [25], and particle
physics [26]. The optical community also started working
on signal processing and network automation of optical fiber
communications [27]-[30], and inverse modeling for design
of nanostructured optical components using DNN [31]-[36].
Also, there have been many reports on optical implementation
of artificial neural networks [37]-[43]. DNNs can be used to
predict an optical response of a topology (Forward Modeling)
as well as to design a topology given a desired optical response
(Inverse Modeling). Another class of DNNs for designing
devices and materials is a generative DNN model [31], [44]-
[46].

Fig. 1 shows the trend of machine learning applications in
optical communications and devices community in the past
decade, similar to the plot in [29]. Here, we plot the number of
articles in each year according to Google Scholar search of the
keyword combinations such as; “machine learning” + “optical
device” or “deep learning” + “optical device.” As we can see,
machine learning has been already used for optical device
community for many years and increasing by an annual rate
of 125%. For deep learning applications, more rapid annual
increase rate of 320% can be found in the past half decade.
We also observe that the optical device community is behind
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Fig. 1. Machine/deep learning trend in optical communication and optical
devices applications (keyword hits on Google Scholar, excluding non-relevant
ones).

the optical communication community by 1.4 years in terms
of the absolute number of publications.

Inverse design of photonic structures was conventionally
demonstrated using adjoint sensitivity analysis [47]-[50].
More recently, Liu et al. used a tandem NN architecture
to learn non-unique electromagnetic scattering of alternating
dielectric thin films with varying thickness [31]. Peurifoy et
al. demonstrated DNNs to approximate light scattering of
multilayer shell nanoparticles of SiO, and TiO, using a fully
connected DNNs [34]. Asano and Noda provided an NN for
prediction of the quality factor in two dimensional photonic
crystals [36]. Hedge paired DNN with evolutionary algorithms
to accelerate antireflection coating designs [51]. Banerji et al.
used a reinforcement learning to design nanophotonic power
splitters [43]. The design space for integrated photonic device
is considerably larger than previously demonstrated optical
scattering applications, that call for robust deeper networks
such as Convolutional Neural Networks (CNN) [20].

Nanophotonic beam splitters have been widely used to
equally divide the power into the output ports. Although an
arbitrary split ratio can be applied in various applications such
as signal monitoring, feedback circuits, or optical quantization
[52], the design space is hardly explored due to design
complexity. Tian et al. [53] demonstrated a silicon-on-insulator
(SOI)-based 1 x 3 coupler with variable splitting ratio in a
15 x 15 ym? device footprint with 60 nm wavelength range
and 80% transmission efficiency. Xu et al. [54] optimized
positioning of squared etched pixels to achieve 80% efficiency
for arbitrary ratio power dividers in 3.6 x 3.6 pum? device
footprint. To design photonic power splitters with arbitrary
splitting ratio, the designer often begins with an overall struc-
ture based on analytical models and fine tunes the structure
using parameter sweep in numerical simulations.

This paper overviews three methods of DNNs applied to
designing/optimizing nanophotonic power splitters. The gen-
eral concept of using DNNs for designing/optimizing photonic
devices may be readily applied to other types of devices. We
demonstrate that by using deep learning methods, we could
efficiently learn the design space of a broadband integrated

photonic power splitter to realize a compact device.

II. NANOPHOTONIC POWER SPLITTERS

We consider a nanostructured power splitter for integrated
photonics platform throughout this paper. The goal of this
device is to split the input power at a fixed splitting ratio
towards two output ports, with a flat wavelength response with
insertion loss as low as possible. Such a power splitter can
be a building block of various types of photonic integrated
circuits. To design the power splitter using DNN we chose a
simple three port structure on a standard fully etched SOI
platform. One input and two outputs ports having 0.5pm
wide waveguides are connected using an adiabatic taper to
the 2.25um wide square power splitter design region with a
connection width of 1.125um as shown in Fig. 2.

