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Exploiting linear substructure in linear regression Kalman filters

Marcus Greiff1, Anders Robertsson1 and Karl Berntorp2.

Abstract— We exploit knowledge of linear substructure in
the linear-regression Kalman filters (LRKFs) to simplify the
problem of moment matching. The theoretical results yield
quantifiable and significant computational speedups at no cost
of estimation accuracy, assuming partially linear estimation
models. The results apply to any symmetrical LRKF, and
reductions in computational complexity are stated as a function
of the cubature rule, the number of linear and nonlinear states
in the estimation model respectively. The implications for the
filtering problem are illustrated by several numerical examples.

I. INTRODUCTION

In this paper, we explore the incorporation of known
linear substructure in the linear-regression Kalman filters
(LRKFs) summarised in [1], [2]. For future reference, we
refer to such filters as partially linear LRKFs, or PL-LRKFs
for short. Many physical systems arising from Newtonian
mechanics have some partially linear substructure in the
dynamical equations, and a great number of systems have a
partially linear measurement model. For state estimation with
such systems, the large family of particle filters (PFs) [3],
[4] quickly become computationally intractable with the
number of states that are to be estimated. This has histori-
cally been a major motivation for the development of Rao-
Blackwellized particle filters (RBPFs) [5], [6], which assume
a particle distribution in the nonlinear states and a Gaussian
distribution in the linear states. However, due to stemming
from the particle filtering framework, such filters also tend
to be computationally cumbersome for large numbers of
states, which is why a vast majority of nonlinear estimation
applications still employ Gaussian approximate density filters
(ADFs), such as the extended Kalman filter (EKF) [7].

For problems where the estimate distribution is likely to be
uni-modal or the RBPF-variants are deemed computationally
intractable, alternatives to the EKFs include the LRKFs.
These are also Gaussian ADFs, but use various cubature rules
in order to evaluate a set of moment integrals, instead of
approximating the nonlinear functions by Taylor expansions,
as done in the EKF. By using high-order cubature rules, these
filters are often favored over the EKF for their estimation
accuracy, but much like the PFs, the LRKFs do not exploit
linear substructure in the nonlinear estimation models.

Consequently, we analyze the problem of moment match-
ing, that is, computing the first two moments of the joint
distribution of input and output of a nonlinear function, for
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partially linear functions using various cubature rules. Specif-
ically, we focus on the spherical cubature rule (SC) used
in the cubature Kalman filter (CKF) [8], [9]; the unscented
transform (UT) used in the unscented Kalman filter (UKF)
in [10], [11]; the Gauss-Hermite cubature rule (GHC) used
in the GHKF in [7]; and the stochastic integration rule (SIR)
used in the randomized unscented Kalman filter (RUKF)
in [12], [13]. However, the results apply to all symmetric
LRKFs of which the aforementioned filters are but a subset.
As such, this work distinguishes itself from the relevant
prior work in [14], [15] in two main respects. Firstly, in its
generality: we are considering all symmetric LRKFs in terms
of the cubature point set, and not specific cubature rules such
as the RB-UKF in [14]. Secondly, in that we are not using
the conditionally linear structure [15], but a partially linear
structure in the otherwise nonlinear equations.

1) Contributions: Apart from the numerical results, the
main theoretical contributions of this paper are as follows:

(i) An expression for the moments of the joint distribution
of input and output to a nonlinear function with a linear
substructure, given a generic cubature rule defined by
a set of integration points and weights.

(ii) Conditions under which the joint distribution can be
evaluated with a number of integration points that scale
with the number of nonlinear states instead of with the
total number of states.

(iii) Conditions under which the square root factorization
in the LRKFs only needs to be computed partially.

(iv) Proofs that the conditions in (ii) and (iii) hold for the
cubature rules in the CKF, UKF and GHKF.

2) Overview: We start by a brief review of the LRKFs
in Section II, followed by the definition of the moment
matching problem in Section III. The main results are given
in Section IV, and their implications for the filtering problem
are subsequently illustrated in Section V. Finally, numerical
results are given in VI, and Section VII closes the paper.

