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Abstract
In this paper we propose a new framework for distributed source coding of structured sources,
such as sparse signals. Our framework capitalizes on recent advances in the theory of linear
inverse problems and signal representations using incoherent projections. Our approach ac-
quires and quantizes incoherent linear measurements of the signal, which are represented as
separate bitplanes. Each bitplane is coded using a distributed source code of the appropriate
rate, and transmitted. The decoder, starts from the least significant biplane and, using a
prediction of the signal as side information, iteratively recovers each bitplane based on the
source prediction and the signal, assuming all the previous bitplanes of lower significance have
already been recovered. We provide theoretical results guiding the rate selection, relying only
on the least squares prediction error of the source. This is in contrast to existing approaches
which rely on difficult-to-estimate information-theoretic metrics to set the rate. We validate
our approach using simulations on remote-sensing multispectral images, comparing them with
existing approaches of similar complexity.
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Distributed Coding of
Quantized Random Projections

Maxim Goukhshtein, Petros T. Boufounos, Toshiaki Koike-Akino, and Stark C. Draper

Abstract—In this paper we propose a new framework for
distributed source coding of structured sources, such as sparse
signals. Our framework capitalizes on recent advances in the
theory of linear inverse problems and signal representations using
incoherent projections. Our approach acquires and quantizes
incoherent linear measurements of the signal, which are rep-
resented as separate bitplanes. Each bitplane is coded using a
distributed source code of the appropriate rate, and transmitted.
The decoder, starts from the least significant biplane and, using a
prediction of the signal as side information, iteratively recovers
each bitplane based on the source prediction and the signal,
assuming all the previous bitplanes of lower significance have
already been recovered. We provide theoretical results guiding
the rate selection, relying only on the least squares prediction
error of the source. This is in contrast to existing approaches
which rely on difficult-to-estimate information-theoretic metrics
to set the rate. We validate our approach using simulations
on remote-sensing multispectral images, comparing them with
existing approaches of similar complexity.

Index Terms—Distributed source coding, lossy compression,
quantization, sparsity, compressed sensing, syndrome decoding,
low complexity encoder, side information.

I. INTRODUCTION

The increasing availability of data, due to the growth of
sensing applications, has made compression indispensable in
modern signal processing systems. Most modern approaches,
such as JPEG, JPEG-2000 and HEVC, rely on some form
of transform coding to exploit the signal structure, often
after signal prediction is preformed at the encoder. These
approaches typically exhibit higher computational complexity
at the encoder, opting for a simpler decoder. However, in some
applications, such as remote sensing, it is necessary to have
lightweight encoders, and shift the complexity to the decoder.

One solution to this problem has been Distributed Source
Coding (DSC), first introduced in [1] for lossless compression
of discrete sources, and extended in [2] for lossy compression
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of continuous sources. Several practical approaches exploit
DSC in the context of image [3], [4] and video data [5], [6], as
well as remote sensing data [7], [8], among others. A common
drawback of these approaches is that the encoder often has to
be designed and tuned specifically for the application, in order
to be able to exploit the structure of the source.

In addition to the design difficulties, one of the key issues
in deploying practical DSC systems is the rate control at the
encoder. In particular, DSC relies on side information available
at the decoder to assist decoding of the compressed source.
The choice of an appropriate compression rate, determined at
the encoder as a function of the quality of side information
available at the decoder, is critical for the success of these
methods; at high compression rates, the decoder might not
have sufficient side information to decode the source at all.

To control the rate, DSC literature typically relies on
information-theoretic metrics, such as mutual information. Un-
fortunately, for many real-world sources, these can be difficult
to quantify, especially using a lightweight encoder. Thus, a
number of practical systems either reduce their compression
rate to guarantee that the signal can be decoded, or rely on
feedback to inform the encoder that the information received
is sufficient for decoding. Nevertheless, both options have
drawbacks: the former reduces compression efficiency and the
later requires an active bidirectional connection between the
encoder and the decoder. Rate-control methods using easier-
to-quantify metrics, such as the mean squared prediction error,
would make rate estimation easier at the encoder.

This paper introduces a new approach to lossy distributed
compression, assuming a prediction of the source signal is
available at the decoder. Our approach capitalizes on recent
advances in linear inverse problems, to apply DSC to quantized
linear measurements. Specifically, we rely on efficiently ob-
taining quantized linear measurements of the source at the en-
coder, separating measurements to bitplanes and coding each
bitplane using syndrome-based DSC. The decoder exploits the
prediction and the syndromes to iteratively predict bitplanes
and decode the quantized measurements. Once the quantized
measurements are recovered, the decoder solves an inverse
problem to recover the signal, taking its structure into account.

Our approach has three distinct advantages:
1) Universality: in contrast to most approaches, the encoder

design requires no knowledge of the source structure.
Only the decoder uses the source structure, during
reconstruction and, possibly, in forming the prediction.

2) Simple Rate Control: the rate required to transmit syn-
dromes can be explicitly computed based on an upper
bound of the `2 error of the decoder’s signal prediction.
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This is much easier to estimate, and more readily avail-
able at the encoder, than information-theoretic measures
used in existing DSC-based approaches.

3) Low Encoding Complexity: even compared to DSC-
based schemes, the proposed encoding method is very
lightweight and straightforward to implement. Com-
plexity is dominated by a matrix-vector multiplication,
which can exploit efficient fast transforms such as the
Hadamard transform.

To demonstrate the applicability of our approach, we pro-
vide an example on multispectral satellite image compression.
This work significantly improves on [9] by introducing a DSC
framework to encode the signal. A preliminary version of
this work, focused on the multispectral image compression
application, appeared in [10]. In this paper we significantly
expand on [10] by (a) introducing new tools that improve
the decoding of DSC syndromes and incorporate likelihood
estimates in the belief propagation, and (b) introducing a
successive decoding approach, in which the decoding of each
spectral band is exploited to improve the side information and
the prediction at the decoder for decoding the next band.

The next section establishes notation and provides a brief
background on distributed source coding and linear inverse
problems. Section III presents the core framework of our
approach. Section IV discusses practical aspects for efficient
implementation. Section V discusses the application to mul-
tispectral image compression and presents our experimental
results. Section VI provides a brief discussion and concludes.

II. BACKGROUND

A. Distributed Source Coding

Distributed source coding, introduced for lossless compres-
sion by Slepian and Wolf [1], allows compression of a source
by an encoder, given side information which is only available
at the decoder, to be made as efficient as if the side information
was also available at the encoder. More generally, the Slepian-
Wolf theorem states that lossless compression, with separate
encoders and a joint decoder, of two sources U and V drawn
from p(u, v), can be achieved with any rate satisfying

RU ≥ H(U |V ), RV ≥ H(V |U), RU +RV ≥ H(U, V ),

where H(·|·) and H(·, ·) denote conditional and joint en-
tropies, respectively. An extension of the results to lossy
compression was later developed by Wyner and Ziv [2]. A
comprehensive treatment of DSC can be found in [11, Ch. 15]
and [12, Ch. 10-12].

The connection between distributed source coding and
channel coding also has roots in the same period [13], [14].
Nonetheless, it was only about 30 years later that a practical
approach to perform DSC using syndrome decoding of channel
codes was developed by Pradhan and Ramchandran [15].

