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Abstract—This paper presents a data-driven method for com-
puting reachable sets where active learning is used to reduce
the computational burden. Set-based methods used to estimate
reachable sets typically do not scale well with state-space dimen-
sion, or rely heavily on the existence of a model. If such a model
is not available, it is simple to generate state trajectory data
by numerically simulating black-box oracles of systems (whose
dynamics are unknown) from sampled initial conditions. Using
these data samples, the estimation of reachable sets can be posed
as a classification problem, wherein active learning (AL) can
intelligently select samples that are most informative and least
similar to previously labeled samples. By exploiting submodular-
ity, the actively learned samples can be selected efficiently, with
bounded sub-optimality. Our proposed framework is illustrated
by estimating the domains of attractions of model predictive
controllers (MPCs) and reinforcement learners. We also consider
a scenario where there are two oracles that differ with respect to
evaluation costs and labeling accuracy. We propose a framework
to reduce the dependency of the expensive oracle in labeling
samples using disagreement-based active learning (DBAL). The
potential of the DBAL algorithm is demonstrated on a solver
selection problem for real-time MPC.

Index Terms—Machine learning; safe sets; submodularity; im-
balanced learning; design of experiments; domain of attraction;
nonlinear systems; invariant sets; reinforcement learning.

I. INTRODUCTION

Estimating sets such as domains of attraction, reachable, and
invariant sets for nonlinear dynamical systems in a computa-
tionally efficient manner is a fundamental challenge in stability
analysis [1] and control design [2]–[6].

This set estimation problem is usually tackled by generating
a local Lyapunov function, whose level set demarcates the
boundary of a domain of attraction. Consequently, multiple
algorithms have been proposed to construct Lyapunov func-
tions numerically [7]–[9], using a model of the underlying
system dynamics. An approach that has been recently used
is based on sum-of-squares programming [10]–[12], wherein
a rational Lyapunov function and a polynomial static output
control law is generated to estimate and manipulate a reachable
set for polynomial systems by solving quasi-convex bilinear
matrix inequalities. When the underlying dynamics are non-
polynomial, a couple of recent papers have employed truncated
Taylor expansions and Chebyshev fitting to tackle the estima-
tion problem [13], [14]. Another approach that is currently be-
ing studied is based on using a linear fractional transformation
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to construct a differential-algebraic system which simplifies
the stability analysis by reducing the set estimation problem
using maximal annihilators [15], [16].

As opposed to the method developed here, all the above
methods require a closed-form analytical model of the system
dynamics, which may not be readily available or simple
to obtain if the plant dynamics are described by complex
simulation models, or if the plant is in closed loop with a
numerical control algorithm, such as model predictive control.
For systems that do not conform to structured representations
or when closed-form causal models are not readily available
(for example, when the dynamics are represented by complex
blocks in Simulink/Labview/Modelica, represent approxima-
tions of partial differential equations, or contain differential
algebraic equations such as in fluid flows, power flow, or
industrial automation), the determination of reachable sets is
near impossible using analytical methods. In lieu of closed-
form models, numerical simulations offer a fast and scalable
alternative to collecting reachability or invariance information.
Sampling-based approaches, based on direct simulations, en-
able the reachable set estimation problem to be cast as a
classification problem [17]–[19]. Data-driven methods such
as these eliminate the need to exploit structure of specific
nonlinearities, enabling implementation on a wide range of
dynamical systems. A limitation of these methods is that
accurate estimation of reachable sets is only ensured with an
infinite number of samples, which is impractical.

A more practical sampling method, referred to as active
learning (AL), which in different contexts may be also referred
to as ‘optimal experiment design’ or ‘directed sampling’,
hinges on selecting the most informative samples within the
state space. In this paper, we query the oracle batch-wise
from a pool of unlabeled samples: this is referred to as ‘pool-
based batch selection’ [20] and is generally faster than single-
instance selection methods. A common theme amongst pool-
based batch selection AL algorithms is that samples are chosen
according to metrics that increase the information contained
and reduce overlap with prior labeled samples [21]–[24]. Often
times, these methods cannot rigorously certify the quality of
the solutions obtained.

In this paper, we exploit submodularity in our proposed
pool-based batch selection AL procedure to ensure near-
optimality of solutions [25]. Although we are not the first
to propose the utilization of submodularity in this setting,
see for example [26], [27], our proposed approach does not
require specific learners and does not involve inverting large
Fisher information matrices. Some preliminary results using
submodularity and active learning for reachable set estimation
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have been reported in our previous work [28]. In this paper,
after refining and formalizing our initial results we provide two
extensions to such results. First, we consider the case when the
size of the unlabeled sample set is particularly large. Having
a large number of unlabeled samples could be used to ensure
that the unlabeled set is well-dispersed on the admissible state-
space. Such a large set also implies that active learning on such
a set will prove computationally challenging. To reduce the
computational expenditure involved in the greedy submodular
maximization algorithm in this setting, we provide two vari-
ants based on random subsampling of the unlabeled set and
partitioning the unlabeled sample set for distributed computing
on multiple clusters. Our approach is related to methods for
distributed implementations and stochastic variants of greedy
submodular maximization that have been reported in [29]–
[31] for applications such as sensor scheduling [32], [33].
Second, we consider the case when two oracles are available:
a strong (infallible) oracle that is expensive to query, and a
weak (fallible) oracle that is cheap to query. We use tools
from disagreement-based active learning (DBAL) [34] in order
to solve this problem by estimating a region where the two
oracles disagree, and to use this disagreement learner to reduce
the number of queries made to the strong oracle when solving
the primary problem of identifying the reachable set.

In summary, the specific contributions of this paper are:
(i) we introduce a batch-mode active learning procedure

to select relevant samples for learning reachable set
boundaries in a sampling-based, data-driven manner and
provide a method for obtaining near-optimal samples
in polynomial time despite the NP-hard nature of the
original learning problem;

(ii) providing rigorous mathematical conditions for the exis-
tence of such boundaries; and,

(iii) we demonstrate the generalizability of our proposed
approach to multiple classifiers by considering an active
learning problem with weak and strong labelers.

The paper is organized as follows. The motivation for the
problem investigated in the paper is discussed in Section II.
For the single oracle case, an active learning methodology is
provided in Section III. Fast variants of the algorithm for large
unlabeled sets are discussed in Section IV and an algorithm
that handles the scenario when a weak and strong oracle
are simultaneously available in Section V. Simulation results
in Section VI demonstrate the potential of the method. We
present our conclusions in Section VII.