3) Notation: In the following, we let eNi ∈ RN denote
a unit vector with the ith element set to 1, and all other
elements set to zero. The vector 1N ∈ RN is a column
vector of ones, the matrix 0N×M ∈ RN×M is a zero matrix,
and IN ∈ RN×N is the identity matrix. Vectors are denoted
by bold font x, and sets with calligraphic font S with |S|
denoting set cardinality. Here, N (x|mx,P xx) denotes a
Gaussian probability density function over x with mean mx

and covariance P xx, closely following the notation in [7].
The sub-indexation (·)k indicates a variable at a time-step k,
and the notation (·)a|b indicates a variable at a time k = a
conditioned on information up until and including k = b.



Finally, we take ⊗ to denote the usual Kronecker product,
and let ? denote a redundant entry in a symmetric matrix.

II. PRELIMINARIES

We consider a discrete-time systems on the form,

xk+1 = F (xk, qk) ∈ RX , (1a)

yk = H(xk, rk) ∈ RY , (1b)

where the process noise and measurement noise are Gaussian
distributed, with qk ∼ N (0,Qk), rk ∼ N (0,Rk), and
0 ≺ Qk = Q>k ,0 ≺ Rk = R>k . The objective is to
recursively estimate the state xk given y0:k using the LRKFs.
In the generic Gaussian approximate density filters (ADFs),
of which the LRKFs are a subset, the distribution of the state-
estimate at time step k − 1 is approximated by a Gaussian,

p(xk−1|y0:k−1)≈N (xk−1|mx
k−1,P

xx
k−1). (2)

Given this approximation, the estimate distribution is prop-
agated through the dynamics in (1a), yielding a prediction

p(xk|y0:k−1) ≈ N (xk|k−1|mx
k|k−1,P

xx
k|k−1), (3)

and the joint distribution of the predicted state and measure-
ment is approximated based on (1b), as

N
([
xk|k−1

yk|k−1

] ∣∣∣ [mx
k|k−1

my
k|k−1

]
,

[
P xxk|k−1 P xyk|k−1

P yxk|k−1 P yyk|k−1

])
. (4)

Upon receiving a measurement yk|k−1 = yk, we evaluate

p(xk|y0:k) = N (xk|mx
k|k,P

xx
k|k), (5)

using Bayes’ rule, where for the multi-variate Gaussian case,

mx
k|k = mx

k|k−1 + P xyk|k−1(P yyk|k−1)−1(yk −my
k|k−1),

P xxk|k = P xxk|k−1 − P xyk|k−1(P yyk|k−1)−1P yxk|k−1. (6)

The difference among all of the Gaussian ADFs lies in the
way the prediction in (3) and the joint distribution in (4) are
approximated. In the event of linear flow and measurement
equations (1), the state-distribution will be Gaussian at all
times, and the conditional distribution can be computed
exactly. The above equations in (3), (4), and (6) then result
in the familiar Kalman filter. However, if (1) is nonlinear,
many forms of approximations can be considered in (3)
and (4). Here, direct approximation of the associated moment
integrals, results in the large family of the linear regression
Kalman filters (LRKFs) [1]. This is commonly referred to as
moment matching, and we will now analyze how knowledge
of linear substructure in (1) can be leveraged to simplify the
numerical evaluation of these moment integrals in the context
of the aforementioned SC, UT, GHC and SIR schemes.

III. THE PROBLEM OF MOMENT MATCHING

In the following, we simplify the notation by temporar-
ily dropping the time indexation and only considering the
computation of the first and second moments of the joint
distribution of input and output to a nonlinear function with
linear substructure. To investigate potential simplifications in
the moment matching, consider a function G : RX → RY ,

operating on a state x ∈ RX , which can be partitioned into
a linear part l ∈ RL and a nonlinear part z ∈ RZ ,

N (x|mx,P xx) = N
([
z
l

] ∣∣∣∣∣
[
mz

ml

]
,

[
P zz P zl

P lz P ll

])
, (7)

where the G has some linear substructure on the form

y = G(x) ,

[
g(z)
Ax

]
. (8)

In essence, only knowing the structure in (7) and (8), we
seek a simplified moment-matching of the joint density

N
([
x
y

] ∣∣∣∣∣
[
mx

my

]
,

[
P xx P xy

P yx P yy

])
, (9)

by approximate evaluation of the moment integrals, cf. [16],

my =

∫
RX

G(x)N (x|mx,P xx)dx, (10)

P xy =

∫
RX

(x−mx)(G(x)−my)>N (x|mx,P xx)dx,

P yy=

∫
RX

(G(x)−my)(G(x)−my)>N (x|mx,P xx)dx.

The question is how to leverage knowledge of the linear sub-
structure in (7) when evaluating (10), and what implications
this has for the resulting filtering problem in Section II.