In this approach, the side information at the receiver gener-
ates a prediction of the source. Since the prediction contains
errors, the encoder needs to transmit sufficient information to
correct these errors. The prediction is treated as the output of
a noisy channel, introducing the errors. Thus, the transmitter
can use a channel code to provide redundancy and correct

the errors introduced by the channel/prediction. The channel
code is designed to use a parity check matrix that computes
a syndrome comprising of parity check bits that provide
sufficient redundancy to correct the prediction errors. The rate
of the syndrome, i.e., the number of bits required to correct
the errors, depends on the quality of the prediction, which
characterizes the capacity of the implied channel.

In particular, assuming a binary source u ∈ Fn2 and its
prediction v ∈ Fn2 , the prediction can be expressed as an
unknown additive error e ∈ Fn2 to the source, v = u+ e. As-
suming the coefficients of e are distributed as i.i.d Bernoulli-
p random variables, where p is known both at the encoder
and decoder, the decoder needs sufficient error correcting
information to infer e and correct the prediction v to u. In a
channel coding context, v can be considered as the output of
a binary symmetric channel (BSC) with crossover probability
p (BSC-(p)) and input u.

To correct the channel effect, and recover u from v, we can
use a parity-check matrix H ∈ F(n−k)×n

2 for a code with rate
R and consider su = Hu and sv = Hv, the syndromes of u
and u, respectively. The sum of those syndromes, equal to

su + sv = H(u + v) = H(u + u + e) = He = se, (1)

is the syndrome of the error pattern e. The decoder can use the
syndrome se to determine the most likely error pattern ê and
estimate the original source u as û = v+ ê. The compression
is attained by representing u ∈ Fn2 via its syndrome su ∈
Fn−k2 . The compression ratio ρ, defined as

ρ =
# bits to represent u
# bits to represent su

=
n

n− k =
1

1− k
n

=
1

1−R,
(2)

is maximized when R is as large as possible while still allow-
ing for decoding. Assuming the elements of u are distributed
uniformly, the code can be designed with rate up to the channel
capacity of the BSC-(p), i.e., Rmax = CBSC−(p) = 1 −
HB(p) [11], where HB(p) = −p log2(p)−(1−p) log2(1−p) is
the binary entropy function. In that case, HB(p) = H(V |U) =
H(U |V ) and the highest possible compression ratio is

ρmax = 1/HB(p) = 1/H(U |V ). (3)

This implies that u can be encoded at a rate RU = 1
ρmax

=
H(U |V ), achieving the Slepian-Wolf bound.

B. Compressed Sensing and Linear Inverse Problems
The introduction of Compressive Sensing [16] invigorated

interest in sparse signal models, sampling, and linear inverse
problems. A typical linear inverse problem aims to recover
an unknown signal x ∈ Rn from measurements y ∈ Rm,
acquired using an, often underdetermined, linear measurement
matrix A ∈ Rm×n. Measurements might also be distorted and
noisy. Most relevant to this work are quantized formulations,
possibly with additive dither w ∈ Rm, i.e., of the form

q = Q(y) = Q(Ax + w) (4)

where Q(·) is a scalar quantizer. Signal recovery is typically
formulated as a convex optimization problem,

x̂ = arg min
x
D (q,Ax + w) + λR(x), (5)
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where D(·, ·) is a data fidelity penalty, matching the measure-
ments of the reconstructed signal with the acquired quantized
measurements, and R(·) is a regularization function, promot-
ing a signal model, such as sparsity. Adherence to data fidelity
is traded off with the enforcement of the signal model through
the choice of λ. Reconstruction using (5) can be efficiently
solved using, for example, proximal gradient methods [17].

The role of the regularizer is to promote solutions that
exhibit properties consistent with the signal model of x, e.g.,
sparsity or low total variation. Often the regularizer may
exploit additional prior information, such as the existence of
a signal that shares a similar sparsity pattern as x, which can
be incorporated by weighting the regularization function [18].

The role of the data fidelity term D(·, ·) is to promote
adherence to the measurements. In particular for quantized
measurements, several data fidelity penalties have been pro-
posed, mostly trying to enforce consistent reconstruction, i.e.,
the measurements of the original and reconstructed signals
quantize to the same values [19]–[21]. Alternatively, a simple
`22 penalty, i.e., D (q,Ax + w) = ‖q−Ax−w‖22, may
work as well or better, especially for fine quantization. While
optimal measurement quantizers can be designed with a variety
of criteria [22], [23]

C. Source Coding and Compressive Sensing
The intersection of quantization and compressive sensing

as a source coding approach has been studied extensively in
the literature [20]–[28], including the development of optimal
quantizer designs [22], [23] and reconstruction methods [26]–
[28]. A survey of results, both theoretical and practical, can
be found in [21]. It is by now well established that scalar
quantization is suboptimal in terms of rate-distortion trade-off,
compared to transform coding [24].

In particular, compressed sensing methods use a linear
measurement process to acquire signals that lie in unions
of lower-dimensional subspaces. Consequently, the resulting
measurements are redundant. This redundancy can be ex-
ploited, e.g., to provide robustness to erasures [29]. However,
it also diminishes the rate-distortion performance of quan-
tized compressed sensing, even when using optimal quantizer
designs. The shortcoming is inherent in the measurement
process, not in the scalar nature of the quantizer. Thus, it
is relatively straightforward to extend the results in [24] to
demonstrate that more general union of subspace models, such
as the ones introduced in [30], would also exhibit suboptimal
rate-distortion trade-offs. So would common approaches to
vector quantization, such as lattice quantizers [31].

Ideas from distributed source coding have also made their
way in the compressive sensing literature. In particular, [32],
[33] introduced the notion of distributed Compressive Sensing,
in which multiple sensors are used to acquire different signals
that exhibit some similarity in their structure. By combining
all the measurements and jointly reconstructing the signals it
is possible to exploit the common structure and reduce the
required number of measurements per signal, compared to
the measurements required if each signal was independently
acquired and reconstructed, agnostic of the others. The re-
sulting bounds demonstrate behavior analogous to classical

DSC behavior. However, the framework is continuous and
not immediately applicable as a source coding approach.
Direct quantization of distributed compressive measurements,
including optimal designs, have been proposed in a number
of contexts, e.g., [34]–[37]. Still, such schemes suffer from
the same limitations as conventional compressive sensing: the
measurements are redundant and direct measurement quanti-
zation is suboptimal in a rate-distortion sense.

In particular, after scalar quantization, the most significant
bits (MSBs) of quantized compressive measurements contain
more redundant information than the least significant bits.
The redundancy is exaggerated if side information or a good
prediction of the signal already exists. This observation, first
made in [38], is developed and exploited in [9], [10], [39], [40]
to reduce the coding rate by eliminating the redundancy in the
MSBs. The framework we introduce in this paper significantly
improves on these results by theoretically characterizing the
redundancy of the MSBs in the presence of a prediction and
using distributed coding to eliminate it. We should note that,
while our approach significantly improves the rate-distortion
trade-off, we make no claims of rate-distortion optimality.

