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Abstract

In this paper, we analyze the implementation of feedback linearization control scheme based
on full data-driven inverse dynamics models. We made no use of physical models in the
definition of the inverse dynamics, that was learned entirely from previously recorded data
via Gaussian Process Regression (GPR). The resulting controller was tested on a simulated
manipulator with 7 degrees of freedom (dof), to solve a trajectory tracking problem. Dif-
ferent kernel functions were tested, in particular, we analyzed the performance obtained by
Squared Exponential (SE) kernel and the recently introduced Geometrically Inspired Poly-
nomial (GIP) kernel. Results show that GIP obtains better tracking precision and is more
robust w.r.t. the presence of an initial tracking errors. On the contrary, poor generalization
properties of SE kernel deeply undermine control performance when the robot is located far
from the poses seen during training.
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Abstract—In this paper, we analyze the implementation of
feedback linearization control scheme based on full data-driven
inverse dynamics models. We made no use of physical models
in the definition of the inverse dynamics, that was learned
entirely from previously recorded data via Gaussian Process
Regression (GPR). The resulting controller was tested on a
simulated manipulator with 7 degrees of freedom (dof), to solve
a trajectory tracking problem. Different kernel functions were
tested, in particular, we analyzed the performance obtained by
Squared Exponential (SE) kernel and the recently introduced
Geometrically Inspired Polynomial (GIP) kernel. Results show
that GIP obtains better tracking precision and is more robust
w.r.t. the presence of an initial tracking errors. On the contrary,
poor generalization properties of SE kernel deeply undermine
control performance when the robot is located far from the poses
seen during training.

Index Terms—feedback linearization control, inverse dynamics
estimation, Gaussian process

I. INTRODUCTION

Feedback linearization offers the possibility to design robot
controllers that could be considerably more precise and energy-
efficient than standard linear feedback control [1]. Its major
drawback is the need of a precise inverse dynamics model.
However, for many systems, such accurate models cannot be
obtained using standard rigid body formulation, due to un-
modeled non-linearities or system misspecifications. Gaussian
Process Regression (GPR) [2] provides a powerful data-driven
technique to solve the inverse dynamics identification problem,
overcoming the aforementioned limitations. In this work, we
analyze the implementation of a feedback linearization control
scheme based on a GP inverse dynamics model [3]. In particular,
we show the importance that the choice of the kernel function
plays in the success of the proposed controller. We compare the
results obtained by the Squared Exponential (SE) kernel [2], a
standard choice in many GPR applications, and the recently
introduced Geometrically Inspired Polynomial (GIP) kernel
[4]. The implemented controllers were tested on a simulated
7 dof manipulator to solve a trajectory tracking problem. The
remainder of the paper is organized as follows. In Sec. II, we
provide background notions about robot dynamics and control,
as well as GPR. In Sec. III, we describe the GP-based feedback
linearization controller. Experiments are reported in Sec. IV,
and conclusions are drawn in Sec. V.
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II. BACKGROUND

In this section, we provide background notions about
robot dynamics, as well as introducing the trajectory tracking
problem and describing feedback linearization control. Then,
we describe GPR for inverse dynamics identification, detailing
the black-box priors adopted in this work.

A. Robot dynamics and control

Consider a mechanical systems with n dof, and denote with
g, € R its generalized coordinates at time ¢; g, and g, are,
respectively, the joint velocities and the accelerations. The
generalized torques are denoted with 7, € R”. We will denote
explicitly the dependencies on ¢ only when strictly necessary.
Under rigid body assumptions, the dynamics equations of
mechanical systems are described by the following matrix
equation

B(q)q +c(q,q) + g(q) + F(q) = T, (D
where B(q) is the inertia matrix, while ¢(q,q), g(q), and
F(q) account, respectively, for the contributions of fictitious
forces, gravity, and friction. For compactness, we introduce
also n(q,q) = ¢(q,q) + g(q) + F(q). In the following we
will denote with B(q) and 71(q, ) the estimates of B(q) and
n(q, q). The trajectory tracking problem consists in designing
a controller able to follow a reference r, 74, 7;. In feedback
linearization control, the control input is

a

T+ er + Kge,

(2a)
(2b)

where e = r —q is the tracking error. Assuming that the model
is known exactly, i.e., B(q) = B(q) and (g, q) = n(q,q),
combining (1) and (2), and recalling that B(q) is invertible,
it can be proved that the dynamics of the tracking error is
described by the following second order linear differential
equation,

é+ Kqé+ Kye =0, 3)

which is asymptotically stable if K}, > 0 and Ky > 0.



B. GPR for inverse dynamics identification

In GPR each joint torque is modeled with a distinct and inde-
pendent GP. Consider an input/output dataset D = {y), X},
where y( € RN is a vector collecting N measurements of
7 the i-th joint torque, while X = {xy, ... @1y }; @y 1S the
vector collecting the position, velocity and acceleration of the
joints at time ¢, hereafter denoted GP input. The probabilistic
model of D is

FO (4,) wi!
y(i) — : +

f(i) (th)

where w(® is i.i.d. Gaussian noise with standard deviation i,
while f(*)(-) is an unknown function modeled a priori as a GP,
namely, f)(-) ~ N(0,K® (X, X)). The covariance matrix
K® (X, X) is defined through a kernel function k()(-,-).
Specifically, the covariance between f(*) (@;,) and f @) (x,),
i.e., the element of K (X,X) at row j and column /, is
equal to k() (z,, x,, ). Given a general input location @, the
maximum a posteriori estimator is

FD(x4)) = KO (24, X) @', where (4a)
a(i) _ (K(z) (X,X) n O_ZZI)*ly(i)’ (4b)
KO (2, X) = [KO @a,20,) . KO (@0, 200) | 0

w!)

see [2] for details. In this work, we will consider the two
following kernels:

- Squared Exponential kernel (SE):

The SE kernel [2] defines the covariance between samples
based on the distances between GP inputs, and it is defined
by the following expression

2
ksp (@, Tr,) = A llzts=en ”2,

(&)

where ) is a scaling factor and ¥ is a positive definite diagonal
matrix which defines the norm used.