A. Approximate moment matching
Moving forward, we assume a non-degenerate distribution

over x, with 0 ≺ P xx = P xx
>, such that there exists

P xx = LxxLxx
>
, Lxx =

[
Lzz 0

Llz Lll

]
, (11)

where Lxx,Lzz,Lll are all lower-triangular. Given this,
there are many ways of approximating the moment integrals.
However, all of the prior mentioned schemes first take a
coordinate transform ξ = (Lxx)−1(x − mx), and then
approximate the moment integrals in a finite sum∫
RX

G(x)N (x|mx,P xx)dx=

∫
RX

G(mx+Lxxξ)N (ξ|0,I)dξ

≈
C(X)∑
i=1

w(i)G(mx+Lxxξ(i)) (12)

by a total of C(X) pairs of weights and integration points
P = {(w(i), ξ(i))}C(X)

i=1 , where the cardinality C(X) = |P|
increases with X = dim(x). In this notation, the LRKF
moment approximations can be written on the form

X (i) = mx +Lxxξ(i) i ∈ {1, ..., |P|}, (13a)

Y(i) = G(X (i)) i ∈ {1, ..., |P|}, (13b)

my ≈
|P|∑
i=1

w(i)Y(i), (13c)

P xy ≈
|P|∑
i=1

w(i)(X (i) −mx)(Y(i) −my)>, (13d)

P yy ≈
|P|∑
i=1

w(i)(Y(i) −my)(Y(i) −my)>. (13e)



To proceed with the analysis, we start with some additional
definitions. Let N =

[
IZ 0Z×L

]
and N̄ =

[
0L×Z IL

]
,

such that Nx = z and N̄x = l. For simplicity, in analyzing
the cubature rules in the context of the linear substructure
in (8), we further categorize P into three categories; central
(c), linear (l), and nonlinear (z). The points where ξ = 0,
we refer to as central points with a sub-index (·)c; if ξ is at
the origin in the dimensions corresponding to the input of
the nonlinear function g used to define G in (8), we refer
to these points as the linear points with a sub-index (·)l, as
they only differ from the origin in the linear dimensions of
the state l ⊆ x ∈ RX ; if ξ differs from the origin in the
input to g, the points and weights are sub-indexed (·)z . In
the following, we let a denote a sub-index c, z, or l, and let

Pc = {(w, ξ) ∈ P|ξ = 0}, (14a)
Pl = {(w, ξ) ∈ P\Pc|Nξ = 0}, (14b)
Pz = P\(Pc ∪ Pl). (14c)

Here, for any of the point sets Pa, we let
w

(i)
a = w(i),

Ξ
(i)
a = ξ(i),

X (i)
a = mx +Lxxξ(i)

Z(i)
a = NX (i)

a

∀(w(i), ξ(i)) ∈ Pa, (15)

and define associated matrices

wa =
[
w

(1)
a · · · w

(|Pa|)
a

]
∈ R1×|Pa|, (16a)

Ξa =
[
Ξ

(1)
a · · · Ξ

(|Pa|)
a

]
∈ RX×|Pa|, (16b)

X a =
[
X (1)
a · · · X (|Pa|)

a

]
∈ RX×|Pa|, (16c)

Za =
[
Z(1)
a · · · Z(|Pa|)

a

]
∈ RZ×|Pa|. (16d)

We also define the combined matrices,

w =
[
wc wz wl

]
, W = diag(w), (17a)

Ξ =
[
Ξc Ξz Ξl

]
, Wz = diag(wz), (17b)

X =
[
X c X z X l

]
, Z =

[
Zc Zz Z l

]
. (17c)

These definitions are illustrated in Figure 1, to which we
shall return in the next section.

IV. MAIN RESULT

We now state some basic properties common to the prior
mentioned cubature rules, which will be verified for the SCR,
UT, GHCR and SIR, but certainly encompassing more of the
LRKFs. We will then proceed to use these properties in the
simplification of the evaluation of the joint distributions.

Assumption 1. Symmetry, such that ∀(w(i), ξ(i)) ∈ Pz ∪Pl,
∃(w(j), ξ(j)) ∈ Pz ∪ Pl s.t. (w(i), ξ(i)) = (w(j),−ξ(j)).

Assumption 2. Consistency in the first moment for linear
maps, with

∑
(w,ξ)∈P w = 1.