Notation

We denote by R the set of real numbers, R+ as the set
of positive reals, and N as the set of natural numbers. The
symbol E(·) denotes the expectation operator. For a set S,
we denote its cardinality by |S|, its interior (if it exists) by
intS, and its boundary (if the set is closed) by ∂S. The union,
intersection, difference, and symmetric difference of sets A
and B are denoted A∪B, A∩B, A\B, and A4B, respectively.
The empty set is denoted ∅. The power set of a set A is
denoted 2A. The notation ln represents the natural logarithm.
The big-O notation is represented by O(·). A function f(x)

is semi-continuous at x̄ if ∀ε > 0 there exists δ > 0 such that
f(x) ≤ f(x̄) + ε (upper semi-continuous) or f(x̄)− ε ≤ f(x)
(lower semi-continuous) for all ‖x− x̄‖ ≤ δ.

II. MOTIVATION

Consider a dynamical system of the form

xt+1 = f(xt, ut), (1a)
xt ∈ X, ut ∈ U (1b)

where xt ∈ Rnx and ut ∈ Rnu are the state and input,
respectively, at discrete-time t ∈ N. We assume that the
constraint sets X ⊂ Rnx and U ⊂ Rnu are compact, convex,
and contain the origin in their interiors. We further assume that
the dynamics (1a) are continuous and the origin is the unique
equilibrium state-input pair f(0, 0) = 0. Note that, although
we focus on nonlinear discrete-time systems in this paper, the
proposed method can be applied directly to continuous-time
systems and/or linear systems.

Definition 1 (T -step Backward-Reachable Set). The T -step
backward-reachable set RT (Ω) ⊆ X of a compact set Ω ⊆ X
is the set of all initial conditions x0 ∈ X for which there
exists a sequence of inputs such that ut ∈ U such that xt+1 =
f(xt, ut) ∈ X for t = 0, . . . , T−1 and xT ∈ Ω where T ∈ N,
that is:

RT (Ω) =
{
x0 ∈ X : ∃ut ∈ U, (2)

xt+1 = f(xt, ut) ∈ X, xT ∈ Ω
}
.

The sets described in Definition 1 are also referred to
as T -step controllable sets. A special case of Definition 1
are backward reachable sets for closed-loop systems xt+1 =
f(xt, κ(xt)) with a fixed controller ut = κ(xt),

RT (Ω) =
{
x0 ∈ X : κ(xt) ∈ U, (3)

xt+1 = f(xt, κ(xt)) ∈ X, xT ∈ Ω
}
.

We assume that information about the reachable set RT (Ω)
is available through an oracle O : X→ {−1, 1} that evaluates
the indicator function of the reachable set. With abuse of
notation, we will conflate oracles O : X → {−1, 1} and the
indicator function

O(x) =

{
+1 if x ∈ RT (Ω)

−1 if x 6∈ RT (Ω).
(4)

This paper is motivated by the fact that oracles (4) are typically
expensive to query. The following four examples illustrate the
concept of an oracle (4).

Example 1 (Nonlinear Model Predictive Control). The ora-
cle (4) of the reachable set (2) can be evaluated by solving the
following finite-horizon constrained optimal control problem,

min p(xT ) +
∑T−1

t=0
q(xt, ut) (5a)

subject to: xt+1 = f(xt, ut) for t = 0, . . . , T − 1 (5b)
xt ∈ X, ut ∈ U, xT ∈ Ω (5c)
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where the terminal p(·) and stage-costs q(·, ·) are arbitrary
since we are only concerned with the feasibility of the optimal
control problem (5). For (5), the oracle (4) has the form

O(x0) =

{
+1 if (5) is feasible
−1 otherwise.

This oracle is computationally expensive to evaluate since it
requires solving an optimization problem that is non-convex
when the model is nonlinear.

Example 2 (Simulation). For a system with closed-loop
dynamics xt+1 = f(xt, κ(xt)), the oracle (4) of the reach-
able set (3) can be evaluated through high-fidelity simu-
lations. This includes models constructed using modeling
software like Simulink/Modelica, models arising from finite
element/difference approximations of partial differential equa-
tions, or models designed in dynamics-rendering engines like
Bullet/MuJoCo [35]. The dynamics (1a) are simulated over the
time interval [0, T ] with initial condition x(0) = x0, resulting
in a sequence of control inputs u(t) = ut and states x(t) = xt.
The oracle (4) then has the form

O(x0) =

{
+1 if ut ∈ U, xt ∈ X, xT ∈ Ω

−1 otherwise.
(6)

This oracle is computationally expensive to evaluate since it
requires simulating a high-fidelity model of the dynamics (1a).

Example 3 (Experiment). Similarly to Example 2, the ora-
cle (4) of the reachable set (3) can be evaluated for a closed-
loop system through experiments with initial condition x0.

Example 4 (Cloud/Database Query). Legacy systems that
have been operating for a long period of time often have
large databases that document their history of operation. This
database can be queried to evaluate the oracle (6). Similarly, if
there are many (nearly) identical systems sharing data through
the cloud, this data serves as an oracle (6).

In Examples 3 and 4, the oracles (6) do not require any
knowledge of the dynamics (1a). Thus, an advantage of
using (4) is that we can estimate the reachable set with-
out knowing the closed-form model of the dynamics (1a).
Furthermore, although the model in Example 2 is known,
it can be very complex, for high accuracy, without making
the problem of estimating the reachable set intractable. This
is important for many applications where feasibility is deter-
mined experimentally such as in buildings [36], biology [37],
or healthcare [38]. One can also use this method to validate
‘black-box’ controllers, where the controller’s behavior is
completely unknown, such as for control with deep neural
networks, therein generating some trust in the closed-loop
system.

Our objective is to estimate the reachable set of systems with
complex model representations with limited oracle queries.
To this end, we use active learning. Concretely, we leverage
machine intelligence to iteratively select initial conditions
x0 ∈ X for which the oracle (4) should be queried for
labeling. With these labeled samples (which will be the inputs

to a classification algorithm), our goal is to characterize inner
approximations of the reachable set for closed-loop system
analysis and on-line control. Due to the iterative framework of
active learning algorithms, one expects gradual improvement
of the inner approximation with more samples, which is an
advantage of this framework over analytical methods that
generate conservative estimates of the inner approximation.

III. ACTIVE LEARNING WITH INFALLIBLE ORACLE

The major advantage of AL methods over traditional su-
pervised learning is the iterative improvement of learning
performance by systematically utilizing prior learners. In most
AL algorithms, one starts with a labeled set L0 and an
unlabeled set S in the state space X. The goal is to select Ns
most informative samples iteratively in batches. Specifically,
in the kth iteration, a set of samples L′k ⊂ S is chosen based
on the prior classifier. Only the samples L′k are labeled by the
oracles, and the labels are added to the accumulated labeled
set. Once Ns samples have been selected, the AL terminates.
More details are presented in the key steps below.