- Geometrically inspired Polynomial kernel (GIP):

This kernel is based on the property that the dynamics equations
in (1) are a polynomial function in ¢, g and q, where q is a
transformation of q. Specifically, q is the vector composed by
the concatenation of the prismatic coordinates and the sines
and cosines of the revolute coordinates. As proved in [4], the
elements of ¢ have maximum relative degree one, while the
ones of ¢ and g have maximum relative degree two. Then,
the GIP kernel is defined through the sum and the product of
different polynomial kernel [5], denoted as kg’)(~, -), where p
is the degree of the polynomial kernel. In particular, we have

(6)

karp(x,,®y,) =
(kg) (ijtj’dtl) + kg>@tﬂ‘iu>) kq <‘~1t.7"qfl)’

where, in its turns, kg is given by the product of polynomial
kernel with degree two, see [4] for all the details. In this way,
the GIP kernel allows defining a regression problem in a finite
dimensional function space where (1) is contained, leading to
better data-efficiency w.r.t. the SE kernel.

III. GP-BASED FEEDBACK LINEARIZATION CONTROL

In this section, we describe the implemented controller,
hereafter denoted as GP Feedback Linearization (GP-FL). GP-
FL estimates directly the control input in (2) using the GP
models. The estimate of (2b) at time ¢ is obtained evaluating
the n GP models with GP-input given by the concatenation of
q;, g, and a; = 7, + K,e; + Kqé;. Then, we have

f(l) (qt7 q]‘n at)

Tt = . >

: (7
f(n) (Qta q]‘n at)

where, with abuse of notation, we pointed out explicitly the
different components of the GP-input, instead of using their
concatenation.

IV. EXPERIMENTS

Experiments were carried out using PyBullet [6], simulating
a 7 dof manipulator, with a control frequency of 1000 Hz.
First, we collected data for inverse dynamics identification
by employing a hand-tuned PD controller to track a random
reference trajectory. For each joint, the reference is 50 seconds
of Gaussian noise filtered with a low-pass filter (with cut
frequency 1 Hz). The dataset used to train the GP models
is composed of 5000 samples, obtained downsampling the
data collected. Two different GP inverse dynamics model were
trained on the recorded data-set: the first employs a SE kernel,
while the second a GIP kernel. For each dof j =1,...,7, the
reference joint position is given by rt(J ) = 0.165 ¢t sin(2rF; t)
where the frequencies F; are randomly sampled from A/ (0.5, 1).
The control horizon has been set to 5 [s]. In Fig. 1, and 2
are reported, respectively, the evolution of the joint angles and
control torques obtained by the two controllers, starting with
initial tracking error null. One can note that GP-FL controller
with SE kernel works properly when the amplitudes of the
reference oscillations are low, but it starts failing suddenly
towards the end of the control horizon, when null torques
are given to all joints. This is due to the fact that, when
the reference trajectory crosses regions that are far from the
training samples, the GP estimator based on SE kernel fails
to provide meaningful predictions. Indeed, the control torques
goes to zero, which is the prior mean [2]. Instead, thanks to
the better generalization of GIP kernel, the controller based
on GIP kernel is more robust and is always able to track the
desired reference, also in unexplored areas of the state-space.

We tested the two controllers also in presence of initial
tracking errors. Results highlight the same issues. The estimator
based on SE kernel is not effective. In fact, the initial error
make the magnitude of the a; term so high that its distance
from accelerations observed during training is big, leading to
null torques. Instead, GIP kernel has no problem in handling the
presence of a starting error. In Fig. 3, we plotted the tracking
errors obtained with the controller based on GIP kernel and
the one based on the true model, when starting with an initial
error of 5.73 [deg] for all the joints. In both cases the evolution
of the errors follows (3), confirming the effectiveness of the
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Fig. 1. Reference and actual joint trajectories obtained by the GP-FL controllers with SE kernel and GIP kernel.
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Fig. 2. Applied torques obtained by the GP-FL controllers with SE kernel and GIP kernel.
6 6 6 6
4 54 54 =4
[ L [ [
= = = =
o2 \ o2 k &2 2 k
0 —— 0 0 0
6 6 6
7! 7 B
ke D D —— FL: True model
&2 &2 &2 k —— GP-FL: GIP kernel
0 0 0
0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5

time [s] time [s]

time [s]

Fig. 3. Error evolution obtained by the GP-FL controllers with GIP kernel and by the FL controller based on the true model.

proposed solution. Limited oscillations around zero can be
observed with the controller based on GIP when the reference
trajectory is far from the training data.

V. CONCLUSIONS
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