Assumption 3. Consistency in the second moment for linear
maps, with ΞWΞ> = I .

A. The spherical cubature rule
The spherical cubature rule used in the CKF, originally

presented in [8], scales as |P| = C(X) = 2X , and is defined
by a set of points where Pc = ∅ implying that P = Pz ∪Pl,
and the weights and integration points are given by

w = (2X)−11>2X , Ξ =
√
X
[
I −I

]
. (18)

Remark 1. Assumption 1 clearly holds. As
∑

(w,ξ)∈P w =

2X(2X)−1 = 1, and ΞWΞ> = (2X)−1(XI + XI) = I ,
showing that both Assumptions 2 and 3 also hold.

B. The unscented transform
The unscented transform, used to define the celebrated

UKF filter originally presented in [10], scales as |P| =
C(X) = 2X + 1. This transform is determined by a length
scale parameter λ = α2(X + κ) − X , for some constant
α, κ > 0. The UT has one central integration point, with
Pc = (w

(1)
c , ξ(1)

c ) = (λ(λ+X)−1,0), and P is given by

w=
1

λ+X

[
λ 1

21>2X
]
, Ξ=

√
(λ+X)

[
0X×1 IX −IX

]
Remark 2. For every point in Pz ∪Pl, Assumption 1 holds.
Furthermore,

∑
(w,ξ)∈P w = λ(λ + X)−1 + 2X(2(λ +

X))−1 = (λ + X)(λ + X)−1 = 1, thus Assumption 2
holds. Finally, as ΞWΞ> = λ(λ + X)−10X×X + (2(λ +
X))−1((λ+X)IX+(λ+X)IX) = IX , Assumption 3 holds.

C. The Gauss-Hermite cubature rule
Another form of cubature is the GHC, first presented

in [17] and used to construct the first GHKF in [16],
comprehensively summarized in [7]. Here, Hp(x) denotes
the probabilistic Hermite polynomial of order p, as

H0 =1, H1 =x, Hp+1(x)=xHp(x)−pHp−1(x), (19)

and rip denotes the ith root of Hp(x). For each root, we
compute an associated number

αip = p!(pHp−1(rip)))
−2. (20)

In the one-dimensional quadrature, rip and αip would form
the set of integration points and weights. However, this can
easily be extended to a multi-dimensional cubature, then with
the set of weights and points defined as

P=

{(
X∏
j=1

αkjp ,

X∑
j=1

rkjp e
X
j

)
|kj∈{1, ..., p}∀j∈{1, ..., X}

}
.

Thus, the number of integration points scales exponentially
with the dimension of the state, with C(X) = pX .

Remark 3. The Hermite polynomials are symmetric, that is,
for every rip 6= 0, ∃rjp such that rip = −rjp and since Hp(x) =
(−1)pHp(−x), we have that αip = αjp for each such pair of
roots. Thus, for every point in Pz ∪Pl, Assumption 1 clearly
holds. To see that Assumption 3 is satisfied, let g(x) = x and
take mx = 0 and P xx = I . In this case, P yy = I , and,
since the pth-order Gauss-Hermite cubature rule is exact for
polynomials of order p [16], and the second moment in this
case is a second order polynomial in x with a Gaussian
weight function, we have that ΞWΞ> = I for any GHC
of order p ≥ 2. Similarly, Assumption 2 holds for all p ≥ 1.
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Fig. 1. Illustration of the set Ξ partitioned into the sets Pc,Pz ,Pl for the unscented transform (left). Resulting integration points X , here computed
with a Cholesky decomposition Lxx (blue/red), and also with a symmetric square root factorization (green).

D. Exploiting the linear substructure

We will now attempt to exploit the linear substructure
in (8) under the assumption that conditions 1, 2 and 3 all
hold. The key idea here is to partition the state as done
in (7), and then use the lower-triangular Cholesky decom-
position in the change of variables in (12), and subsequent
evaluation of the set X , instead of a symmetric square root
factorization, otherwise commonly used in the LRKFs. This
special structure ensures that for any element in the set
Pc ∪ Pl, we have that NY(i) = NG(X (i)) = g(Z(i)) =
g(mz). This property does not hold for the symmetric square
root factorization, as illustrated in Figure 1, and with it in
mind, we can proceed by attacking the expressions in (13)
using Assumptions 1, 2, and 3. The final result is stated in
Theorem 1 and the Corollaries 1-3, with proof ideas in the
Appendix and complete proofs in an extended paper [18].