We use the initial labeled set L0 and the unlabeled set
S (usually obtained by gridding or sampling methods upon
the state space X, see for example, [17]) to generate a non-
trivial initial classifier. Usually, we can select S to have large
cardinality and good coverage of X since sampling is a cheap
computational procedure compared to querying the oracle, and
well-distributed samples ensure that informative samples exist
near the boundary of the reachable set we wish to estimate.

A classifier ψ0 : X → [−1, 1] is trained using the features
L0. The overall idea is that the classifier ψ0 will actively
learn a set of ‘important’ samples that will be appended to
L0 to form the new training set L1. This will in turn induce
a classifier ψ1 and the workflow of the AL algorithm will
proceed as:

L0 → ψ0 → L1 → ψ1 → · · · Lk → ψk → L′k → · · · .

At the kth iteration, a prior classifier ψk−1 informs the
selection of B samples within S that minimizes overlap
compared to the current label set Lk while providing the most
discerning information. The classifiers ψk : X → [−1, 1] can
be interpreted as the belief, based on the dataset Lk, that a
state x ∈ X belongs to the reachable set (2). In other words,
if ψk(x) ≈ 1 then the dataset Lk strongly indicates that
x ∈ RT (Ω). Likewise, if ψk(x) ≈ 0 then the dataset Lk
strongly indicates that x 6∈ RT (Ω).

The informativeness of the samples in S are quantified using
the Shannon entropy

JE(S) = −
∑
x∈S

∑
y∈{−1,+1}

pk(y|x) log2 |pk(y|x)| (7)

where pk(+1|x) = 1
2 + 1

2ψk(x) is the probability that x ∈
RT (Ω) based on the belief ψk, and pk(−1|x) = 1

2−
1
2ψk(x) is

the probability that x 6∈ RT (Ω) based on ψk. The entropy (7)
is large for samples x ∈ S with high uncertainty, ψk(x) ≈ 0.5.

The samples x ∈ S can have redundant information,
which is quantified by the mutual information function JD(S)



4

defined by

JD(S) =
1

|Lk|

|Lk|∑
i=1

max
j

Dk
ij(S), (8)

where Dk(S) ∈ R|Lk|×|S| is a non-negative matrix whose el-
ement Dk

ij(S) ≥ 0 contains the amount of mutual information
between the ith labeled sample from Lk and the jth unlabeled
one from S. This mutual information can be estimated by
computing the relative distance between the distributions of
the ith and jth samples conditional upon the classifier ψk.
For example, one can employ the Kullback-Liebler (KL)
divergence metric

Dk
ij = −

∑
y∈{−1,+1}

piy log2

∣∣∣∣∣pjypiy
∣∣∣∣∣ ,

where piy = pk(y|xi). Using the entropy (7) and mutual in-
formation (8), we pose the informativeness-redundancy trade-
off as a cardinality constrained submodular maximization
problem.

The B most useful samples in S are obtained by solving:

L′k = arg max
S0⊆S:|S0|≤B

J(S0). (9)

where the objective function is given by

J(S0) , JE(S0) + JD(S0). (10)

The component JE encourages samples with new information
to be chosen, while JD penalizes redundancy compared with
prior labeled samples. We have noted that, empirically, adding
JD does not always have a significant effect on the quality of
learning, and can be considered optional.

Unfortunately, problem (9) is NP-hard and thus no
polynomial-time algorithm exists with an approximation factor
better than (1− 1/e), where ln(e) = 1; see [39]. However, if
JE and JD belong to the class of submodular functions, one
can provide polynomial-time algorithms that generate near-
optimal solutions. We take the following definition from [25].

Definition 2. Consider a set function J : 2W → R that maps
subsets of a finite set W to the reals. The function J is:

(P1) normalized: if J(∅) = 0.
(P2) monotone: if J(W1) ≤ J(W2) for anyW1 ⊆ W2 ⊆ W .
(P3) submodular: if, for every W1 ⊆ W2 ⊆ W , and w ∈

W \W2, the inequality

J(W1 ∪ {w})− J(W1) ≥ J(W2 ∪ {w})− J(W2)

is satisfied.

The problem (9) can be solved near-optimally using a
greedy approach that iteratively extracts the sample x ∈ S
which increases J the most, until B such samples are selected;
see Algorithm 1. We refer to

∆(x|S; J) , J(S ∪ {x})− J(S) (11)

as the marginal gain of a function J for the sample x with the
prior set S.

Algorithm 1 Greedy
Input: Set functions JE , JD
Input: Unlabeled set, S
Input: Batch size, B
Output: Actively learned samples, L′B,G

1: L′k,G ← ∅
2: for k = 1 : B do
3: x? ← arg maxx∈S\L′k,G

∆(x|L′k,G; J)

4: L′k,G ← L′k,G ∪ {x?}
5: end for
6: return L′B,G

The following theorem quantifies the relative suboptimality
of a solution generated by Algorithm 1.

Theorem 1. Let B be the batch size, and JE and JD be
defined as in (7) and (8), respectively. The relative subopti-
mality for any solution L′B,G obtained by solving (9) using
Algorithm 1 is

J? − J(L′B,G)

J?
≤ 1

e
, (12)

where J? denotes the optimal cost. The time complexity
incurred is O(|S|B2).

Proof: The proof involves demonstrating that the choice
of J(·) in (10) exhibits the properties (P1)–(P3) in Definition 2.
Selecting no sample from S implies that JE(∅) = 0 and
JD(∅) = 0; thus, J(·) is normalized and (P1) is satisfied.
We know from [40] that the entropy function (7) (for finite,
discrete-valued random vectors) and the facility location func-
tion that has the form (8) (with non-negative Dk

ij since KL
divergence is non-negative) are monotone submodular. Since
the sum of monotone functions is monotone, and the sum
of submodular functions is submodular, J(·) is monotone
submodular; property (P2) and (P3) are satisfied. The in-
equality (12) follows immediately from [25] as a consequence
of (P1)–(P3) being satisfied. The time complexity is derived
in [28, Remark 4].

Remark 1. One can use (P1)–(P3) to guide the selection of JE
and JD. Any JE and JD that represent information content
and sample divergence that are normalized, monotone, and
submodular can be used in lieu of (7) and (8) with identical
solution guarantees. Our particular selection of JE and JD
involves simple computations and can be seamlessly integrated
with most classification frameworks, as long as they generate
probabilistic predictions or can be modified to do so.

