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Abstract
Our previous studies introduced a mid-grained intermediate-level channel measurement —
spatial beam signalto-noise ratios (SNRs) that are inherently available and defined in the
60-GHz IEEE 802.11ad/ay standards — for the fingerprinting-based indoor localization. In
this paper, we take one step further to use the mid-grained channel measurement for human
monitoring applications including human pose and seat occupancy classifications. The effec-
tiveness of the mid-grained channel measurement is validated by an in-house experimental
dataset that includes 5 separate data collection sessions using classical classification methods
and modern deep neural networks. Our preliminary result shows that mmWave beam SNRs
are capable of delivering high classification accuracy above 90%.
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Abstract—Our previous studies introduced a mid-grained
intermediate-level channel measurement — spatial beam signal-
to-noise ratios (SNRs) that are inherently available and de-
fined in the 60-GHz IEEE 802.11ad/ay standards — for the
fingerprinting-based indoor localization. In this paper, we take
one step further to use the mid-grained channel measurement for
human monitoring applications including human pose and seat
occupancy classifications. The effectiveness of the mid-grained
channel measurement is validated by an in-house experimental
dataset that includes 5 separate data collection sessions using clas-
sical classification methods and modern deep neural networks.
Our preliminary result shows that mmWave beam SNRs are
capable of delivering high classification accuracy above 90%.

Index Terms—Millimeter-wave, WiFi sensing, beam training,
beam SNR, CSI, human monitoring, deep learning.

I. INTRODUCTION

Radio-frequency (RF)-based human activity monitoring has
gained attention over the past decade due to the decreas-
ing cost and less privacy concerns (compared with camera-
based approaches). WiFi-band (e.g., sub 6-GHz) and mmWave
frequency-modulated continuous-wave (FMCW) signals from
dedicated sensors have been used to track people behind
the wall, determine personal identity, estimate poses/gestures,
and track two-/three-dimensional (2D/3D) skeleton move-
ments [1]–[6]. Almost all these studies built on their machine
learning algorithms via direct measurements such as the angle-
range-Doppler spectrum or its subsequent 2D/3D detection
points at the output of these RF sensors to learn classification-
related or regression-related features.

On the other hand, commercial WiFi signals at low fre-
quency (2.4 and 5 GHz) bands are often indirect measurements
of human activity using either coarse-grained received signal
strength indicator (RSSI) or fine-grained channel state infor-
mation (CSI). The conventional RSSI measurement suffers
from the measurement instability and coarse granularity of the
channel information, leading to limited accuracy for sensing
applications. The CSI measurements for the IEEE 802.11n/ac
standards are more fine-grained as defined as a group of
complex amplitudes over sub-carriers. Instead of learning fea-
tures from the direct measurement as in the case of dedicated
FMCW sensors, the CSI measurements are trained via super-
vised learning or cross-modal deep learning for human sensing
tasks such as device-free localization, activity recognition,
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fall detection, personal identification, emotion sensing, and
skeleton tracking [7]–[18]. Residual neural networks (ResNet)
were applied in [16] to simultaneously perform gesture recog-
nition and localization, and also predict the skeleton as a
regression problem with the help of generative adversarial
networks (GAN). More recently, the cross-modal learning
approach showed the potential of commercial WiFi signals
for human activity sensing applications. For example, [15]
used annotations from camera images to train fine-grained CSI
measurements over 30 subcarriers and 5 frames from three
pairs of transmitting and receiving antennas. [19] explored the
3D velocity profile and distinguished posture-specific features
from the static objects via recurrent neural networks (RNN).

Nevertheless, explicit utilization of channel measurements
from mmWave WiFi devices for human activity monitoring
was not yet reported in the literature, except our previous work
on indoor localization [20]–[22]. Particularly, we introduced a
mid-grained channel measurement — mmWave spatial beam
signal-to-noise ratios (SNRs) that are inherently available and
defined in the 60-GHz IEEE 802.11ad/ay standards — for this
purpose. This mid-grained channel measurement provides the
mmWave channel quality indicator as a function of probing
beams. Compared with the fine-grained channel measurements
at sub 6-GHz (e.g., CSI over sub-carriers), the beam SNR
can be considered as a type of direct spatial-domain channel
measurement which may provide more informative angle
features; e.g., angle of arrival (AoA) and angle of departure
(AoD). Moreover, the beam SNR measurement is easier to
access with zero overhead as it is required to be reported
for mmWave beam training under the protocol of IEEE
802.11ad/ay standards. In this paper, we take one step further
to use the mid-grained channel measurement from the indoor
localization application towards human sensing applications,
particularly human pose and seat occupancy classification. The
effectiveness of the channel measurement is validated by an
in-house experimental dataset that includes 5 separate data
collection sessions, using conventional classification methods
and the deep neural network (DNN).