Theorem 1. For the state in (7), its joint distribution with
output of the structured nonlinear function in (8),

N
([
x
y

] ∣∣∣∣∣
[
mx

my

]
,

[
P xx P xy

P yx P yy

])
, (21)

computed using a cubature rule defined by a set of points and
weights P = {(w(i), ξ(i))}C(X)

i=1 satisfying assumptions 1, 2,
and 3, the moments of the joint distribution is given by

my=

[
wclg(mz) + Gzw>z

Amx

]
, (22)

P xy=
[
LxxΞzWzG>z P xxA>

]
,

P yy=

[
(Gz+Cz)Wz(Gz+Cz)>+wclulu

>
l ?

ALxxΞzWzG>z AP xxA>

]
,

with Pz,wz,Wz,Ξz given in (14)-(17), and

wcl = 1−wz1|Pz| (23a)

Gz =
[
g(Z(1)) · · · g(Z(|Pz|))

]
(23b)

u = −wclg(mz)− Gzw>z (23c)
ul = g(mz) + u (23d)

Cz = u1>|Pz| (23e)

Corollary 1. If, ∀(w(i), ξ(i)) ∈ Pz ∪ Pl, ∃(w(j), ξ(j)) ∈
Pz ∪Pl s.t. (w(i),Nξ(i), N̄ξ(i)) = (w(j),Nξ(j),−N̄ξ(j)),
which is clearly satisfied in the SC, UT, and GHC, then
Theorem 1 only requires evaluation of the nonlinear function
g in C(Z) points instead of evaluating the function G in
C(X) points as done in the original cubature rules.

Corollary 2. If N̄Ξz = 0, as is the case with the SC and UT,
then the joint distribution (22) in Theorem 1 can be evaluated
with a partial column-wise Cholesky decomposition of P xx.
Indeed, only the first Z columns of Lxx are needed.

Corollary 3. The results for the substructure in (7) can be
generalized to structured nonlinear functions on the form

y =

[
A1x+ g(z)

A2x

]
. (24)

V. IMPLICATIONS FOR THE FILTERING PROBLEM

To illustrate the implications for the filtering problem, we
start by defining the regular LRKF filters in the context of
the notation in Section II. Here, we will use a given cubature
rule in approximating the moment integrals, both for the flow
function F : RX → RX and the measurement function H :
RX → RY . As such, the linear and nonlinear states may not
be the same for the two functions. Consequently, we assume
that the functions have an associated orthogonal permutation
matrix, here denoted T F and TH respectively, such that[

z̄
l̄

]
= x̄ = T Fx, (25)

yields a permuted state vector where the z̄ states are
nonlinear in F , and the l̄ are linear in F . If the state
is Gaussian distributed with N (x|mx,P xx), then this
results in a change of both the mean and covariance,
with N (x̄|mx̄,P x̄x̄) = N (x̄|T Fmx,T FP

xx(T F )>). For
future reference, we let the transformation of the mo-
ments of the state x by a transformation T F be denoted
{mx̄,P x̄x̄} = permute(T F ,m

x,P xx). Similarly, we
will have a different set of points, P , for the flow and
measurement equations, and these are simply defined as



PF and PH respectively. Furthermore, we denote the full
Cholesky factorization of a matrix by Lxx = chol(P xx),
and the Cholesky-Crout algorithm computing the first Z
columns of the square-root factorization as {Lzz,Lzl} =
chol crout(P xx). The generic LRKF is given in Algo-
rithm 1, to be compared with the PL-LRKF in Algorithm 2.

Algorithm 1 The generic LRKF
1: Initialize N (x̂0|mx̂

0 ,P
x̂x̂
0 ),PF ,PH

2: for k = 1 to K do
// Time update

3: Lx̂x̂
k−1 = chol(P x̂x̂

k−1)
4: Compute Xk−1 by (15) using mx̂

k−1,L
x̂x̂
k−1,PF

5: Evaluate mx̂
k|k−1 and P x̂x̂

k|k−1 using (13) for (1a)
// Measurement update

6: Lx̂x̂
k|k−1 = chol(P x̂x̂

k|k−1)

7: Compute Xk|k−1 by (15) using mx̂
k|k−1,L

x̂x̂
k|k−1,PH

8: Evaluate {mŷ
k|k−1,P

ŷŷ
k|k−1,P

x̂ŷ
k|k−1} using (13) for the

function in (1b) with the point set in PH

9: Evaluate {mx̂
k ,P

x̂x̂
k } using (6)