The above steps continue until a termination criterion such
as the total number of iterations or the size of the final labeled
set is achieved. With the final labeled set, one can generate
inner approximations of the reachable set using asymmetric
costs or by selecting sub-level sets of the decision function
that guarantee no infeasible training or validation sample is
labeled feasible [17].

The natural way to represent a set using a function is
through indicator functions. However, indicator functions are
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not continuous, which is a challenge for classifiers that gener-
ate continuous decision functions. Thus, the following theorem
provides conditions under which the reachable set is a sub-
level set of a continuous function.

Theorem 2. Let the dynamics f be continuous, and the sets
X, U, and Ω be compact. There exists a continuous function
ζ such that boundary of the reachable set is its zero level set;
that is, ∂RT (Ω) = {x : ζ(x) = 0}.

Proof: We prove the theorem for two scenarios: (i) when
the system is autonomous; that is, f(x, u) = f(x, 0) since
u = 0, and (ii) when the system is non-autonomous.

Since Ω is compact, there exists a continuous function ζ0
such that Ω = {x : ζ0(x) ≤ 0} is the sub-zero level-set of
ζ0. An example of such a ζ0 is κΩ(x) − 1, where κΩ is the
Minkowski functional of Ω [41].

For autonomous systems, we define

ζk(x) = max{κX(x)− 1, ζk−1(f(x))}, (13)

for k = 1, · · · , T where κX is the Minkowski function of the
state constraints X. Consider k = 1. By construction, {x :
ζ0(x) ≤ 0} defines the target set Ω and

X = {x : κX(x) ≤ 1}.

Thus, x ∈ Ω ∩ X if and only if ζ1(x) ≤ 0, where ζ1
is defined by (13). Since the maximum of two continuous
functions is continuous, ζ1(x) is continuous. Using induction
for k = 1, . . . , T , we deduce that ζT is continuous and satisfies
ζT (x) ≤ 0 if and only if x ∈ RT (Ω).

For non-autonomous systems, we define

ζk(x) = max{κX(x)− 1,min
u∈U

ζk−1(f(x, u))}, (14)

= max{κX(x)− 1, V ?(x)},

for k = 1, · · · , T where the optimal value-function V ?(x) of
the following parametric program

V ?(x) = min
u∈U

ζk−1(f(x, u)).

Next, we show that V ?(x) is continuous (even though
the optimal controller u?(x) is not necessarily continuous).
Consider the constant set-valued function U : X → U given
by U(x) = U for all x ∈ X. Clearly, the function U(x) is
locally compact at every x ∈ X since U is a compact set. Thus,
V ?(x) is lower semi-continuous [42, Lemma 5.3b]. Likewise,
the constant function U is inner semi-continuous. Thus, V ?(x)
is upper semi-continuous [42, Lemma 5.4a]. Since V ?(x) is
both upper and lower semi-continuous, it is continuous. Using
identical inductive arguments as the autonomous case, we
deduce that the level-set function ζT is continuous and satisfies
ζT (x) ≤ 0 if and only if x ∈ RT (Ω).

The above theorem enables the following guarantee on the
learned reachable set: namely, that a good estimate of the
reachable set is possible by using learners that can approximate
continuous functions arbitrarily well.

Corollary 1. Suppose the conditions of Theorem 2 hold. Let
H be a hypothesis class that induces decision functions which
are dense in the space of continuous functions on the compact

metric space (X, d). Let ζ̂ ⊂ {ζ > 0} and ζ̌ ⊂ {ζ < 0} denote
compact subsets of super and sub-level sets of the reachable
set boundary. Then any learner ψ ∈ H separates ζ̂ and ζ̌.

Proof. This is a direct consequence of the sets ζ̂ and ζ̌ being
disjoint. Thus, d(ζ̂, ζ̌) > 0. Therefore, 1ζ̂−1ζ̂ is a continuous
function on ζ̂∪ ζ̌ which can be extended to X using Whitney’s
extension theorem [17, Theorem 1]. Consequently, the zero
level set of 1ζ̂−1ζ̂ is the true separating boundary, which can
be generated by a learning ψ as it belongs to the hypothesis
class H defined in the theorem statement. This concludes the
proof.

Remark 2. The hypothesis class H in Corollary 1 includes
learners with universal kernels [43], or universal neural ap-
proximators [44].

Remark 3. The sampling method provided in this paper facil-
itates learning without extensive sampling; providing guaran-
tees on the learning quality is beyond the scope of this paper
as it depends, among other things, on the sampling method
employed to generate S, the hypothesis class chosen by the
user, the complexity (e.g. VC dimension) of the problem class.

Remark 4. The decision function of many classification algo-
rithms can be written using closed-form analytical expressions.
For example, an SVM bi-classifier would have a decision
boundary given by

∑
yiαiK(xi, x) = 0, where y is the label

vector, α is the vector of Lagrange multipliers, xi is the i-th
feature, and K is the kernel matrix; for more details, see [17].

IV. EFFICIENT IMPLEMENTATIONS FOR LARGE B OR S
One generally wants the cardinality of S to be large to

ensure that the unlabeled samples are well dispersed through-
out X. Since Algorithm 1 exhibits a complexity O(|S|B2),
increasing the cardinality of S and B could increase solver
execution time exorbitantly. Variants of Algorithm 1 that get
around this issues without major losses in performance can be
obtained by exploiting random subsampling and distributed
computations. We present two such variants: (i) a stochastic
variant of Algorithm 1 to facilitate active learning on large sets
of unlabeled samples with time complexity linear in |S| and
B; and, (ii) for cases when Nc ≥ 2 clusters are available for
distributed implementation, we provide a distributed algorithm
that exhibits a time complexity linear in |S|/Nc.

A. Stochastic Greedy Algorithm

The stochastic greedy variant of Algorithm 1 is presented
herein. The method involves curtailing the number of marginal
gain computations. Instead of computing the marginal gain
of every sample in S, the stochastic greedy method selects
a random subset Sq ⊂ S containing q distinct elements of
S. The random subset Sq is resampled at each iteration. The
maximizer of the marginal gain using only elements from Sq is
chosen for appending to the set of greedy solutions. As argued
in [30], the method is effective because, for a given ε > 0, by
choosing q (function of ε) large enough, one can show that
the random subset Sq will contain elements contained in the
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Algorithm 2 Stochastic Greedy
Input: Set functions JE , JD
Input: Unlabeled set, S
Input: Batch size, B
Input: Approximation tolerance, ε
Output: Actively learned samples, L′B,SG

1: q ← (|S|/B) ln(1/ε)
2: L′k,SG ← ∅
3: for k = 1 : B do
4: Sq ← random subset of |S| \ L′k,SG with q elements
5: x? ← arg maxx∈Sq

∆(s|L′k,SG; J)
6: L′k,SG ← L′k,SG ∪ {x?}
7: end for
8: return L′B,SG

greedy optimal solution with probability 1−ε. The pseudocode
is provided in Algorithm 2.