To improve the rate of distributed compressive measure-
ments, distributed source coding has also been proposed
in [41], with some theoretical analysis in [42]. This approach
requires very specific probabilistic source models, similar
to [32], to be able to perform reconstruction. In addition,
there is no analysis of how the syndrome rate should be
determined, effectively relying on feedback to the transmitter.
Similarly to [9], [10], [18], [32], [40] and our proposed
approach, [41] further exploits the side information to improve
the performance of the reconstruction algorithm. The option
of quantizing the source before measuring is also considered
and, as expected by the theory, performs worse. Another
approach is [43], which requires coarse support estimation at
the encoder and syndrome-base coding of the coefficients in
the support, thus increasing the complexity of the encoder.
Again, the approach requires a sparse signal model, making
it impractical for approximately-sparse signals or for signals
exhibiting different or additional structure, such as low total
variation (TV) or signals on a manifold [18], [30], [44], [45].

III. METHODOLOGY

Our goal is to compress, i.e., encode, an arbitrary source
vector x ∈ Rn using a low-complexity encoder, under the
assumption that x̂, a prediction of x, is only available to the
decoder and that the prediction error ε = ‖x−x̂‖2, or an upper
bound, is known by the encoder. Fig. 1 shows an end-to-end
diagram of our approach, which we describe below.

A. Encoding

The encoding process, shown in Fig. 1(a), consists of:
• Linear measurement and quantization of the source.
• Syndrome generation from the quantized measurements.
1) Measurement and Quantization: In the first stage, the

encoder generates measurements y ∈ Rm according to

y =
1

∆
Ax + w, (6)
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Side information Prediction 1
∆Ax̂+w

Bitplane
prediction Encoder

+

Syndrome
decoding

Source
reconstruction

Decompressed
source: x̃

q̃(1:k−1)

x̂ ŷ q̂(k)

ŝ(k)

s(k) + ŝ(k)

q̃

(b) Decoder Architecture

Uncompressed
source: x

1
∆Ax+w Q(·) Encoder

Compressed source
(syndromes):
s(1), s(2), . . .

y q s(k)

(a) Encoder Architechture

Fig. 1: End-to-end high-level architecture and system diagram for (a) the compressor and (b) the decompressor.

where A ∈ Rm×n is a measurement operator, ∆ ∈ R+ is a
scaling parameter, and the vector w ∈ Rm is a randomized
dither with i.i.d. elements drawn uniformly in [−1, 0). The
measurement parameters, ∆, A, and w, are also available at
the decoder.

The acquired measurements are quantized element-wise, us-
ing a B-bit scalar uniform integer quantizer Q(·). Quantization
produces the quantized measurements q ∈ Zm, with the ith

quantized measurement given by

qi = Q(yi) =

⌊
yi +

1

2

⌋
. (7)

We assume that B is selected sufficiently large, such that the
quantizer does not saturate.

Since the quantizer rounds to the nearest integer, the scaling
parameter ∆ is equivalent to an effective quantization interval
on unscaled measurements. Thus, the choice of ∆ affects the
reconstruction quality and the bit budget needed to encode
x. In particular, reducing ∆ results in finer measurement
quantization and, thus, improved reconstruction, at the cost
of higher encoding rate. Note that particular rate points can
be chosen simply by looking at the data and choosing ∆
at the encoder, without a need for decoding. Furthermore,
the random dither w ensures that the quantization error is
uniformly distributed, i.e., (Q(yi)− yi)

i.i.d∼ U [− 1
2 ,

1
2 ) for

i = 1, . . . ,m [46], a property that facilitates the analysis
necessary to determine the appropriate rate to use in encoding
each syndrome.

2) Syndrome Generation: In order to encode and generate
syndromes for the quantized measurements, we first sepa-
rate them into distinct bitplanes. In particular, we use q(k),
k = 1, . . . , B, to denote the kth bitplane of the quantized
measurements. We use the convention that k = 1 and k = B
respectively represent the least significant bit (LSB) plane and
the most significant bit (MSB) plane. The binary representation
of q can be thought of as an m × B binary matrix whose
kth column, q(k) ∈ Fm2 , is a binary vector containing the
kth significant bit of all m quantized measurements of x.
The following is an example of the above described bitplane
representation with m = 3 and B = 4:

q =




3
0
1


 F2=⇒

q(4) q(3) q(2) q(1)( )0 0 1 1
0 0 0 0
0 0 0 1

.

For each bitplane q(k) the encoder generates a syndrome
at a specific rate. The rate is different for each bitplane and
is based on the expected number of errors in this bitplane
that will need to be corrected. The syndromes are used by
the decoder to correct these errors and reconstruct x via the
iterative decoding procedure outlined in Section III-B.

In particular, for each bitplane, q(k), the encoder assumes
that the decoder has an estimate of the bitplane, q̂(k) with
a few errors, i.e., bitflips. This estimate is computed at
the decoder using the side information and the previously
corrected bitplanes 1, . . . , k − 1. The encoder assumes that
each bit in this estimate might be flipped with probability pk,
which is assumed known at the encoder. Thus, as described in
Sec. II-A, the prediction acts as a binary symmetric channel
with crossover probability pk. The encoder can efficiently
encode q(k) by transmitting a syndrome that corrects the
bitflips in the predicted bitplane, i.e., using a code with rate
lower than:

CBSC−(pk) = 1−HB(pk). (8)

Thus, the encoder uses a parity-check matrix H(k) with
associated rate lower than (8), to allow correction of bitplane
prediction errors. In other words, the encoder computes syn-
dromes s(k) = H(k)q(k) for k = 1, . . . , B and transmits them
to the decoder. In practice, as elaborated in Section IV-D, only
few lower significance bitplanes need to be encoded; higher
significance ones can be perfectly predicted at the receiver.

Of course, to be able to successfully recover q(k), it is
critical that the encoder accurately determines the probabilities
pk, or an upper bound for them. The following theorem makes
this computation exact, as a function of the `2 norm of the
prediction error, assuming that the measurement matrix A is
drawn from an i.i.d. Gaussian distribution.

Theorem 1. Consider a signal x with measurements y ac-
quired using (6) and quantized to q using (7), where A is
randomly drawn with i.i.d. N (0, σ2) entries. Assume there
exists a prediction x̂, with prediction error ε = ‖x − x̂‖2
and that the first k − 1 least significant bitplanes of q,
namely q(i), i = 1, . . . , k − 1, are perfectly known. Then
q(k), the kth bitplane of q, can be estimated from x̂ and
q(i), i = 1, . . . , k − 1 with bit error probability equal to

pk =
1

2
−

+∞∑

l=1

e−
1
2 ( πσεl

2k−1∆
)
2

sinc

(
l

2k

)
sinc

(
l

2

)
. (9)

Proof: See Appendix A.
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As detailed in the proof, this error probability can be
achieved using the decoding method described in Sec. III-B
below. Fig. 2(a) plots the theoretical and empirical bit er-
ror probabilities for bit k = 3. The theoretical values are
calculated using Thm. 1 as a function of the prediction
error ε = ‖x − x̂‖2. The empirical values are calculated
as m−1‖q(3) − q̂(3)‖0, where q(3) and q̂(3) correspond to
the third bitplane of the quantized measurements of x and
x̂, respectively, generated from synthetic data such that ε =
‖x− x̂‖2. As evident in the figure, the empirical probabilities
closely match the ones predicted by Thm. 1.

Note that, even if the prediction error is not known but can
be upper bounded, the theorem provides an upper bound on the
probability of bitflips. Furthermore, as we discuss in Sec. IV,
the theorem can be used to provide guidance even if other,
more practical, measurement matrices are used.