10: end for

Algorithm 2 The generic PL-LRKF
1: Initialize N (x̂0|mx̂

0 ,P
x̂x̂
0 ),PF ,T F ,PH ,TH

2: for k = 1 to K do
// Time update

3: {mx̄
k−1,P

x̄x̄
k−1} = permute(T F ,mx̂

k−1,P
x̂x̂
k−1)

4: {Lz̄z̄
k−1,L

z̄l̄
k−1} = chol crout(P x̄x̄

k−1)
5: Compute Zk−1 by (15) using mz̄

k−1,L
z̄z̄
k−1,PF

6: Evaluate mx̄
k|k−1 and P x̄x̄

k|k−1by Theorem 1 with (1a)
7: {mx̂

k|k−1,P
x̂x̂
k|k−1}=permute(T>F ,mx̄

k|k−1,P
x̄x̄
k|k−1)

// Measurement update
8: [mx̄

k|k−1,P
x̄x̄
k|k−1] = permute(TH ,mx̂

k|k−1,P
x̂x̂
k−1)

9: {Lz̄z̄
k|k−1,L

z̄l̄
k|k−1} = chol crout(P x̄x̄

k|k−1)
10: Compute Zk|k−1 by (15) using mz̄

k|k−1,L
z̄z̄
k|k−1,PH

11: Evaluate {mȳ
k|k−1,P

ȳȳ
k|k−1,P

x̄ȳ
k|k−1} using Theorem 1

for the function in (1b) with the point set PH

12: Evaluate {mx̄
k ,P

x̄x̄
k } using (6)

13: {mx̂
k ,P

x̂x̂
k } = permute(T>H ,mx̄

k ,P
x̄x̄
k )

14: end for

VI. NUMERICAL RESULTS

A. Complexity analysis

Clearly, the permutations T used in the PL-LRKF only
imply a change in indexation, and little if any extra compu-
tational cost. Consequently, the main difference in the two
algorithms follows from Corollary 1 and 2. Executing the
PL-LRKF vs the LRKF should imply a significant reduction
in the computational complexity if ZF = dim(z̄k) ≤ X
and ZH = dim(z̄k|k−1) ≤ X . Here, depending on the filter
used and its associate scaling C(X), the number of function
evaluations required to execute the filter will be reduced
by a factor (C(ZF ) + C(ZH))(2C(X))−1. This potentially
yields an extreme reduction in complexity for filters like the
GHKF where C(X) is exponential. In addition, Theorem 1
only requires evaluation of the nonlinear part of the flow
and measurement function, and not repeated evaluations of

the full functions F and H , further reducing the numerical
complexity. Finally, if the conditions in Corollary 2 are met,
significant computational gains will be made as there will be
no need for evaluating the full Cholesky decomposition.

To illustrate the implications of exploiting the linear
substructure in the moment matching, we form a nonlinear
function G(x) defined as in (8), here with random dense
matrix A ∈ RL×X and let g(z) = z + ‖z‖221Z ∈ RZ . We
execute the moment approximations using:
(A) The original cubature rules defined in Section IV;
(B) The corresponding PL cubature rules in Theorem 1.

A set of 106 moment approximations are done for various
pairs of (Z,L). In order to check the correctness of The-
orem 1, we compare the moments by a metric ∆(my) =
E[‖my,A − my,B‖2], where my,A and my,B denotes a
moment, here the output mean, as computed by (A) and (B),
respectively. In addition, we let tA and tB denote the mean
computational time with (A) and (B), respectively. The result
is shown in Tables I, II, and III. Note that many of the fields
in Table III could not be filled, as the system ran out of mem-
ory when storing all of the integration points. In all of the
tested moment approximations, ∆(my),∆(P xy),∆(P yy)
were all zero down to numerical precision. This shows
the significant computational gains that can be made in
using Theorem 1 to exploit knowledge of linear substructure,
and also indicates that the commonly dismissed GHKF can
be used for high-dimensional state estimation provided the
number of non-linear states Z is relatively small.

TABLE I
MEAN COMPUTATIONAL TIME AND RELATIVE SPEED OF (A) CKF AND

(B) THE PL-CKF IN 106 MOMENT APPROXIMATIONS.