We use Lumerical FDTD simulation to generate labeled data
for training the network. We feed the training dataset into a
DNN to learn the relationship between hole vectors (HV) and
spectral response (SPEC) at each port. Our data contain several
HV of size 20 x 20, labeled by its SPEC at the two output
ports and reflection at the input port. Each hole is a circle
with a maximum diameter of 72 nm that is easily fabricable
using well-established lithography methods [50], [55]. In the
HYV, each hole can be represented by a binary state of 1 for
etched (n = nsilicon) and 0 for not etched (n = ngjlica). We
consider variable-size holes in Section V, where the HV value
is associated with hole area relative to the maximum size.
In order to comply with the fabrication limit, we also put a
constraint that the minimum hole diameter is 40 nm, corre-
sponding to the HV value of 40%/722 = 0.31. Hence, if the
HV value is below 0.31, there is no hole. When generating the
training dataset using DBS on a computing cluster, Lumerical
script is used to modify the topology of the device for the
FDTD simulations. Python or Matlab automation is used to
modify the device topology, when the DNN is included in the
optimization loop or active learning. We use random patterned
initial HVs and optimize them using heuristic optimization
approaches for various optimization metrics to collect a diverse
set of labeled training data for supervised learning.

This paper discusses three different methodologies to design
the nanophotonic power splitters via deep learning. Firstly, we
consider to use a forward model to predict SPEC given HV
as shown in Fig. 3. Next, we discuss an inverse modeling to
directly construct HV given a target SPEC. Finally, we address
another method based on a stochastic generative model which
implicitly integrates forward and inverse models.

Dispersive refractive indices of silicon and silica from
literature [56] are used for all simulations for a broadband sim-
ulation in the range of 1.30pm-1.80pm, or 1.254m—1.80um.
The fundamental transverse electric (TE) mode was used at
input source and TE mode output power was recorded for
transmission and reflection. We note that transverse magnetic
(TM) mode output is lower than 107°, meaning there is
little mode conversion due to the vertically symmetric device
structure.

We use the open source machine learning framework of
Tensorflow/Keras in Section III and PyTorch in Sections IV



Fig. 2. Schematic of the SOI-based power splitter. a) Top view, where the
size of the square region is 2.25 X 2.25/Lm2, Ty and T% denote the modal
transmissions of output ports 1 and 2, and R denotes the reflection at input
port. b) Cross-section of the input/output waveguide. By optimizing binary
sequence of position of etch hole it is possible to adjust light propagation into
either of the ports. In Section V, continuous variables are used to represent
the hole sizes.
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Fig. 3. We use DNN for forward and inverse modeling of nanophotonic
devices. The DNN can take device topology design as input and spectral
response of the metadevice as label or vice versa [57].

and V in the Python language to build and test our DNNs. For
the forward modeling case, the DNN needs to be invoked prior
to each FDTD run (> 1,000 times for one optimization run),
and Tensorflow/Keras has the advantage of shorter start-up
time. On the other hand, for inverse and generative modeling,
only a few start up is needed for the whole design process,
and the choice of the framework is more like a historical or
personal choice. The training data are generated by FDTD
simulations using a high-performance computing cluster with
more than 100 processors. The DNN training, testing, and
subsequent FDTD simulations are conducted on a computer
with a graphics processing unit (GPU) board Nvidia GeForce
GTX Titan Z (12GB memory).

ITI. DEEP LEARNING FOR FORWARD MODELING TO
PREDICT OPTICAL RESPONSE

This section describes the forward regression model, using
DNN to predict the transmission and reflection spectra, given
the two-dimensional array (20 x 20) which corresponds to
the binary image for the hole locations. We train a DNN to
predict the transmission and reflection spectra vector which
is 63-dimensional, consisting of spectral data (at 21 discrete
wavelengths from 1300 to 1800 nm) for transmission at both
port 1, port 2, and reflection at the input port. Once the DNN
is trained, it is used as the predicted spectra within a DBS
optimization loop. We initially used a fully-connected DNN
with multiple layers where each layer has 100 neurons. The
number of layers was considered as a hyperparameter which
was optimized during the numerical experiments. However,
we found that increasing the depth of the fully-connected
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Fig. 4. Convolutional neural network (CNN) architecture [58].