The following theorem shows that the stochastic greedy
algorithm may result in near-optimal solutions with a time
complexity that depends linearly (instead of quadratically)
on the batch-size B, by ensuring the random subsets Sq
selected in each iteration satisfy a pre-computable cardinality
constraint.

Theorem 3. Let B be the batch size, and the set functions
JE and JD be defined as in (7) and (8), respectively, and
J? is the optimal solution for (9). Let 0 < ε � 1 and fix
q = (|S|/B) ln |1/ε|. Then, any solution obtained by solving
Algorithm 2 satisfies

J? − E
[
J(L′B,SG)

]
J?

≤ 1

e
+ ε, (15)

with a time complexity of O(|S|B ln |1/ε|).

Proof: From the proof of Theorem 1, we know that J(·)
is normalized, monotone, and submodular. From monotonicity
and normalization, we get J(∅) = 0 and J(∅∪S0) ≥ J(∅) for
any S0. Hence, J is non-negative. Then (15) follows from [30,
Theorem 1]. Since the cardinality of Sq is q, replacing
this quantity instead of |S| in the complexity O(|S|B2) of
Algorithm 1 yields the desired complexity.

B. Distributed Implementation

For sampling patterns that grow exponentially with dimen-
sion (for example, regular grids), a computational expenditure
of O(|S|) may be impractical. In such scenarios, the use of
distributed computing provides a computationally efficient way
of implementing greedy algorithms for solving (9) without
completely losing optimality guarantees [31], [45]. In partic-
ular, we consider the RANDGREEDI algorithm of [45].

Suppose there are Nc nodes/clusters where the distributed
algorithm can be deployed. The RANDGREEDI algorithm
proceeds as follows. At each node 1 ≤ k ≤ Nc, a subset Sk is
formed by randomly selecting elements from the unlabeled set
S using a uniform distribution. Once S is randomly partitioned
into {Sk}Nc

k=1, each node runs Algorithm 1 on its correspond-
ing unlabeled set. Once all Nc nodes have computed their

greedy solutions, these solutions L′k,G are returned to one of
the nodes or a centralized processing unit. At this centralized
node, two operations are performed: (i) all greedy solutions
are composed into a set S∞, using which a greedy solution
L′∞,G is computed, and (ii) the best among the k distributed
solutions, denoted L′k∗,G is computed. The better of these two
centralized solutions is returned as the final solution L′B,DG.
The pseudocode is presented in Algorithm 3.

Algorithm 3 Distributed Greedy Algorithm (RANDGREEDI)
Input: Set functions JE , JD
Input: Unlabeled set, S
Input: Batch size, B
Input: Number of clusters, Nc
Input: Sk = ∅ for 1 ≤ k ≤ Nc
Output: Actively learned samples L′B,DG

–DISTRIBUTED–
1: for x ∈ S do
2: Select k ∈ {1, 2, . . . , Nc} uniformly at random
3: Sk ← Sk ∪ {x}
4: end for
5: for k = 1 : Nc do
6: L′k,G ← greedy solution from Sk
7: end for

–CENTRALIZED–
8: S∞ ←

⋃Nc

k=1 L′k,G
9: L′∞,G ← greedy solution from S∞

10: L′k∗,G ← arg max1≤k≤Nc

{
J
(
L′k,G

)}
11: L′B,DG ← arg max

{
J
(
L′∞,G

)
, J
(
L′k∗,G

)}
12: return L′B,DG

The following theorem from [45] demonstrates that ran-
domly partitioning into Nc nodes/clusters and solving the dis-
tributed problem results in lowering the optimality guarantee
by a (constant) factor of 2.

Theorem 4. Let B be the batch size, and the set functions
JE and JD be defined as in (7) and (8), respectively, and let
J? be the optimal solution for (9). Let Nc ≥ 2 denote the
number of distributed nodes, and suppose |S| � N2

cB. Then,
any solution obtained by solving Algorithm 3 satisfies

J? − E
[
J(L′B,DG)

]
J?

≤ 1 + e

2e
. (16)

with an expected time complexity of O(γ1B
2) for each node,

where γ1 = d|S|/Nce.

Proof: The optimality guarantee follows from [45, Theo-
rem 5] with simple algebraic manipulations. To derive the time
complexity, consider that each distributed node has a ground
set of cardinality (in expectation) at most γ1, which implies
that running the algorithm on node k has an expected time
complexity of O(γ1B

2), from Theorem 1. For the centralized
node, along with the distributed greedy operation, it also
computes a greedy solution with the union set S∞. The largest
cardinality S∞ can have is NcB, since each greedy solution
L′k,G has cardinality B, which means the central node needs to
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obtain (in the worst-case) a greedy solution with a ground set
of size NcB, which incurs a time complexity of O(NcB

3).
Since NcB � |S|/Nc, this time is dwarfed by the greedy
search and so the overall complexity is still O(γ1B

2).
As evident from Theorem 4, the condition |S| � N2

cB
implies that the unlabeled set is massive, if the number of
clusters is large. Without large Nc, it appears that using
Algorithm 2 is more efficient and provides better optimality
guarantees than Algorithm 3.

V. LEARNING WITH STRONG AND WEAK ORACLES

In the previous sections, we assumed that the oracle is
infallible; that is, O(x) is correct for all x ∈ X. In this section,
we consider the scenario when we have access to two oracles:
a strong oracle OS that incurs a higher cost to evaluate but is
infallible, and a weak oracle OW whose evaluation complexity
is cheap, but which does not always provide the correct label
(that is, it is fallible). We propose an active learning algorithm
that leverages the weak oracle OW to reduce the total labeling
expenditure. We do so by lowering the number of queries
to the expensive strong oracle OS . To this end, we adopt
the disagreement-based active learning (DBAL) philosophy
described in [34].

The concept of a weak (or approximate) oracle is defined
below.

Definition 3 (Weak Oracle). A weak oracle OW (x) is an
indicator function for a set R̂T (Ω) that approximates the
actual reachable set RT (Ω)

OW (x) =

{
+1 if x ∈ R̂T (Ω)

−1 if x 6∈ R̂T (Ω).
(17)

To illustrate the concept of weak and strong oracles, con-
sider the following example.

Example 5. Recall the oracle defined in Example 1 which
evaluates the indicator function of the reachable set (2) by
solving a finite-time optimal control problem (5). An example
of a weak oracle is using an iterative method to solve the
optimization problem (5) where the terminal condition has a
large tolerance. Whereas, a strong oracle could be obtained by
solving the optimization problem (5) using an active-set solver
which produces the exact solution after a small number of
iterations but requires more compute and cannot be deployed
on low-end processors.