(Z/L) tA tB tA/tB

(3/10) 1.54 · 10−4 7.64 · 10−5 2.01
(3/100) 4.21 · 10−3 4.51 · 10−4 9.34

(3/1000) 1.50 1.30 · 10−1 11.66
(50/100) 9.43 · 10−3 3.23 · 10−3 2.91
(50/1000) 1.69 1.15 · 10−1 11.51

TABLE II
MEAN COMPUTATIONAL TIME AND RELATIVE SPEED OF (A) UKF AND

(B) THE PL-UKF IN 106 MOMENT APPROXIMATIONS.

(Z/L) tA tB tA/tB

(3/10) 1.51 · 10−4 7.88 · 10−5 2.00
(3/100) 4.15 · 10−3 4.23 · 10−4 9.80

(3/1000) 1.57 1.20 · 10−1 13.06
(50/100) 9.86 · 10−3 2.29 · 10−3 4.30
(50/1000) 1.77 1.39 · 10−1 12.78

TABLE III
MEAN COMPUTATIONAL TIME AND RELATIVE SPEED OF (A) GHCR AND

(B) THE PL-GHCR IN 106 MOMENT APPROXIMATIONS.

(Z/L) tA tB tA/tB

(3/3) 5.11 · 10−3 1.24 · 10−4 4.12 · 101

(3/4) 1.82 · 10−2 1.12 · 10−4 1.62 · 102

(3/5) 2.12 · 10−1 1.23 · 10−4 1.73 · 103

(3/10) - 1.70 · 10−4 -
(3/100) - 2.50 · 10−3 -



B. Application example

Next, we give an example where Algotithm 2 can be
of particular use. Imagine a scenario where N agents with
positions pik ∈ R3

k, i = 1, ..., N , velocities vik ∈ R3 and
accelerations aik ∈ R3 in the vicinity of a base station located
at pB = 0 ∈ R3. The agents could here be ground or aerial
vehicles, and for the sake of generality, suppose their motions
are described by a discrete time Singer model, defined as

xik+1 = Ai
kx

i
k + qik, qik ∼ N (0,Qi

k), (26)

where Ai
k and Qi

k are linear maps, stated explicitly in [19].
Each of the agents estimate its own states independently

based on local information. This could be done using a
wide variety of algorithms, and we assume this local es-
timate can be represented in its first two moments, as
N (xik|mx̂

k

i
,P x̂x̂k

i
), and that this information is occasionally

transmitted to a base station. The base station subsequently
fuses this information together with two-dimensional bear-
ing angle measurements taken of each agent. In the base
station, the state vector therefore takes the form xk =
[(x1

k)>, ..., (xNk )>]>, with the estimation model

xk+1 = Akxk + qk, qk ∼ N (0,Qk), (27)

where Ak = IN ⊗ Ai
k and Qk = IN ⊗ Qi

k. The angular
measurement model is defined as yα = α(pik) + riZ,k, with

α(pik) =

 arctan
(

(pi
k)>e32

(pi
k)>e31

)
arctan

(√
((pi

k)>e31)+((pi
k)>e32)2

(pi
k)>e33

)
 , (28)

and the noise riZ,k ∼ N (0, σ2
αI2). Thus, by letting

pk=

p
1
k
...
pNk

, h(pk)=

α(p1
k)

...
α(pNk )

, Rx,k=


P x̂x̂k

1 · · · 0
...

. . .
...

0 · · · P x̂x̂k
N


and Rα,k = σ2

αI2N , the combined measurement model of
all agents’ relative angles can be written

yk = H(xk) + rk =

[
h(pk)
xk

]
+

[
rα,k
rx,k

]
, (29)

where the transformation

TH =

[
IN ⊗

[
I3 03×6

]
IN ⊗

[
06×3 I6

]] , (30)

transforms the state xk into the form in (7), where the non-
linear states (here the positions) are stacked in the first 3N
elements of the transformed state vector x̄k = THxk. With
the dynamics in (27) and the partially linear measurement
equation in (29), we consider a problem where N = 10
(that is, Z = 30 and L = 60), and execute
(A) a CKF, that is, Algorithm 1 with point sets PF and
PH defined according to the SCR in Section IV-A.

(B) a PL-CKF, that is, Algorithm 2 with point sets PF
and PH defined according to the SCR in Section IV-
A, using T F = I and TH defined in (30).