DNNs did not improve the performance of the network. As
one way to achieve better results for deeper networks, we
used a residual network (ResNet) to train both the forward
and inverse problems in [57].

Since the nanophotonic and photonic crystal designs are
analogous to image processing and recognition problems,
CNNs [20] are proposed to improve the forward prediction
accuracy [36], [58]. The CNN architecture is shown in Fig. 4,
where we treat the input data as two-dimentional images. Our
network consists of three 2D convolutional layers followed by
one fully connected layer. The three convolutional layers have
64, 128, and 256 filters each with kernel sizes of 10 x 10,
5 x 5, and 4 x 4, and strides of 1 x 1, 2 x 2, and 2 X 2,
respectively, with the Rectified Linear Unit (ReLU) activation
function. The fully connected layer has 256 neurons with the
sigmoid activation function.

In the network training process, we minimized the mean-
square error (MSE) as follows:

A
1 ¥ 2
MSE =— Ty (X) = T (V)]
N /\;min{ ' (1)

|0 = TE) + [RO) = B[]

where T (), T2(A) and R(A) denote the transmission at the
port 1 and 2 and reflection at the input port at wavelegths
A, respectively, and NN is the total number of spectral points.
We let [-]* denote the corresponding target values. Here, we
take a sum across uniformly sampled wavelengths A\ from
a minimum wavelength A, to a maximum Ap,x. In the
DBS optimization process, we minimized the following loss
function:

Metric = T1—T1*|2+sz—T2*|2+Oé|R—R*|2, )

where T and 75 are the lowest transmitted power within the
spectral range of 1300 nm and 1800 nm, while R is the largest
reflection power. Specificaly we have

T = m}%nTl()\), T, = m}%nTg()\), R= m}z\ixR()\), 3)

where we chose o = 10 as a weighting factor. We start with
random patterns of 20 x 20 binary HVs, and generate training
data by using the standard DBS, with target splitting ratios
of 0 (0 : 10), 0.2 (2 : 8), 0.35 (3.5 : 6.5), and 0.5 (5 :
5), each for a few times. Here, typically 1,200 simulations
are conducted for each DBS run through the course of the
optimization. A total of 11,133 training data are generated by



combining all the intermediate data and removing duplicated
patterns. Blue points in Fig. 5 show the training data, where
the total transmission (77 + 7%) is plotted against the splitting
ratio 71 /(11 + T3). Due to the symmetry, the actual number of
distinct training data is 22,266. We then try to design a power
splitter with 77 = 0.27 and T3 = 0.73, starting from the three
initial conditions indicated by the red circles in Fig. 5.

In the baseline DBS, we start with a lower left hole, and
flip the binary value to assess the metric using the FDTD
simulation. When the new metric is lower, we choose the new
binary value, or if the metric is higher, we revert back to
the original binary value. Then, we continue with sequential
application of the same procedure to the other holes.

We use the forward DNN modeling to accelerate the DBS
process. In the DNN-assisted DBS, we first train the DNN
with 300 epochs using the initial training data, which takes
about an hour on the computer with the GPU board. Next
we hypothetically flip each of the 400 holes, and for each
hole flipping, the output of the DNN is used as a prediction
of the SPEC. We then pick the a new pattern with a flipped
hole corresponding to the lowest metric and verify the spectra
via FDTD simulation. When the actual FDTD result is better
as expected, we keep the flipped value, unless otherwise, we
try another hole corresponding to the next best metric and
verify with FDTD simulation. We train with one epoch of
the original training data and 15 epochs of the accumulated
newly acquired data. This is essentially an accelerated DBS
using metric values predicted by the DNN.