B. Decoding

The decoder, shown in Fig. 1(b), uses the syndromes s(k) of
the quantized measurement bitplanes q(k) and the side infor-
mation to recover the quantized measurements and reconstruct
the signal. Decoding, or decompression, consists of:
• Measurement prediction from the side information.
• Recovery of the original quantized measurements via

iterative bitplane prediction and syndrome decoding.
• Source reconstruction from the quantized measurements.
1) Prediction and Measurement: First, the decoder gener-

ates a prediction x̂ of the source x using the side information
and measures the prediction using the same measurement
parameters A,∆, and w as used by the encoder:

ŷ =
1

∆
Ax̂ + w. (10)

2) Recovery of Quantized Measurements: Next, the decoder
reconstructs the original quantized measurements q one bit-
plane at a time, starting from the least significant bitplane. For
the recovery of each bitplane, the decoder uses all the previ-
ously recovered bitplanes and the predicted measurements ŷ.
As illustrated in Fig. 3, each syndrome-encoded bitplane k is
recovered via a two-stage scheme: bitplane prediction followed
by syndrome decoding.

The quantized measurements are iteratively recovered start-
ing with the least significant bitplane k = 1. At iteration k,
a new estimate of the quantized measurements q̂ is computed
using bitplane prediction, incorporating all the already decoded
information from previous iterations. From that estimate, the
kth bitplane, q̂(k), is predicted and then corrected using the
syndrome s(k), to recover the corrected bitplane q̃(k). If
the syndrome rate has been correctly chosen, decoding is
successful with high probability and q̃(k) = q(k).

Specifically for k = 1, the decoder estimates the quantized
measurements q = Q(ŷ) and extracts the least significant
bitplane q̂(1) = q(1). The corrected least significant bitplane,
q̃(1), is obtained by correcting the mismatch between q̂(1)

and q(1) using the syndromes s(1) and ŝ(1) = H(1)q̂(1). For
the remaining bitplanes, k > 1, assuming k − 1 bitplanes
have already been successfully decoded, q̂ is estimated by

selecting the uniform quantization interval consistent with the
decoded k−1 bitplanes and closest to the prediction ŷ. Having
correctly decoded the first k− 1 bitplanes is equivalent to the
signal being encoded with a (k − 1)-bit universal quantizer
[38]. Thus, recovering q̃ uses the same decoding as in [9].

An example of k − 1 = 2 is shown in Fig. 4. The left
hand side of the figure plots a 2-bit universal quantizer,
equivalent to a uniform scalar quantizer with all but the 2
least significant bits dropped. The right hand side shows the
corresponding 3-bit uniform quantizer used to produce q. In
this example, the two least significant bits decode to the
universal quantization value of 1, which could correspond to
q = 1 or −3 in the uniform quantizer. However, the prediction
of the measurement ŷ is closer to the interval corresponding
to q = −3, and, therefore q̂ = −3 is recovered. For a formal
description of the bitplane prediction process see Appendix A.

After the kth bitplane is estimated, the estimate q̂(k) is
corrected via syndrome decoding of s(k) and ŝ(k) to produce
the corrected estimate q̃(k). As long as the syndromes sat-
isfy the rate conditions of Thm. 1, decoding is reliable and
q̃(k) = q(k).

Decoding continues iteratively until all B bitplanes have
been correctly decoded. Reliable decoding at every iteration
guarantees that the decoded quantized measurements are equal
to the encoded quantized measurements, i.e., q̃ = q. The
described syndrome coding procedure bears conceptual sim-
ilarity to multilevel coding schemes where information is
encoded using a number of channel codes of different rates and
decoding proceeds in a multistage fashion where each bitplane,
starting from the LSB, is decoded by incorporating information
from preceding stages [47]. We note that, although in theory
the decoding order of the bitplanes should not matter—as long
as the encoding provides the correct syndrome rates given
this order, and the decoder is able to exploit all statistical
dependencies—decoding from least to most significant bit can
reduce the number of bitplanes that need to be coded. In
practice, this reduces the rate overhead due to finite block
lengths and other practical considerations.

We should also note that a common assumption in such
schemes is that decoding is successful in each stage before
decoding the next. Incorrect decoding of one stage will de-
grade the bitplane prediction for the next stage and affect
the probability of correct decoding. Since the probability of
incorrect decoding can, in principle, become arbitrarily low
using good codes of the correct rates, the probability of failing
to decode any of the B bitplanes can be easily controlled
using a union bound on the probability of failure to decode
each bitplane separately. A careful analysis of the effects of
incorrect prediction on the error probability at the next bit level
could be performed using the tools used in proving Theorem 1.
However, such an analysis is beyond the scope of this work.

3) Source Reconstruction: The decoder solves an inverse
problem to reconstruct the source from the recovered quantized
measurements q̃ = q, as described in Sec. II-B:

x̃ = arg min
x
D
(
q̃,

1

∆
Ax + w

)
+ λR(x). (11)
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Fig. 3: Recovering quantized measurements of bitplane k
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recovered k − 1 bits q̃(1:k−1).
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The regularizer R(·) may exploit the side information, such as
the prediction’s sparsity pattern, to improve the signal model.

IV. IMPLEMENTATION CONSIDERATIONS

A. Efficient Measurements Operators

Using a Gaussian matrix for encoding, as assumed in
Thm. 1, may prove challenging particularly when the encoder
is implemented in finite-precision arithmetic with limited
memory and computation. Instead, most practical implemen-
tations will use measurement approaches based on fast trans-
forms [48], some of which have been shown to satisfy the
restricted isometry property (RIP) or have other properties
desirable for measurement systems. These approaches exploit
the fast transform structure to reduce computation and storage
to O(n log n) and O(n), respectively, instead of O(nm).

Approaches based on the Walsh–Hadamard transform
(WHT) are particularly appealing, as the transform only uses
addition and subtraction operations, and no multiplications.
Similarly to the approach used in [49], we measure by ap-
plying a random permutation to the signal x, applying the
WHT and randomly subsampling the output. We denote this
SRHT, although it is slightly different than the SRHT in [50],
in that our approach does not multiply the signal with a random
diagonal ±1 operator before the permutation.

The histogram in Fig. 2(c) illustrates that our SRHT mea-
surements behave similarly to measurements of the same

signal using a Gaussian matrix that satisfies Thm. 1 conditions.
Fig. 2(b) further suggests empirically that the bit error proba-
bility computed in Thm. 1 overestimates pk, when the SRHT
is used—we conjecture it is an upper bound. Thus, it seems
reasonable to use (9) in this case, something we confirmed in
our experiments in Section V.

B. Binary Representation

To represent the quantized measurements, we use an offset-
binary representation. In other words, all measurements are
made positive before quantization by an appropriate constant
shift that can be removed in decoding. This representation pro-
duces quantization intervals that are uniform in all bitplanes.
Furthermore, combined with the randomized measurements
and our choice of dither, this representation produces uniform
{0, 1} bit distribution in all bitplanes, which is important
in designing the syndromes. A two’s complement binary
representation has similar properties and could be used instead.

In contrast, sign-magnitude and one’s complement repre-
sentations have two different binary strings representing zero;
a positive and a negative one. These require special handling,
and make the representation more cumbersome and slightly
less efficient. In addition, such representations might introduce
bias and correlations on the bit distribution in each bitplane.