II. HUMAN ACTIVITY MONITORING USING MID-GRAINED
CHANNEL MEASUREMENT

A. Beam SNR in IEEE 802.11ad/ay Standards

At mmWave frequency bands, WiFi signals in the
802.11ad/ay standards experience significantly larger path



Fig. 1: Illustration of beam SNR measurements as a function
of transmitting and receiving beampatterns.

Fig. 2: The mid-grained beam SNR measurements at 60-GHz
(left) and fine-grained CSI measurements at 5-GHz when a
person walks through the monitoring area.

losses compared with those at sub 6-GHz frequency bands. As
a result, beam training using a series of pre-defined directional
beampatterns is required to identify propagation paths and
establish the wireless link. For each directional beam, a beam
SNR is collected and reported as a measure of spatial channel
quality. For a given pair of transmitting and receiving beam
patterns, the beam SNR can be defined as [22]

hm =
1

σ2

I∑
i=1

γm(θi)ζm(ψi)Pi, (1)

where m is the index of beampattern, I is the total number
of paths, θi and ψi are the transmitting and receiving azimuth
angles for the ith path, respectively. Here, Pi is the signal
power at the ith path, γm(θi) and ζm(ψi) are the transmitting
and receiving beampattern gains at the ith path for the mth
beampattern, respectively, and σ2 is the noise variance. In
commercial-off-the-shelf (COTS) 802.11ad devices, the beam
SNR is usually reported in dB with a certain quantization level.

To first validate the use of this mid-grained channel mea-
surement for human activity monitoring, we provide a quali-
tative visualization of the mmWave beam SNRs in Fig. 2. The
collected beam SNR measurements correspond to a simple
experiment with a pair of COTS 802.11ad devices when
one subject keeps still at the beginning for approximately 5
seconds, then moves one step forward in a few seconds, and
stops at the end for another 5 seconds. As clearly shown
in the left plot of Fig. 2, the beam SNRs over all beam
sectors experienced a sudden drop, possibly due to the human
blockage of mmWave WiFi propagation paths, while they are
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Fig. 3: Experimental setup for Task I of human pose recogni-
tion and Task II of seat occupancy sensing.

relatively stable at the beginning and end of the data collection
period. This example suggests that, like the fine-grained CSI
measurements at 5-GHz (see the right plot of Fig. 2), the
mid-grained beam SNR measurement may be qualified as
fingerprints for human activity sensing.

B. Human Activity Classification by mmWave Beam SNR

In the following, we utilize the beam SNRs to construct the
offline training dataset for two scenarios: Task I of human pose
recognition and Task II of seat occupancy sensing. We then
apply conventional classification and deep learning methods
to human activity recognition.

Fig. 3 shows the experimental setup for both tasks using
a pair of COTS 60-GHz 802.11ad devices. For latter perfor-
mance comparison, we also place a pair of 802.11ac routers
communicating over 5-GHz links on the assigned channel. For
Task I (human pose recognition), a human subject makes 8
distinct poses including gestures like ‘stand’, ‘sit’, and ‘lift a
hand’ as shown in Fig. 4(a). The transmitter (TX) and receiver
(RX) routers are placed on different stands with a height of
1.20 meters at a distance of approximately 2 meters. We repeat
the data collection at 5 separate sessions such that we can train
our classification model with one session and test on the other
separate sessions.

For Task II (seat occupancy sensing), considering the de-
mand of social distancing monitoring in the post-COVID
society, we are interested in multiple-seats, multiple-people
sensing. The task is to figure out which seats are occupied. In
this scenario, at most 2 subjects may be present in one of 4
chairs around the table in the middle. Particularly, we design 8
different combinations about how the 2 people sit at 4 chairs,
as illustrated in Fig. 4(b). In this task, the TX and RX routers
were 4 meters apart, and the distance between each occupancy
varies from about 0.50 to 2.0 meters. The data collection is
repeated for 5 sessions as well.