Fig. 6 shows a comparison between a conventional DBS
and DNN-assisted DBS, plotting the metric as a function of
the number of FDTD runs. It is confirmed that the DNN-
assisted DBS optimizes the device structure much faster than
the conventional DBS, especially at the early part of the
optimization, leading to better device designs overall. For
example, in the case of the DNN-assisted DBS with the first
initial condition, the success rate of predicting a better HV
is 45% in the first 20 iterations, and each improvement is
significant. Between the 21th and 200th iterations, the success
rate goes down to 11%. Note that each FDTD run takes about
two minutes, while the additional training (active learning) for
each FDTD run takes 20 seconds. Hence, there is an overhead
of about 20% per FDTD. Fig. 7 shows an example of the
optimized device via the DNN-assisted DBS. One can see
that the spectral response is very flat across a wide range
of wavelengths at least from 1300 to 1800 nm. The total
transmittance greater than 87.5% was achieved with a low
reflection below 0.5%. In this section, we verified that the
forward modeling is effective to accelerate the optimization
process to design high-performance devices even though it
does not directly provide the optimized topology.

IV. DEEP LEARNING FOR INVERSE MODELING TO
CONSTRUCT DEVICE TOPOLOGY

The forward modeling described in the previous section
is generally good enough to predict the performance given
device topology. However, it needs to be combined with an
external optimization method such as DBS or other meta-
heuristic algorithms to explore different device topology. In
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Fig. 5. Total transmittance of 22,000 training data as a function of the splitting
ratio. The red circles indicate the three initial conditions used for training the
forward regression model, and the line shows the target splitting.
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ventional DBS and the DNN-DBS methods. Three different initial conditions
are used.

contrast, the inverse modeling takes the spectral response as
the input, and directly generates the device topology as the
output, as shown in the bottom part of Fig. 3.

We here consider an inverse modeling DNN consisting of
three fully connected layers and two 2D deconvolution layers.
The dimension of the input is 63 which is the same as the
SPEC data dimension. The three fully connected layers have
400, 800, and 1600 neurons, each with the ReLU activation
function. The intermediate data dimension becomes 1600
which is later reshaped into 16 x 10 x 10 to be fed in the
deconvolution layers to generate the final reconstructed HV (a
size of 20 x 20). These deconvolutional layers, not included
in our original inverse modeling paper [57], can improve the
performance.

The DNN is trained to predict HV in favor of minimizing
the binary cross-entropy (BCE) loss as follows:

BCE = — Z [Z/z logz; + (1 —y;)log(1 — )|,  (4)
i=1

where n is the maximum number of holes, y; denotes the ¢th
HV value of the training data, and z; is the output of DNN
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Fig. 7. Example of a 1 : 3 power splitter designed by the forward regression
model. For the range of 1300 nm and 1800 nm, the sum of the worst case
Ty and To was 87.5%, while the worst case reflection was less than 0.5%.

as the corresponding estimate of y;. The predicted HVs z;
can take any value from 0 to 1 from a Bernoulli distribution
classifier. The classification tends to converge to either 0 or
1 as the loss reduces by increasing the number of training
epochs. We train the network using the same data as used in
Section III.

To test the generalization capabilities of the network, we
investigate the design performance on arbitrary and unseen
target case. A target splitting ratio of 0.27 with high total trans-
mittance is taken as an example, where there is a gap in the
training data, as shown in the red line in Fig. 8. In the design
stage, the splitting ratios are chosen to be 0.23,0.24,...,0.32,
and the total transmittances are 0.80,0.82,0.84, and 0.86, and
hence we have 40 combinations of input data set. We generate
a reference table containing broadband constant transmission
values for each port and use them as the input data batch
for the inverse design DNN model. The output data are then
quantized with a threshold of 0.5, and the binary sequence
is then fed back into the FDTD solver. In the next stage, we
run independent FDTD simulation to check the validity of the
responses. The results are shown as the red circles in Fig. 8.
Some data points fill the gap, while many are overlapping
with the original training data region. This completes the first
round. Then we add these 40 new data to the training data,
retrain the network, and we repeat this active learning process.
The results from the second round are shown as the dark blow
triangles, and those from the third round are indicated by the
green squares in Fig. 8.