C. Efficient Channel Codes

In order to maximize the syndrome-based compression, a
rate-efficient channel code must be used to generate syn-
dromes. One popular choice are low-density parity-check
(LDPC) codes which are capacity-approaching, and hence
allow high compression rates. LDPC codes are particularly
appealing because their extremely sparse parity-check matrices
allow syndrome generation with complexity ∼ O(m), rather
than O(m2). Furthermore, the sparsity enables simple efficient
decoding using belief propagation.

Decoding using belief propagation is initialized using prior
likelihoods associated with each of the bits to be decoded,
reflecting the prior probability of a certain bit taking the value
0 versus 1. In our case, the likelihood corresponds to the
probability that the predicted bit in question will be in error
(when compared to the same bit of the measured signal). A
simple agnostic option is to set the likelihood for all the bits
of a given bitplane k to its associated bitflip probability pk.
Since the bits in each bitplane are uniformly distributed by



GOUKHSHTEIN et al.: DISTRIBUTED CODING OF QUANTIZED RANDOM PROJECTIONS 7

design, as described above, it is not necessary to adjust this
prior, as described, for example, in [51], [52].

In addition, the prediction process in Fig. 4 provides more
information that can be used to improve this likelihood esti-
mate individually, for each bit in the bitplane, using the pre-
dicted measurements, ŷ, according to the following theorem.

Theorem 2. Consider a signal x that is measured and
quantized in the same manner as described in Thm. 1. Assume
there exists a prediction x̂, with prediction error ε = ‖x−x̂‖2,
and let y and ŷ denote single measurements of x and x̂,
respectively. Assume also that the first k − 1 least significant
bits of Q(y), namely q(i), i = 1, . . . , k−1, are perfectly known.
Then, the likelihood of error in q̂(k), the kth bit of Q(ŷ), can
be estimated from ŷ and q(i), i = 1, . . . , k − 1, as

Lk = Pr
(
q̂(k) 6= q(k) | ŷ, q(1), . . . , q(k−1)

)
(12)

=
A2(k, c)

A1(k, c) +A2(k, c)
, (13)

where

A1(k, c)

=
1

2k

(
1 + 2

+∞∑

l=1

e−
1
2 ( πσεl

2k−1∆
)
2

cos

(
πcl

2k−1

)
sinc

(
l

2k

))
,

(14)

A2(k, c) = A1(k, 2k−1 − c), (15)

and where c is the smallest distance from ŷ to the center
of the quantization interval consistent with the k − 1 LSBs,
q(i), i = 1, . . . , k − 1.

Proof: See Appendix B.
Fig. 5(a) demonstrates how the error likelihood Lk behaves

as a function of the distance parameter c, for k = 3 and
different values of the normalized prediction error εσ

∆ . As
evident, the error likelihood maximum value of 0.5 is attained
when c = 23

2 = 4, namely when the prediction ŷ falls
exactly in the middle between the two possible consistent
quantization intervals (i.e., exactly in between the closest A1

and A2 regions, in which case c = 2k

2 = 2k−1). In that case,
the uncertainty in the kth bit’s predicted value, is maximized,
resulting in the maximum likelihood of error.

As expected, in our simulations we observe that this ap-
proach improves the LDPC decoding process. In particular, it
allows successful belief propagation using higher code rates,
compared to the agnostic prior, which translates to smaller
syndrome sizes and hence increased compression rate.

D. Cutoff Probabilities for Syndrome Generation

The behavior of the bit error probability, calculated accord-
ing to (9), as a function of the normalized prediction error εσ

∆
for different values of k is shown in Fig. 5(b). As the figure
illustrates, the error probability decreases sharply for bitplanes
of higher significance. If the error ε is sufficiently small,
bitplanes beyond a certain significance can be predicted error-
free at the decoder, without the need to transmit syndromes.
In practice, it is reasonable to set a cutoff probability pcutoff

below which bitplanes are not encoded.

This cutoff can be chosen in a number of ways. For example,
we may choose a fixed probability, e.g., pcutoff = 0.001, or one
that is reciprocal to the syndrome length, i.e., pcutoff ∝ 1/m,
where the constant of proportionality is chosen to “control”
the expected frequency of bit errors in non-encoded bitplanes.
Alternatively, since bitplanes are decoded sequentially from
LSB to MSB, we may consider assigning different cutoffs to
each bitplane, to prevent error propagation across bitplanes.
Cutoffs can therefore be assigned in a progressive manner from
lower to higher values, with lower significance bits treated
more conservatively than higher significance bits, e.g., pcutoff

k =
0.001k or pcutoff

k ∝ k/m.
Fig. 5(c) shows the number of bitplanes that need to

be encoded as syndromes as a function of the normalized
prediction error for three different cutoff probabilities. The ∆
parameter controls the quantizer resolution. Increasing ∆ is
equivalent to using a coarser scalar quantizer, which results in
higher distortion, but makes bitplanes more predictable. Thus,
as the figure shows, fewer bitplanes need to be encoded as
∆ increases, improving the compression rate. Hence, the ∆
parameter, which is one of the algorithm’s design parameters,
plays a key role in controlling the rate-distortion trade-off.

For some bitplanes of low significance, the error rate pk is
so high, that the syndrome has effectively the same bit-size
as the bitplane, i.e., requires a rate 0 code. In those cases it
makes more sense to simply transmit the bitplane instead of
spending the extra computation to code and decode it without
reducing the number of bits. Thus another cutoff can be set
in practice for the value of pk, above which the bitplane is
transmitted as is. This cutoff is not as critical. Setting it lower
than necessary makes the compression slightly less efficient,
but does not introduce any errors in the iterative process.

For simplicity, we chose a fixed probability for both cutoffs.
In our experiments, typically 1 or 2 least significant bitplanes
were transmitted as is. At most 3 additional bitplanes were
transmitted by syndrome coding at code rates greater than
0 but less than 1. Syndrome coding and transmission of the
remaining, higher significance, bitplanes was unnecessary, as
they could be reliably recovered at the decoder from the source
prediction.

E. Encoding Complexity
In general, the computational and storage cost of the linear

measurement operation is O(nm), dominated by the matrix-
vector multiplication Ax. However, using a fast-transform-
based measurement operator, as described above, the computa-
tional cost can reduce to O(n log n) and storage to O(n). The
measurements are quantized using an O(n) scalar quantizer.

The generation of syndromes involves multiplication of the
parity-check matrices H(k) of size m(1 − Rk) × m, where
Rk ∈ [0, 1] is the code rate used to encode the kth bitplane,
by the vectors of quantized measurements q(k) of size m.
The worst case complexity, when R ≈ 0, is order O(m2).
However, in practice, structured parity-check matrices can be
used to generate syndromes more efficiently, with complexity
as low as O(m). Obtaining the required code rates Rk involves
calculating the bit error probabilities pk according to Thm. 1,
which can be done in constant time.
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In summary, complexity is dominated by an O(n log n)
matrix-vector multiplication. Furthermore, the end-to-end en-
coder architecture is very simple, as typical in distributed cod-
ing schemes, and can be efficiently implemented in resource-
constrained environments. Instead the complexity has been
transferred to the decoder, which has the ability to exploit
signal models through the prediction and the regularization
process, even if these signal models are too expensive to be
computed at the encoder.