We define the disagreement region XD ⊂ X as the set of
states where the strong OS and weak OW oracles disagree

XD = RT (Ω)4R̂T (Ω). (18)

We prove the following property about XD.

Corollary 2. If R̂T (Ω) is compact, the set XD has an interior
and exterior.

Proof: Using Theorem 2, we can construct continuous
functions ζ and ζ̂ such that ∂RT (Ω) = {x : ζ(x) = 0} and

∂R̂T (Ω) = {x : ζ̂(x) = 0}. Then, we can write

XD = RT (Ω)4R̂T (Ω)

= (R̂T (Ω) \ RT (Ω)) ∪ (RT (Ω) \ R̂T (Ω)).

This can be written as the zero level set of the function

ζD := min
{

max{ζ̂,−ζ},max{ζ,−ζ̂}
}

which is continuous. Therefore, sub- and super- level sets of
ζD are interior and exterior regions of XD.

By Corollary 2, one can generate inner D− ⊆ XD and
outer D+ ⊇ XD approximations of the disagreement region
XD. Subsequently, we can use the weak oracle (17) to define
a strong oracle, as shown in the following theorem.

Theorem 5. The oracle

OS,W =


OW (x), for every x ∈ X \ D+

−OW (x), for every x ∈ D−

OS(x), otherwise,
(19)

is infallible. Furthermore, for x uniformly sampled on X, the
expected number of queries to OS is µL(D+ \ D−)/µL(X),
where µL is the Lebesgue measure.

Proof: For any x ∈ D−, the weak oracle is reliably
incorrect, that is, for these x, we know that OW 6= OS . Since
the underlying classification problem, to be solved using the
oracles, is binary, OW = −OS . For any x ∈ X \ D+, the x
are outside the disagreement region, so OW can be trusted.
Hence, for these x, we know that OW = OS . Clearly, for
x ∈ D+ \ D−, the weak oracle may or may not be correct,
so we must resort to OS for true labels. Since this region
has volume µL(D+ \ D−), the probability of sampling from
a uniform distribution within this region in an ambient space
X of volume µL(X) is given by the ratio of the two volumes.
This concludes the proof.

To leverage the insights in the above result, our proposed
DBAL framework involves constructing two learners. One of
these learners is trained to identify inner D− and outer D+

approximations of the disagreement region XD; this learner
is therefore referred to as the disagreement learner. The
primary learner (the same learner that is studied in Section III)
leverages the disagreement learner’s knowledge of where each
oracle needs to be queried in order to actively learn the safe
set. We modify the algorithm proposed in [34] in order to
solve this disagreement-based active learning problem.

Concretely, we perform two rounds of active learning.
In the first round, we seek to identify active samples that
are most useful for estimating the boundary of XD via the
disagreement learner ψD : X → [0, 1]. The classifier ψD
can be interpreted the belief ψD(x) ∈ [0, 1] that a sample
x ∈ X is in the disagreement region XD. Therefore, we can
use an oracle of the form OS,W (x). By using cost-sensitive
learning or level sets of ψD, we construct two approximators
D̂+ =

{
x : ψD(x) > T+

}
and D̂− = {x : ψD(x) < T−

}
,

that are inner and outer approximations of XD. For example,
the threshold T− can be selected so that D̂− has no false
negatives i.e. OW (x) 6= OS(x) for all x ∈ D̂− ∩ Lk.
Similarly, the threshold T− could be selected so that D̂+
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does not contain any false positives i.e. OW (x) = OS(x)
for all x ∈ D̂+ ∩ Lk. Once these sets are identified, the same
algorithm as in Section III can be employed to identify the safe
set, with the number of strong oracle calls reduced using the
new oracle (19) with D+ and D− replaced by their estimates
D̂+ and D̂−, respectively. The pseudocode of the proposed
algorithm is provided in Algorithm 4.

Remark 5. We assume that estimating the disagreement
region requires fewer labels than identifying the reachable
set and that the cost of always calling the strong oracle is
exorbitant. Otherwise, one could use active learning using only
the strong oracle.

Remark 6. The theoretical guarantees of suboptimality for
the disagreement learner and the primary learner remain the
same as in Theorem 1.

Algorithm 4 Proposed DBAL Algorithm
Input: Set of unlabeled samples, S
Input: Initial labeled samples for disagreement, L0,D

Input: Number of strong oracle calls, Ns,D
Input: Batch sizes, BD
Input: Oracles: OW , OS
Input: Number of active samples to select, Ns
Input: Batch sizes, B
Input: Oracles: OS,W in (19) using D̂+ and D̂−
Output: Disagreement learner ψD, primary learner ψ
–DISAGREEMENT LEARNER–

1: ψD ← disagreement learner using oracle OS/OW , batch
size BD, final number of labeled samples Ns,D

–PRIMARY LEARNER–
2: D̂+ ← outer approximation of XD from ψD
3: D̂− ← inner approximation of XD from ψD
4: L0 ← labeled samples obtained after disagreement learn-

ing phase
5: ψ ← primary learner using oracle OS,W , batch size B,

final number of labeled samples Ns
6: return ψD, ψ

VI. SIMULATION RESULTS

A. Highly imbalanced dataset

We illustrate our proposed approach on the system:

x1,t+1 = x1,t + 0.05 (−x2,t + 0.5(1 + x1,t)ut)

x2,t+1 = x2,t + 0.05 (x1,t + 0.5(1− 4x2,t)ut) ,

with U = {u ∈ R : |u| ≤ 2} [46]. We know that X = {x ∈
R2 : ‖x‖∞ ≤ 4}. The oracle in this example is a nonlinear
MPC that returns +1 when a feasible solution is found to
the problem (5) from a given initial condition in X, and −1
otherwise. A complete description of the implementation is
provided in [28].

The unlabeled set of samples is generated using low-
discrepancy Halton samples [17]; |S| = 5 × 103. We fix the
batch size to be B = 100 samples. The total number of active
samples to be selected is set to Ns = 1000. The classifier

ψk is selected to be a support vector machine (SVM) with
Gaussian radial basis function kernels and Platt scaling to
generate probabilistic outputs. The learner is implemented in
MATLAB R2019a via the Statistics and Machine Learning
toolbox with automatic hyperparameter tuning via Bayesian
optimization.