As can be seen, this inverse modeling has the capability
of generating the unseen results out of the training data, and
the results further improve as more improved data points
are added. In this process, the training takes about half an
hour at each round on a high-performance computer with
a GPU board. Once trained, the inverse design process is
instantaneous (less than 1 s) for 40 devices.

V. DEEP LEARNING FOR GENERATIVE MODELING TO
PRODUCE DEVICE TOPOLOGY CANDIDATES

The inverse modeling described in the previous section has a
potential to generate an unseen good device structure achieving
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Fig. 8. Demonstration of inverse design for a power splitter with a splitting
ratio of 0.27. The light blue asterisks, red circles, dark blue triangles, and
green squares the training data, the first, the second, and the third round
results, where the total transmittance is plotted against the splitting ratio. The
red line denotes the target splitting ratio of 0.27.

near the target SPEC. However, the generated topology by
the inverse modeling DNN is usually deterministic given the
desired SPEC input. Although we can still employ a stochastic
variational sampling at the output nodes according to the
Bernouli distribution, the variation of the topology candidates
tends to be limited. It can significantly constrain the capa-
bility to explore different candidates of topology to achieve
improved devices. Besides the forward and inverse modeling,
another methodology based on generative modeling has been
proposed, e.g., [31], [44]-[46]. The generative network can
produce a series of improved designs from the training data,
based on random number sampling, in a more explicit and
systematic way. In the field of metamaterial researches, a few
works have proposed to use such a generative network for
the nanostructured pattern generation, including Generative
Adversarial Networks (GAN) [31], [44] and Conditional Vari-
ational Autoencoder (CVAE) [45], [46]. In [46], we have ap-
plied generative deep learning models to integrated photonics
for the first time, to our knowledge. We discuss the capability
of the generative modeling method employing the improved
version of CVAE in this section.

The CVAE can model the distribution of the splitter HVs
associated with target spectrum characteristics. In our appli-
cation, we use different hole sizes to express the appearances,
which serve as the conditions of CVAE. With the variable-size
holes, the generated patterns have a high potential to work
better in the light guidance and make the generated devices
more stable.

For device optimization, the trained decoder of the CVAE
model is used with the desired condition along with a latent
variable sampled from the normal distribution N(0,1), by
which a series of HV topology candidates are generated.
However, the latent variable in CVAE tends to be correlated
with the condition SPEC s, which will result in degradation
of the device performance for the pattern generation because
random sampling at latent space can adversely impact the
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the case of the standard CVAE, there is no adversarial block and the input
from the condition s to the encoder network.

target spectra. To address such a problem of the conventional
CVAE model, an adversarial block was introduced as shown in
Fig. 9, where a separate branch to an adversary block is used
for isolating the latent variable z from the nuisance variations
s (the target SPEC) [59]-[61]. We call it Adversarial CVAE
(A-CVAE).

Fig. 9 shows the detailed structure of the A-CVAE model.
Here two convolutional layers are used both for the encoder
and the decoder networks. The number of channels for the
two layers are 16 and 32, and the max pooling stride is 2,
after that there is one fully connected layer to reduce the
latent variable to 63. The output is then concatenated with
the SPEC performance data and feed them into the decoder.
The validations are calculated by using the FDTD simulation
to verify a figure of merit (FOM) of generated patterns, where
the FOM is calculated by:

Fom—1-10 3% T () - TE (V)]
A;[ 1 )

+ B0 = TEO + ol RO — B[]
where oo = 4 is used as a weighting factor to balance between
the contributions from transmission and the reflection. As the
SPEC performance approaches the target, the FOM increases
towards 1, in which case we obtain an ideal power splitter
without excess loss for R*(\) = 0 and T7(\) + T5(\) = 1.
In A-CVAE, the latent z variable will be fed into an
adversarial block to estimate the SPEC s := (51,...,38,). The
loss function for the A-CVAE model is shown as follows:

n

Loss = — Z {yz logz; + (1 —y;)log(1 — 361)}
i=1
_ 1} Z
(6)

The loss function has three parts. The first term is the VAE
reconstruction loss in the BCE criterion and the second term