V. APPLICATION: MULTISPECTRAL IMAGE COMPRESSION

As an example use of our approach, we demonstrate its
application to lightweight multispectral image compression
targeted to on-board satellite systems.

Multispectal images comprise of four to eight spectral
bands, which are typically highly correlated. Such images
are often acquired on board satellites for remote sensing
applications such as mineral exploration, surveillance and
cartography. Advances in modern sensing technology have
resulted in increases in the resolution and quality of the
sensing instruments, with a corresponding increase in the
data size. Thus, considering the communication constraints in
space, compression has become a necessity for such systems.
Furthermore, resource constraints make existing transform
coding-based approaches, such as JPEG-2000, unsuitable.
Hence, there is significant interest in rate-efficient compression
algorithms with low-complexity encoders. For example, some
low-complexity multispectral compression methods can be
found in [7]–[9], [40], [53], [54].

The approach we present here expands on the approach
in [10], by incorporating likelihood estimation in syndrome
decoding and further exploiting inter-band correlations using
successive prediction from already decoded bands. Consistent
with [7]–[9], [40], we consider images comprising of four
spectral bands x0, . . . ,x3, corresponding to blue, green, red
and infrared, respectively. We assume that the blue band, x0,
is fully available at the decoder as side information and we
explore the compression of the remaining three spectral bands.
The approach we present can be naturally generalized to the
compression of multiple correlated sources in other modalities.

A. Encoding

To encode the images, we first separate them to non-
overlapping blocks of size n = 64 × 64, which are treated

and compressed independently using the system in Fig. 6(b).
Each block is measured with m = 4000 measurements for
each image band, xi, i = 1, 2, 3, according to (6), using
the SRHT and an appropriate choice of ∆ to achieve the
desired rate. Preliminary experiments demonstrated that very
low undersampling, with m = 4000, provided better rate-
distortion performance and allowed for better rate-distortion
control through the choice of ∆. This is consistent with some
of the findings in [55]. The measurements are quantized with
a B = 11 bits scalar quantizer.

In addition to syndromes, the encoder calculates statistics—
specifically, the mean and variance of each band, and the co-
variance with the other bands—which are communicated to the
decoder as part of the side information. These statistics allow
the encoder to estimate the prediction error and determine the
appropriate rate point for the syndromes. The statistics also
enable the decoder to predict the source.

Due to the complexity of generating codes at arbi-
trary rates during operation, we maintain and select codes
from a database of LDPC codes corresponding to rates
0.05, 0.1, . . . , 0.95 of block length m = 4000, stored on-
board. Due to the effects of finite block lengths, to ensure
accurate decoding, we heuristically back off and select a
code with rate 0.05 lower than the one closest to capacity.
For example, if for some bitplane k the error probability is
pk = 0.11, the resulting channel capacity is C = 0.5 and
we select code rate 0.45 to encode. Using this heuristic, we
observed that belief propagation converged almost always in
practice, with extremely rare failures. Without the back-off,
we observed an increase in LDPC decoding errors, leading to
deterioration in reconstruction quality.

More sophisticated approaches might improve code rate
selection, and resulting performance. For example, recent work
on finite blocklength codes derives improved bounds for rate
selection [56], [57]. In our experiments, the additional com-
plexity provided limited benefit. However, the benefit might
be greater in applications with smaller block lengths.

B. Decoding

The decoder, shown in Fig. 6(c), uses the syndromes and
the side information, i.e., the reference blue band x0 and the
signals statistics, to recover the remaining spectral bands.

1) Image Prediction: To predict measurements at the de-
coder, we explore two approaches of different complexity and
predictive power.
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ŝ(i)

s(i) serror(i)

q̃(1:i−1)

x̃i

Fig. 6: End-to-end system for the compression of a multispectral image. The source image (a) is compressed by the encoder
(b) to produce syndromes and side information. The decoder (c) decodes the syndromes using the side information to
produce the decompressed image (d).

a) Linear Prediction: The simplest approach is to use
a linear minimum mean-square error (LMMSE) estimator to
predict each of the three bands xi, i = 1, 2, 3 from the blue
band x0:

x̂i =
σx0xi

σ2
x0

(
x0 − µx0

1
)

+ µxi1, (16)

where 1 is the all-ones vector. Accordingly, the encoder must
calculate and communicate to the decoder the mean of each
band and its covariance with the blue band:

µxi =
1

n

n∑

j=1

(xi)j ,

σx0xi =
1

n

n∑

j=1

(
(x0)j − µx0

) (
(xi)j − µxi

)
,

where (xi)j , j = 1, . . . , 4096, represents the jth pixel value of
the ith image band. Note that µx0

and σ2
x0

do not need to be
transmitted, as they can be directly calculated at the decoder
from x0. The coding overhead due to transmission of these
parameters is small. For example, using 16 bits per parameter,
the 3 covariances and 3 means require 6 × 16 = 96 bits per
64× 64 block, an overhead of 0.00781 bits per pixel (bpp).

The prediction error for each band, which is also available
at the encoder, is equal to

ε2i = ‖xi − x̂i‖22 = n

(
σ2
xi −

σ2
x0xi

σ2
x0

)
. (17)

b) Successive Prediction: Since the decoder may recover
the measurements of each band one at a time, it has additional
information that can be used to predict subsequent bands. For
example, the green band is spectrally closer to the red band
than the blue band is, so, presumably, a successfully decoded
green band contains additional information that can assist in
the prediction of the red band. Thus, successive prediction
leverages the results of all the previously decoded bands to
improve the prediction error.

The source signals xi are only available approximately at
the decoder, with an unknown error that is difficult to quantify
due to the non-linearity of the reconstruction process. On the
other hand, their quantized measurements qi = Q(yi) are
available exactly, i.e., assuming, as before, that measurement
reconstruction is reliable with q̃i = qi, and the quantization
error can be exactly quantified thanks to the effects of dither.

Thus, the already recovered measurements can be used for
prediction and error estimation.

Measurements of band i, acquired according to (6), are

yi =
1

∆i
Axi + wi. (18)

Furthermore, we use ỹi = yi −wi to denote the pre-dithered
measurements, and ỹqi = Q(yi)−wi to denote the quantized
measurements with dither removed after quantization. Since
dither coefficients are drawn uniformly in [−1, 0), the quanti-
zation error ei = Q(yi)−yi = ỹqi −ỹi also comprises of i.i.d.
coefficients, uniformly distributed in [− 1

2 ,
1
2 ) [46]. Thus, the

quantization error is a random variable Ei with mean µEi = 0
and variance σ2

Ei
= 1

12 .
Successful decoding of all bitplanes of band i, provides

the decoder with the quantized measurements qi and, con-
sequently, ỹqi . Instead of linearly predicting the measurements
from the blue band only, successive prediction uses the
quantized and dither-removed measurements of bands i =
1, . . . , k−1, i.e., ỹqi , to predict the pre-dithered measurements
of band k using a multi-variable LMMSE estimator:

(
̂̃yk
)
j

= CTk,k−1C
−1
k−1




(ỹ0)j − µỹ0

(ỹq1)j − µỹq1
...(

ỹqk−1

)
j
− µỹqk−1


+ µỹk

, (19)

for j = 1, . . . ,m and where

Ck,k−1 =
[
σỹkỹ0

, σỹkỹ
q
1
, . . . , σỹkỹ

q
k−1

]T
, (20)

and

Ck−1 =




σ2
ỹ0

σỹ0ỹ
q
1

. . . σỹ0ỹ
q
k−1

σỹq1ỹ0
σ2
ỹq1

. . . σỹq1ỹ
q
k−1

...
...