The resulting mean estimate error of the PL-CKF is shown
in terms of the positions, velocities and accelerations of all
agents together with the 95%-confidence interval in Figure 2.
Furthermore, as we compute the same joint distribution in
the PL-CKF and the CKF down to numerical precision, we
get the same estimates with the two algorithms. This is
shown by comparing the posterior estimate means, mx,A

k|k
for the CKF and mx,B

k|k for the PL-CKF, here in l2-norm
in time, as depicted in Figure 3. This demonstrates that
Algorithm 2 indeed works as intended, and offers further
numerical verification of the main result in Theorem 1.

Fig. 2. Mean estimate error in positions (top), velocities (center) and
accelerations (bottom), when running the PL-CKF for N = 10 agents.
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Fig. 3. Difference in the first moment of the state estimate distributions
in the 10-logarithm and l2-norm when running the CKF and the PL-CKF
on the same synthetic data with N = 10 agents.

VII. CONCLUSIONS

In this paper, we examine the implications of known
linear substructure in the LRKFs, which can be leveraged to
decrease the computational complexity of the filters signifi-
cantly. We have stated exactly how the evaluation of the mo-
ment matching approximations in (13) simplifies when there
exists a known linear substructure in Theorem 1, provided
the cubature rule satisfies Assumptions 1-3. In addition, we
have shown that we need not use the entire set of points Pz
in evaluating these integrals provided additional symmetry
assumption, and that the number of function evaluations then



scales as C(Z) instead of C(X). We have given a condition
under which only a partial Cholesky decomposition needs
to be computed in the moment matching. Furthermore, we
have demonstrated that the above assumptions are satisfied
for the cubature rules used in the CKF, UKF, and GHKF.
In doing so, we have also given modified versions of the
original algorithms which exploit this linear substructure in
Algorithm 2, and demonstrated its efficacy on a distributed
filtering example. The results can easily be generalized to
smoothing problems, but this falls outside the scope of the
paper and is left as a topic for future research. On a final note,
known linear substructure should be exploited in filtering
applications whenever possible, and any implementation of
an LRKF should be done using the moment approximations
in Theorem 1 in order to conserve computational resources.
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IX. APPENDIX

Proof of Theorem 1. The proof follows from simple algebra
invoking assumptions 1, 2, and 3. It can be found in its
entirety in the extended version of the paper [18]. The main
proof idea is to show that the first moment can be written

my≈
|P|∑
i=1

w(i)Y(i) =

wclg(mz)+
|Pz|∑
i=1

w
(i)
z g(Z(i)

z )

Amx

, (31)

using the assumption of symmetry, and consistency in the
first moment. Inserting this in the LRKF-approximation of
the moment integrals in (13d) and (13d), as well as utilizing
the assumption of consistency in the second moments along
with the definitions in Theorem 1 yields the desired result.

Proof of Corollary 1. This remark holds trivially in the case
of the SC and UT, but is more complicated when NΞz

no longer contains unique columns. However, this can also
be shown algebraically, done in its entirety in the extended
version of the paper [18]. The key here is to let Puz denote
the set of points corresponding to the unique columns in
NΞz , with the corresponding linear parts set to zero and the
weights of all multiples of the the same point summed,

S = {ν = Nξ|(w, ξ) ∈ Pz}, (32)

Puz =
{

(wu, ξu)
∣∣∣wu =

∑
(w,ξ)∈Pz,Nξ=ν,

w, ξu =

[
ν

0L×1

]
,ν ∈ S

}
,

simple algebraic developments utilizing the asusmption in
Corollary 2 shows that the result of Theorem 1 holds when
evaluated with Puz instead of Pz , concluding the proof.

Proof of Corollary 2. If N̄Ξz = 0,

LxxΞz =

[
Lzz 0

Llz Lll

] [
N
N̄

]
Ξz =

[
Lzz

Llz

]
NΞz. (33)

Proof of Corollary 3. Here, we can let the number of rows
of A1 and A2 in (24) be N1 and N2 respectively. Let A> =
[A>1 ,A

>
2 ] and define a function with output o, and a map

o=

[
g(z)
Ax

]
, M =

[
IN1

IN1
0

0 0 IN2

]
. (34)

such that with the structure of the function defining y
in (24), we have that y = Mo. Then, the joint distribu-
tion p(x,o) can simply be computed using Theorem 1 to
find mo,P xo,P oo, followed by computation of the joint
distribution p(x,y) in terms of my,P xy,P yy where then

my =Mmo,P xy =P xoM>,P yy =MP ooM>. (35)
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