+ Z [/’Lz] + Uz] 1Og<

Jj=1

N)M—l

is the Kullback-Leibler (KL) divergence. The last term is a
regularization term which is the MSE loss of the adversarial
block. Since the condition information contained in the latent
variable z shall be minimized, the MSE loss between s and
5 needs to be maximized. A complete update of the network
generally requires alternating updates in two iteration cycles.
The first iteration is used to backpropagate and update the
CVAE model based on the loss function in (6). The second
iteration is used to update the adversarial block solely based
on the MSE loss between s and 5. The total training time
using a computer with a GPU board is around 5 minutes.

After training the proposed machine learning model herein,
we test the A-CVAE model by sampling random latent z to
generate nanopatterned power splitter devices according to
the generated HVs. In order to verify effectiveness of the
generative model, we choose four different types of devices
with different splitting ratios (5:5, 6 : 4, 7: 3, 8: 2). Fig. 10
shows the comparison of the performance among the devices
generated by the CVAE model and that by the A-CVAE. The
FOM is calculated for 20 randomly generated devices from the
trained CVAE and A-CVAE models. This figure shows that the
conventional CVAE model can generally learn the distribution
of the data, but it cannot beat the training data in terms of
performance. With the help of the adversarial censoring, the
generated devices generally have a better performance than
the training data.

Four different splitting ratios are used as a target value
to test the model performance (marked with dashed lines).
The devices generated by A-CVAE model can fit the target
splitting ratio better with excellent total transmission. The
average FOMs for the CVAE and A-CVAE models are 0.771
and 0.888, respectively.

As the above results show, generative deep learning models
can generate a series of improved results based on the sta-
tistical characteristics of the training data. In particular, we
demonstrated that the adversarial censoring further improves
the performance with high stability. Note that part of the good
performances of CVAE and A-CVAE come from the fact that
variable hole sizes are adopted, which could not be done in
the case of DBS.

VI. NANOPHOTONIC POWER SPLITTER EXPERIMENT

In order to verify the validity of the simulations, we
prototyped power splitters using a commercial multip project
wafer (MPW) service by Applied Nanotools Inc. The wafer is
processed through a standard 220 nm SOI process with SiO2
cladding. Direct electron beam writing is used for lithography.
In this particular design, the size of the square region is
2.6 x 2.6um? and the binary hole size is 90 nm in diameter,
from a historical reason.

The scanning electron microscope (SEM) image of a 1: 3
beam splitter is shown in Fig. 11. The device is designed by
the inverse model as described earlier using binary variables,
and the holes are clearly defined.

The measurement was conducted with grating couplers,
using amplified spontaneous emission (ASE) from an Erbium-
doped fiber amplifier as a light source. The transmittance is
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Fig. 11. An SEM image of a prototyped 1 : 3 power splitter.

defined by the ratio of the transmitted power of the device
under test and a reference device having the same designs
of grating couplers. The measurement wavelength range is
limited by the grating couplers and the ASE source. Solid lines
in Fig. 12 show the measured transmittance, and the dashed
lines show the transmittance obtained from simulations. The
measured values agree well with the simulated values, vali-
dating our simulation and optimization results. The cause of
the small ripples in the measured transmittance is not clear at
this moment.

VII. DISCUSSION

DNNs can be used to take device structure data (shape,
depth, and permittivity) to predict the optical response of
the nanostructure in the forward modeling framework. In this
case DNNs can be used as a viable counterpart for fast
approximation of the optical response, in comparison to the
use of computationally heavy FDTD simulations. Another way
to use DNNss is taking an optical response to provide the user
with an approximate solution of nanostructure in the inverse
modeling framework, which does not rely on external meta-
heuristic optimizers unlike forward modeling. Although the
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Fig. 12. Solid and dashed lines show the measured and the simulated
transmittance, respectively, of a 1 : 3 power splitter. The red and blue lines
show transmittance to output ports 1 and 2, respectively.