. . .
...

σỹqk−1ỹ0
σỹqk−1ỹ

q
1

. . . σ2
ỹqk−1



. (21)

To predict yk the decoder therefore requires y0 (which is
available as side information) and q1, . . . ,qk−1 (which are
recovered by the decoder prior to predicting yk).

Note that (19) implies that statistical parameters are avail-
able for non-quantized measurements (e.g., µỹk

), quantized
measurements (e.g., µỹqk−1

) and a mix of both (e.g., σỹ0ỹ
q
1
),

which might not always be available at the encoder. However,
the dither allows us to compute the statistics of quantized
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measurements from the non-quantized ones. If Ỹi and Ỹ qi
denote the random variables corresponding to the entries of
ỹi and ỹqi , respectively, then

µỸ qi
= E[Ỹ qi ] = E[Ỹi + Ei] = E[Ỹi] = µỸi , (22)

since Ei is zero mean, and

σ2
Ỹ qj

= Var[Ỹj ] + Var[Ej ] = σ2
Ỹj

+
1

12
, (23)

since Ej and Ỹj are independent. Furthermore,

σỸ qi Ỹj
= E[(Ỹi + Ei)Ỹj ]− E[Ỹ qi ]E[Ỹj ] = σỸiỸj , (24)

and, similarly

σỸ qi Ỹ
q
j

= E[(Ỹi + Ei)(Ỹj + Ej)]− E[Ỹ qi ]E[Ỹj ] = σỸiỸj .

(25)

Thus, empirical statistics of quantized measurements can be
approximated using statistics of non-quantized measurements:

µỹq ≈ µỹ, σ2
ỹq ≈ σ2

ỹ +
1

12
, (26)

σỹqi ỹj
≈ σỹiỹj , σỹqi ỹ

q
j
≈ σỹiỹj . (27)

Assuming approximations (26)–(27) are used, the encoder
must calculate and communicate to the decoder the set
{µỹi , σ

2
ỹi
, σỹiỹj : i, j = 0, 1, 2, 3, i 6= j}, except for σ2

ỹ3
,

which is not needed, and µỹ0
and σ2

ỹ0
, which are used but

not transmitted because, as before, they can be computed at
the decoder. Thus, 11 parameters need to be transmitted, with
transmission overhead, assuming again 16 bits per coefficient,
equal to 11× 16 = 176 bits, i.e., 0.01432 bpp.

The encoder can calculate the prediction mean squared error
(MSE) to estimate the rates required for the syndromes. The
prediction MSE is

MSEk =
1

m
‖̂̃yk − ỹk‖22 = σ2

ỹk
− CTk,k−1C

−1
k−1Ck,k−1. (28)

The dithered prediction is obtained by adding the dither to
the pre-dithered prediction i.e., ŷk = ̂̃yk + wk. Thus, the
prediction error is

ε2yk = ‖yk − ŷk‖22 = ‖̂̃yk − ỹk‖22. (29)

To calculate the code rates for the syndromes as per Thm.1,
we need to determine the distance εxk = ‖xk− x̂k‖2 between
a source xk and its prediction x̂k. We use the RIP [16] to
approximately relate the distance of the measurements and
their predictions, εyk , to εxk as follows

ε2xk ≈
n∆2

m
ε2yk . (30)

Given that A is almost square and unitary, the RIP constants
are very small, so the estimate in (30) is accurate.

2) Image Recovery: Once all bitplanes have been success-
fully decoded, the quantized measurements q̃i, i = 1, 2, 3, are
used to reconstruct the image by solving the sparse optimiza-
tion problem (5) with an appropriately chosen data fidelity
penalty and regularizer. In our experiments we found that, for
our particular rate points of interest with low-distortion, the
quadratic penalty performed better than penalties promoting
consistent reconstruction. This, however might not be the case
if the chosen operating point requires coarser quantization.

In reconstruction, similar to [18], we exploit the presence
of the blue reference to weight the regularizer. In particular,
we use a total variation (TV)-based regularizer, known to
enforce a good model for images by imposing sparsity in their
gradient. However, we also expect that if an edge is present
in the blue reference band, the edge is likely to be present in
the reconstructed band as well, i.e., at the same pixel locations
there is going to be a large gradient spike that should not be
penalized. To incorporate this additional information on the
gradient from the blue reference, we use weighted-TV (WTV),

RWTV(X) =
∑

s,t

√
W x
s,t(Xs,t −Xs−1,t)2 +W y

s,t(Xs,t −Xs,t−1)2, (31)

where X is a 2D image, W x and W y are 2D sets of weights,
and (s, t) are image coordinates. Larger weights penalize
edges more in the respective location and direction, while
smaller weights reduce their significance. When all the weights
are set to 1, the regularizer is the standard TV regularizer.

The regularizer weights at pixel spatial coordinate (s, t) are
chosen based on the norm of the gradient of the blue reference
band at the corresponding pixel, denoted Φ(X0s,t), which is
computed using

Φ(X0s,t) =
√

(X0s,t −X0s−1,t
)2 + (X0s,t −X0s,t−1

)2,

(32)
where X0s,t is the value of the image pixel of the reference
band x0 at coordinate (s, t).

The weights are then computed according to

W x
s,t = W y

s,t =

{
0.2, if Φ(X0s,t) > τ,

1, otherwise,
, (33)

where τ = 0.3 is an experimentally tuned threshold, qualifying
which gradient norms are considered to be significant and
likely to be present in other bands.

To summarize, the decoder solves

x̃i = arg min
x

∥∥q̃i −
1

∆i
Ax−wi

∥∥2

2
+ λRWTV(x), (34)

where λ = 0.1 was tuned experimentally using a small part
of the data. Several ways exist to solve (34); we use a fast
iterative shrinkage thresholding (FISTA)-based approach [58].

C. Simulation Results

To measure the performance of our method we consider
the trade-off between the compression rate and the quality of
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TABLE I: Decoding PSNR at 2 bpp (512× 512 image crop)

PSNR (dB) BPP

green red infrared green red infrared overhead overall
Benchmark [9] 37.79 32.76 34.24 2.00 2.00 2.00 — 2.00

Linear prediction
Prediction only 33.46 28.53 27.52 — — — — —
∆green = ∆red = ∆infrared = 10.395 39.52 38.89 39.52 1.51 2.19 2.28 0.00781 2.00
∆green = 6.995; ∆red = 12.275; ∆infrared = 13 42.19 38.10 38.15 1.99 1.99 2.00 0.00781 2.00

Successive prediction
∆green = ∆red = ∆infrared = 9.925 39.79 39.09 39.66 1.55 2.22 2.17 0.01432 2.00
∆green = 7.055; ∆red = 12.05; ∆infrared = 11.675 42.12 38.21 38.92 1.98 1.99 1.98 0.01432 2.00

TABLE II: Decoding PSNR at 1.68 bpp (full 7040× 7936 image)