C. Offline Training Dataset

To construct the offline training dataset, we stack all SNR
measurements from all beam sectors as a training sample:

h = [h1, h2, . . . , hM ]T , (2)

where M is the number of beampatterns used for beam
training and [·]T denotes the transpose. In the case of multiple
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Fig. 4: Photo snapshots of (a) Task I: human pose recognition with 8 poses and (b) Task II: seat occupancy sensing for 8
patterns with 4 seats and 2 people.

access points (APs), we combine beam SNR measurements
from all APs to form the training sample:

h̃ = [hT
1 ,h

T
2 , . . . ,h

T
P ]

T ∈ RMP×1, (3)

where P is the number of APs. In our experiment, we use
one AP with 36 beam SNRs which gives rise to M = 36 and
P = 1.

For a given activity, R fingerprinting snapshots,
h̃1(l), . . . , h̃R(l), are collected to construct the offline
training dataset, where l is the label index for the activity.
By collecting many realizations of beam SNR measurements
over L activities, we have L sets of MP × R beam SNR
measurements for the offline training dataset.

D. Online Human Activity Recognition

When new beam SNR measurements are available, our task
is to identify the human activity among the trained activities.
To this end, we apply both the conventional classification and
deep learning methods for the human activity recognition.

1) Conventional Classification Methods: We compare sev-
eral classic machine learning methods including 1) the k-
nearest neighbor (kNN) that calculates the distance between
the new measurement and all training samples to pick the most
common label from the k nearest neighbors, 2) the support-
vector machine (SVM), 3) linear discriminant analysis (LDA),
4) quadratic discriminant analysis (QDA), and 5) decision
tree (DT) that predicts the label using a tree-like structure.
These methods will serve as benchmarks for the following
deep learning-based classification method.

2) Deep Learning Methods: We use a feed-forward DNN
with 4 fully-connected hidden layers, each of width Nw. The
input vector of beam SNRs h̃ is mapped to the first hidden
layer y0, via the transformation given by y0 = φ(Winputh̃ +
binput), where the trainable parameters are the weight matrix
Winput ∈ RNw×MP and bias vector binput ∈ RNw×1, and
φ denotes the element-wise application of the rectified linear
unit (ReLU) as the non-linear activation function. Then, y0 is
similarly processed to create a further Nd = 3 hidden layers,
via

yl = φ(Wlyl−1 + bl), l = 1, . . . , Nd, (4)
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Fig. 5: Flow chart of collecting data and feeding into neural
network for prediction.

where the weight matrices Wl ∈ RNw×Nw and bias vectors
bl ∈ RNw×1. Finally, an L-dimensional output score vector is
generated via u = WoutputyNd

+boutput. For both human pose
and seat occupancy recognition tasks, we have L = 8.

For each training input, the corresponding output of the
last layer u is first normalized with the softmax operation
to produce the likelihood vector s = [s1, s2, . . . , sL], as given
by,

sn = exp(un)
/ L∑
i=1

exp(ui), n ∈ {1, 2, . . . , L}, (5)

Then, the cross-entropy loss function is computed with respect
to the corresponding training label c ∈ {1, . . . , L} as

`cross-entropy = − log(sc). (6)

The average probability of successful classification (or accu-
racy) is calculated by the ratio between the number of correct
estimations and total samples, i.e., Pr(argmaxi si = c) where
Pr(·) denotes the sample probability that the argument event
is true.

III. PERFORMANCE EVALUATION

In this section, we will present the results for pose and oc-
cupancy classification tasks using the mid-grained beam SNR
measurements. For comparison, we include the classification
results using the fine-grained CSI measurements at 5-GHz.

A. Testbed and Data Collection

Fig. 5 shows the flow chart of collecting data and feeding
into neural networks for prediction. The testbed consists of a



pair of 802.11ad routers (Talon AD 7200), a pair of 802.11ac
routers (ASUS RT-AC86U), and a Ubuntu desktop as the
host. Particularly, the Talon AD7200 routers use a Qualcomm
QCA9500 60-GHz chipset that comes with a phased antenna
array of 32 antenna elements and fully implements the IEEE
802.11ad standard. To extract the beam SNR measurements
from Talon AD7200 routers, we used the nexmon firmware
patching framework of [23] and followed the work in [24]–
[26]. We applied medium access control (MAC) address or
specific internet protocol (IP) filters to capture packages from
expected transmitters.

The participants will conduct 5 sessions at different times
with 8 poses for each session. The first session lasts 180
seconds for each pose with minor movements like leaning
the body or moving the fingers. While for all other four
sessions, each case lasts 18 seconds and participants try to
remain fixed for each pose. As there is a 2 to 10 minutes
delay between each session, we move out the data from the
routers and check the data validity. We train the first session,
while validating and testing on the other sessions. The final
results are averaged over all testing sessions. Eventually, we
obtained approximately 16k training samples and 4k testing
samples.