DNN initially needs a sufficient amount of data for the training
purpose, it is possible to process several heuristic optimization
metrics in parallel on a computing cluster to speed up gen-
erating the training data. We can design the nanostructured
geometry in a fraction of second once the network is trained
to represent the topology as optical response and vice versa.
The generative model, on the other hand, implicitly integrates
forward and inverse models. Once the network is trained, the
generation of new designs takes practically little time. The use
of adversarial censoring further improves the design capability.
Overall, DNNs have the capability of learning the training data
with a high generalizability.

The adjoint method is widely used in the inverse design of
nanophotonic devices [8], [48], [62]. Given an ideal initial
condition for parameters, the optimization process can be
efficiently done in a small number of iterations (tens of
FDTD simulations). However, the initial condition needs to
be carefully chosen in order to obtain the optimal result
or many initial conditions need to be tried. DNNs are very
different. They are trained from a library (training data) of
FDTD simulation results, which may come from previous
imperfect optimization results with multiple target conditions
(splitting ratio and bandwidth, in our case). Then the DNNs,
especially the inverse and the generative models, will try
to learn/generalize from the library, and generate a series
of improved results for a given condition. Once the model
is trained, inverse designs for multiple conditions can be
generated in almost no time. Further FDTD simulations are
not required, and can be used only for verification purposes.

Table I provides a comparison of power splitters using
different optimization methods, including a more conventional
y-junction device optimized by classical particle swarm op-
timization (PSO) [63], and nanophotonic splitters designed
by the adjoint method [8], [62] and the fast search method
(FDM) [54]. Our work has the most broad bandwidth with
very small device footprint and low insertion loss.



TABLE I
COMPARISON OF SIMULATION RESULTS FOR PHOTONICS POWER SPLITTERS USING DIFFERENT OPTIMIZATION METHODS
Split ratio Insertion loss Bandwidth Footprint Method Reference Sétup Comgu tational

time time
1:1 0.09 dB 100 nm 2 x 2 um? Adjoint  Lalau-Keraly et. al. [8] NA
1:1 0.32 dB 40 nm 2.6 x 2.6 um? Adjoint Wang et. al. [62] 1.2 hr
1:1 0.13 dB 80 nm 1.2 x 2 um? PSO Zhang et. al. [63] NA
4:6 1 dB (measured) 30 nm 3.6 x 3.6 um2 FSM Xu et. al. [54] 120 hr
4:6 0.65 dB 550 nm  2.25 x 2.25 um?>  A-CVAE Our work [64] ~ 89 hr" ~ 5 min"
3:7 0.51 dB 550 nm  2.25 x 2.25 um?  A-CVAE Our work [64] ~ 89 hr ~ 5 min"

*_Here the time is mostly for the data collection. The data collection
™ The training time is ~ 5 min and the new design generation time

VIII. CONCLUSION

To design complicated nanophotonic devices with hundreds
of parameters, a sophisticated design algorithm is necessary,
and deep learning offers a promising solution. We demon-
strated three different types of DNN methodologies, i.e.,
forward modeling, inverse modeling, and generative modeling,
to design nanophotonic power splitters.

The forward modeling uses a DNN to predict the SPEC per-
formances given the device topology. The DNN is integrated
with an optimization method, to reduce the requirement of
computationally intensive FDTD simulations. As more data
are accumulated for online training, the prediction accuracy
further improves.

The inverse modeling uses a DNN to directly generate the
device topology given a target performance. By supplying a
series of modified SPEC performance, a series of good device
structure candidates is generated. This can avoid the use of
external optimizer methods.

For the generative model, we used a CVAE with adversarial
censoring. Once trained, the CVAE can generate a series
of improved device structures given SPEC performance data
as a condition along with random variables sampled from
the normal distribution. We confirmed that the adversarial
censoring significantly improves the design capability.

Further improvement of DNN methodologies will create a
blackbox trained from a vast amount of data and generate
new designs on-demand for a broad range of target conditions.
The area of deep learning-assisted photonic device design has
been quickly expanding, and these modeling methods will play
important roles in the advancement of photonic device design
activities.
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