The set L0 with 105 samples (of which 8 are feasible)
is illustrated in Fig. 1[A]. This figure also shows the active
samples (red squares) selected over all ten iterations. As
expected, the AL procedure selects states that are the most
uncertain, while ignoring samples far from the classifiers’
decision boundaries as they are most likely to be infeasi-
ble. The potential of our proposed method is illustrated in
Fig. 1[B], where we observe that active learning outperforms
passive learning by lowering the number of samples by an
order of magnitude and despite that, producing a much better
representation of the true reachable set. It is also clear from
this figure that relying on Lipschitz constants and solving for
domains of attraction with classical control-theoretic analytical
tools [47] could result in a very conservative set estimate.

Although imbalance correction of the data is not explicitly
required, since AL intrinsically selects samples near higher
uncertainty regions, the imbalance improves as the likelihood
of labeling infeasible and feasible samples are about the same
in those regions. We observe a clear improvement of balance in
the data in Fig. 1[C]; from a meagre 7% of feasible samples,
we improve the balance of the data close to 50% after ten
iterations of AL. Of course, the limitation of AL methods
is the training time: Fig. 1[D] demonstrates this trend in the
cumulative training times. The resultant cumulative training
time of 6 s in AL is almost three times more than the classifier
trained passively (2.34 s).

Another notable benefit of our proposed approach is its
generalizability. We test the active learning algorithm using
random forests, SVMs, and shallow neural networks. We
see in Fig. 2 that the precision-recall (PR) curves for all
three classifiers with 1000 active samples (continuous lines)
exhibit significantly higher AUCs (area under the curves) in
comparison with their passive counterparts (dotted lines) in
spite of 10× more samples for training.

We also compare the performance of different AL al-
gorithms: marginal SVM [48], uncertainty sampling, batch-
mode active learning using BatchRank and BatchRand al-
gorithms [23], and the proposed method. Points of com-
parison and the performances of these three classifiers are
reported in Table I. Myopic algorithms (that believe only
points near the decision boundary are informative) such as
marginal SVM and uncertainty sampling are outperformed by
algorithms that explicitly minimize redundancy. Thus, non-
myopic algorithms such as BatchRank, BatchRand, and our
proposed approach, produce large areas under their precision-
recall curves. The precision-recall characteristics are computed
based on a uniform 300×300 grid within [−0.75, 0.75]2 to
test classification performance near the true decision boundary.
Both the BatchRank and BatchRand algorithms rely on convex
relaxations of an NP-hard integer quadratic programming
problem. For example, the BatchRand algorithm exploits a
semidefinite programming (SDP) relaxation: the solution of
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Fig. 1. [A] Initial random samples (infeasible: dots; feasible: triangles). [B] Set estimation (green continuous line) using active learning (black dotted line),
passive learning (red dashed line), and analytical control-theoretic methods (blue continuous ellipse). [C] Imbalance ratio (ν) over iterations. [D] Training
time and cumulative training time in seconds.

TABLE I
COMPARISON OF AL ALGORITHMS

Algorithm AUC CPU Time [s] Optimization Method Solution Guarantees Complexity
Marginal SVM 0.772 <1 n/a n/a O(|S| ln |S|)
Uncertainty Sampling 0.924 <1 n/a n/a O(|S| ln |S|)
BatchRank 0.955 3.85 integer QP (LP relaxation) not on true objective function O(|S|2)
BatchRand 0.953 >200 integer QP (SDP relaxation) not on true objective function O(|S|3)
Proposed 0.957 5.91 submodular max. (greedy) near-optimal O(|S|B2)

the SDP culminates in a spike in training times from 6 s for our
method to over 200 s. BatchRank entails a linear programming
relaxation whose solution is equivalent to a greedy selection
algorithm; however, since the problem solved in BatchRank
is a supermodular maximization, there are no guarantees on
BatchRank’s solution quality, which we do via Theorem 1.
Comparing computational complexities of the algorithms, our
proposed approach significantly outperforms the other non-
myopic frameworks because |S| � B.

Remark 7. We ran an experiment with multiple batch sizes
(B ∈ {10, 20, 50, 100, 250, 500}), keeping the total number
of active samples fixed, and noted that the AUC range on
the respective PR curves are within [0.96, 0.98] with the 0.96
result being exhibited by the largest batch size of 500. This is
expected, because there are only two active learning iterations
in this case, so the effectiveness of acquiring better information
is limited.

Remark 8. While it would be interesting to compare the
samples chosen by the active learning algorithm to the optimal
solution, computing an optimal solution would be possible
only for very small S and B since the underlying sample

selection problem is NP-hard.

B. Domain of attraction estimation of neural controllers

In this example, we determine the domain of attraction of
reinforcement learning control policies represented by neural
approximators. We consider policy iteration-based controllers
for the following nonlinear system studied in [49]:

ẋ1 = x1 + x2 − x1(x2
1 + x2

2)

ẋ2 = −x1 + x2 − x2(x2
1 + x2

2) + u.

Approximate dynamic programming is used to construct a
neural-network based control policy that stabilizes this system,
but a domain of attraction is not specified and the analytical
form of the controller (that is, the architecture and weights of
the neural net) is not available to us. The state-space under
consideration is given by X = [−1, 1]2 and the control policy
is restricted to |u| ≤ 0.5, although the control bound is
unknown to us. We assume that the closed-loop system with
the neural control policy is available for simulation.

We use 40 initial samples with labels obtained during
the ADP computations. A batch size of 20 is selected, and
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Fig. 2. Comparison of precision-recall (PR) curves for different classifiers:
random forests, support vector machines, and neural networks. The number of
active samples chosen in each case is 1000, with an initial set of 105 randomly
selected samples (PR curve: continuous lines), whereas passive learning is
performed with 104 samples (PR curve: dotted lines). AUC stands for area
under the PR curve.

Fig. 3. Domain of attraction of a system driven by a reinforcement learning-
based control policy.

Ns = 100 active samples are to be computed. The same
classifier as in the previous example is used, with a polynomial
kernel instead of a radial basis function kernel (determined
via hyperparameter optimization). The result of the simulation
is illustrated in Fig. 3. The red dots in the figure are initial
conditions from which the constrained reinforcement learner
could not stabilize the system, and the green dots are initial
conditions that are successfully stabilized. The estimate of the
reachable set is given by the ellipsoid induced by the low
degree polynomial kernel. Cost sensitive learning is used to
construct an inner approximation of the domain of attraction

(reachable set) of the constrained reinforcement learning-based
controller. Randomly selecting 1000 initial conditions within
the estimated region and forward simulating up to 200 s
verifies the correctness of the estimated domain of attraction
(these simulations are not shown).