B. Channel State Information (CSI)

For performance comparison, we also extract the fine-
grained CSI measurements from the 802.11ac-compliant
ASUS RT-AC86U routers by following the work in [27] with
the nexmon firmware. At the sub 6-GHz band, the CSI can
propagate through the wall and register the activities that are
beyond the scene-of-interest. We list the comparison between
beam SNR and CSI measurements in Table. I. For a fair
comparison, we downsample the CSI by finding the nearest
CSI measurement set, which is a batch of CSI with complete

TABLE I: Comparison between beam SNR and CSI

Type beam SNR CSI
frequency band (GHz) 60 2.4 / 5

bandwidth (Mbps) 1600 80
package rate (/second) 10 500

data dimension 36 16× 234

TABLE II: Classification accuracy (in %) results of different
methods and WiFi signals

Task I Task II
Methods Beam SNR CSI Beam SNR CSI

kNN 81.3 70.3 83.0 76.2
SVM 79.8 69.5 88.3 78.1
LDA 76.2 61.2 84.9 75.2
QDA 76.4 68.6 83.4 78.5
DT 56.0 55.2 46.4 36.2

DNN 88.8 79.7 91.2 80.9
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Fig. 6: Loss function trajectory on the poses classification task
using the mid-grained beam SNRs.

spatial indexing from 1 to 16, to the beam SNR time slot.
Therefore, both CSI and beam SNR datasets have the same
number of training samples.

For the CSI measurements, we apply standard preprocessing
steps such as removing null subcarriers [23], shifting the sub-
carrier amplitudes, and applying multi-variable regression [28]
to smooth out the outlier.

C. Classification Performance with Different Methods

We applied classic classification methods, i.e., kNN with
k = 3, SVM with a linear kernel, LDA, QDA and DT, to
both the mid-grained mmWave beam SNRs and fine-grained
CSI measurements. The deep learning method, we choose a
validation rate of 0.20 out of the training dataset, set the early-
stop with a patience of 20, and Adam as the optimizer. With
4 fully-connected hidden layers, we set the layer width to 64
for the beam SNRs and 1024 for the CSI measurement due
to its large input dimension. Fig. 6 shows the training and
validation losses over epochs which gradually converge with
an early-stopping.

The result of pose recognition is summarized in Tab. II and
Fig. 7 in terms of the confusion matrix C:

C(i, j) =
1

Tj

Tj∑
t=1

1[l̂(h̃t(j)) = i], (7)

where i and j are indices, respectively, for the estimated and
true labels (i.e., poses and occupancy patterns), and Tj is
the number of samples in the test dataset for the index j. In
addition, l̂(h̃t(j)) is the pose/occupancy estimate by using the
tth sample batch from the test data collected at jth label. It is
seen that the use of the mid-grained beam SNRs offers better
performance than the fine-grained CSI measurements in both
tasks. The deep learning method gives the best performance
among all considered classification methods.

D. Impact of Routers Location and Human Size

It is noted that the beam SNR measurements may be
sensitive to the human body size and subject to geometry
factors such as the height and orientation of the mmWave



Fig. 7: Confusion matrices of Task I of human pose recognition
with beam SNR (top-left) and CSI (bottom-left) and Task
2 of seat occupancy classification with beam SNR (top-
right) and CSI (bottom-right). Beam SNR shows more robust
performance over different sessions.

WiFi router, and the distance between the transmitter and
receiver. Compared with the 802.11ac setup, low platform
height and large distance between the transmitter and receiver
can degrade the classification performance with the mmWave
beam SNRs. For example, Fig. 8 shows degraded pose recog-
nition performance for a subject with a smaller body size
than the one in Fig. 7. Nevertheless, one can still distinguish
different groups of activities, e.g., between standing (i.e.,
the categories{1, 2, · · · , 5}) and sitting (i.e., the categories
{6, 7, 8}) or between lifting one hand (the categories {2, 3})
and lifting both hands (the categories {4, 5}).

IV. CONCLUSION AND FUTURE WORK

Our preliminary study shows the potential of using the
mid-grained channel measurement, i.e., mmWave beam SNRs,
for human activity monitoring, particularly, pose recognition
and seat occupancy sensing using commercial-off-the-shelf
mmWave WiFi routers. With the same amount of data from
multiple separate sessions, the classification performance with
the beam SNRs is better than the fine-grained CSI measure-
ment. We also discuss possible limiting factors, e.g., human
size and router location, to the classification performance.
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