C. Unknown non-polynomial system with large unlabeled set

We utilize this example to demonstrate the effectiveness of
the stochastic and distributed variants of the greedy submod-
ular maximization for large S. We test these methods on a
non-polynomial system studied in [13] for which standard
sum-of-squares optimization algorithms cannot be used to
derive reachable sets. The dynamics of the system under
consideration are given by

ẋ1 = x2 + x2
3

ẋ2 = x3 − x2
1 − x1 sin(x1) + u1

ẋ3 = −x1 − 2x2 − x3 + x3
2 + ln

∣∣∣∣∣
(

1 + x3

1− x3

)0.1
∣∣∣∣∣+ u2

with stabilizing controls

u1 = −0.34y1 − 0.76y2 + 0.99y2
1 + 0.16y1y2 − 0.80y2

2

u2 = 0.05y1 + 0.81y2 − 0.48y2
1 + 0.95y1y2 − 0.92y2

2

where y1 = x1 − x2, and y2 = x2 − x3. The state constraint
set is X = {x ∈ R3 : ‖x‖∞ ≤ 1}. We do not assume any
knowledge of this system structure and our labeling scheme
involves an oracle of the form (6) for the T -step reachable set
RT (Ω), where T = 100 s and Ω = {x ∈ X : ‖x‖2 ≤ 0.001}.

We employ the proposed algorithm with a probabilistic
SVM with Platt scaling as in Example 1 with 500 initial la-
beled samples, and choose 2000 active samples with B = 100
samples per batch from a set of |S| = 2 × 104 unlabeled
samples. The final inner approximation is constructed with
a three-layer neural network with two hidden layers, and a
sub-level set is chosen (by altering the bias weight of the
output activation layer) that classifies no unreachable point as
reachable. The training time of the neural network was 9.39 s
using scikit-learn in Python 2.7 using limited memory
BFGS (L-BFGS) and rectified linear (ReLU) units. The result
of AL is illustrated in Fig. 4[A], where the ‘true’ reachable
set generated by simulating over the 105 samples drawn from
a Halton sequence. The true reachable set is depicted with the
gray outer shading and the inner approximation is shown using
the red inner volume. The convex hull of the true reachable
set and the inner approximation have volumes 1.55 and 1.38
cubic units, respectively, estimated by MATLAB’s boundary
function. As expected, the class-imbalance ratio of the dataset
improves from 0.34 to 0.47 in 20 iterations of active learning.
We also investigate the effectiveness of the stochastic and
distributed variants of the greedy algorithm on this example. A
comparison of the execution times are provided in Fig. 4[B].
For the distributed greedy method, we assume use 32 clusters,
which results in each cluster having an unlabeled set of size
312. For the stochastic greedy method, we select ε = 0.01
so that q = 461 samples are required with a batch-size of
B = 100. All the algorithms produce classifiers that have an
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Fig. 4. [A] Inner approx. (red) of reachable set (gray) with 2000 active samples. [B] Comparison of execution times of the greedy algorithm with |S| = 2×104.
The red lines within each box denote the median execution times, the shaded boxes denote the interquartile ranges, and the whiskers denote (5, 95) percentiles,
all measured over 100 runs.

AUC (based on a P-R curve) that is greater than 0.999. As
expected, the greedy algorithm takes over an order magnitude
more time to execute than the faster variants without a
significant decrease in learning quality.

D. State-dependent solver selection with strong and weak
oracles

We illustrate our disagreement-based active learning frame-
work on the following linear system

ẋ =

[
1 1
0 1

]
x+

[
0.5
1

]
u,

which is a time-discretized version of a double integrator.
Both oracles are assumed to be terminal-set constrained MPCs
wherein the underlying constrained optimization problem with
T = 20 and q(x, u) = 0.5x>x+u2 in (5a) is solved using the
ADMM algorithm. The weak oracle OW is an ADMM solver
that terminates with a maximum number of 103 iterations, and
the strong oracle OS is an active set solver (see Example 5).

We follow the steps in Algorithm 4. We begin with a
labeled set L0,D containing 200 samples, distributed quasi-
randomly on X = {x : ‖x‖∞ ≤ 5}. At each labeled
sample, we evaluate both OS and OW and label according to
disagreement (OS,W (x) = −1) or agreement (OS,W = +1).
We use active learning to select Ns,D = 1000 samples from
104 unlabeled with BD = 100 and and generate outer/inner
approximations of XD via cost-sensitive learning where the
penalty for false positives/negatives are 10× higher than false
negatives/positives. The results of the disagreement learning
phase is shown in Fig. 5[A] using an SVM classifier. Note
that there is no red sample inside D− and no red sample

outside D+, which demonstrates that the inner and outer
approximations are satisfactory (based on the data available).

At the end of this phase, we have Ns = 1500 labeled
samples in the set L0. We select Ns = 500 more active
samples, with B = 50, and the oracle defined in (19). During
the learning phase, the strong oracle was called 20% of the
time, that is, of 500 samples, only 100 samples were labeled
using the strong oracle, as expected. The effectiveness of the
primary learner is shown in Fig. 5[B]; the learned feasible
region is provided by the green line, with the true feasible
region in gray shading.

VII. CONCLUSIONS

In this paper, we developed an active learning framework
for estimating control-relevant sets such as reachable sets in
a data-driven manner for systems that cannot be represented
by closed-form analytical expressions like ODEs, DAEs, etc.
Therefore, we rely on sampling and simulations to direct
the set estimation problem. We pose the sample selection
paradigm as a submodular maximization problem and leverage
a greedy algorithm to compute solutions with guarantees. We
show that for large unlabeled sets of data, one can approximate
the solution of the active learning problem using randomiza-
tion or distributed methods without losing significant learning
performance. The potential of the approach in estimating
small volumes within admissible state spaces in a data-driven
manner and the critical advantage of model-free set estimation
is demonstrated empirically. We also illustrate how one could
use this method to select solvers for non-convex optimization
problems by partitioning the feasible domain of the solvers.
A theoretical open problem is to generate label complexity
bounds using this active learning framework; of course, this
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Fig. 5. [A] Illustration of D̂+ and D̂− along with samples obtained from L0,D and disagreement learning. Since the region D̂+ \ D̂− is small in volume,
the main learner is expected to use fewer strong oracle queries. [B] Estimate of the feasible region of the controller (gray) and its estimate (black boundary).

will require more structure on the hypothesis class and the
complexity of the classification problem.
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[16] P. Polcz, T. Péni, and G. Szederkényi, “Computational method for
estimating the domain of attraction of discrete-time uncertain rational
systems,” European Journal of Control, vol. 49, pp. 68–83, sep 2019.

[17] A. Chakrabarty, V. Dinh, M. J. Corless, A. E. Rundell, S. H. Żak, and
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