PSNR (dB) BPP

green red infrared green red infrared overhead overall
Benchmark [9] 39.06 37.60 35.80 1.68 1.68 1.68 — 1.68

Linear prediction
Prediction only 37.05 31.67 27.32 — — — — —
∆green = ∆red = ∆infrared = 9.095 41.84 41.07 40.08 1.17 1.70 2.15 0.00781 1.68
∆green = 5.225; ∆red = 9.4; ∆infrared = 14.385 44.96 40.89 37.85 1.67 1.67 1.68 0.00781 1.68

Successive prediction
∆green = ∆red = ∆infrared = 8.7325 42.08 41.27 40.28 1.20 1.70 2.09 0.01432 1.68
∆green = 5.275; ∆red = 8.95; ∆infrared = 13.15 44.91 41.13 38.32 1.66 1.66 1.66 0.01432 1.68

reconstruction, measured using the peak signal-to-noise ratio
(PSNR) metric. In decibels (dB), PSNR is defined as

PSNR(xi, x̃i) = 10 log10

(
max(xi)

2

MSE(xi, x̃i)

)
, (35)

where MSE(xi, x̃i) is the mean squared error between the
source xi and its reconstruction x̃i and max(xi) returns the
value of the largest element of xi. As a benchmark, we use
the results in [9] where a similar complexity encoder was used
under the same settings to compress 4-band images acquired
by the ALOS satellite [59]. We performed tests on an entire
7040 × 7936 image, as well as more extensive testing on
a smaller 512 × 512 patch of the same image. This patch,
shown in Fig. 6(a), was chosen as it was deemed challenging
to compress.

The encoding parameters, ∆ in particular, were chosen to
match the rates used in [9]. We considered image blocks
of size n = 64 × 64, and examined the performance under
both the simple linear prediction and the successive prediction
approaches above. Note that our preliminary work [10] only
considers the simple linear prediction approach and does not
exploit likelihood computation using Thm. 2 in the decoding.

The results for the compression of the image patch in
Fig. 6(a) are reported in Table I. The first row, titled Prediction
only, lists the quality of the linear prediction using only side
information and prediction parameters, i.e., without syndrome
decoding and reconstruction. This quantifies the quality of
predicting each band from the reference blue band and serves
as a baseline. As expected, the quality of prediction matches
the spectral distances between the predicted bands and blue
band: the closest green band is easiest to predict, followed by
the red band and the furthest infrared band.

We experimented with two different approaches to set the
quantization resolution parameter ∆, which controls the rate-
distortion trade-off as discussed in Sec. IV-D. In the first
approach we chose the same ∆ for all 3 bands, such that
the average compression rate is the target of 2 bpp. As
expected, the reconstruction quality is fairly similar among
the bands, while the bit budget is spread unevenly, with
the easier to predict bands requiring lower code rates. In
the second approach, the ∆ was set such that each band is
compressed at the target rate of 2 bpp. In this case, as expected,
the reconstruction quality improves for the easier to predict
bands. This improvement comes at the expense of the harder
to predict bands, whose reconstruction quality deteriorates.
Note that the effectively negligible overhead associated with
transmitting the statistical parameters at 16 bits per parameter
is included in a separate “overhead” column, and not counted
in the calculation of the reported per-band bpp values.

As is apparent from Table I the approach significantly out-
performs the benchmark in terms of quality of reconstruction.
The ranges of improvements in reconstruction PSNR are sum-
marized in the first two columns of Table III. The performance
improvements of linear and successive predictions are quite
similar, with successive prediction doing slightly better than
linear prediction in most cases.

A similar set of experiments was conducted for the larger
7040×7936 image with a target rate of 1.68 bpp, considering
both linear and successive prediction and both fixed and
variable ∆. The results are shown in Table II. As expected, the
results exhibit a similar behavior to the results of the smaller
image patch. A common ∆ for all bands leads to similar
reconstruction quality at different compression rates, whereas
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TABLE III: Quality improvement over benchmark approach

512× 512 image 7040× 7936 image
2.00 bpp 1.68 bpp

Prediction same ∆ variable ∆ same ∆ variable ∆

Linear 1.7–6.1dB 3.9–5.3dB 2.8–4.3dB 2.0–5.9dB
Successive 2.0–6.3dB 4.3–5.5dB 3.0–4.5dB 2.5–5.9dB

TABLE IV: Average bit error rate of reconstructed
measurements (units are ×10−4, for a 7040 × 7936 image)

same ∆ variable ∆

Prediction green red infrared green red infrared

Linear 1.01 1.40 1.77 1.71 1.53 1.77
Successive 1.15 1.51 2.00 1.76 1.95 2.00

varying ∆ for each band, such that the rate is the same, leads
to variations in reconstruction quality. The performance of the
linear and successive prediction is quite similar. As with the
smaller image patch, the proposed approach outperforms [9].
The improvements in reconstruction quality are summarized
in the two right columns of Table III.

For the large 7040 × 7936 image, we also examined the
quality of reconstructed measurements q̃i with respect to
decoding errors. Table IV lists the resulting average bit error
rates of q̃i, compared to the true qi for the scenarios we
simulated. We observe that the measurements are reliably
reconstructed, with bit error rates on the order of 10−4.
This provides some empirical support that our heuristic to
accommodate the effects of finite block lengths by choosing
slightly conservative code rates, described in Sec. V-A, works
well in practice.

VI. DISCUSSION

The proposed approach exploits advances in sampling the-
ory and signal representations, mostly due to the development
of compressed sensing and sparse signal recovery. From this
area we inherit several desirable properties, including the
universality and the simplicity of the encoder, as well as
the ability to incorporate complex signal models and signal
dependencies during reconstruction. Because of that, the pro-
posed approach is also future proof: an improvement in signal
models can improve decoding performance, without requiring
any change in the encoder.

Our development treads at the intersection of quantization,
sparse signal processing, and information theory. While we
provide a flexible framework for distributed coding, exploiting
a modern signal processing paradigm, it is not evident that our
approach is in any sense optimal. Optimality in an information-
theoretic, rate-distortion sense is, in fact, difficult to quan-
tify. Modern signal models, such as sparsity and structured
sparsity, do not fit well the probabilistic information-theoretic
framework typically used in deriving optimality bounds. While
some progress has been made, e.g., see [23], understanding
the information-theoretic properties of such sources is still an
open problem and an active area of research. More recently
developed learning-based signal models [60] pose even more
theoretical questions.

A significant practical advantage of our approach is that
the transmission rate can be estimated at the transmitter using
only an estimate of the `2 error at the decoder in Thm. 1.
Thus, given a fixed quantization interval ∆, the encoder can
easily compute the transmission rate. Furthermore, typically
the reconstruction error is expected to be approximately
proportional to ∆. A more complex encoder may take this
general trend into account, potentially in a rate-distortion
optimization component. However, due to the reconstruction’s
non-linear nature, the exact relationship between ∆ and the
reconstruction error is still not well understood, complicating
the development of such a component.

A proper, theoretically-motivated, approach for trading off
the values of m and ∆ to achieve a certain rate-distortion
trade-off remains an open question of practical importance.
While we tuned m empirically in our experiments, a more
principled approach is desirable. A rate-distortion function that
takes m and ∆ into account would be ideal, but still elusive.

REFERENCES

[1] D. Slepian and J. Wolf, “Noiseless coding of correlated information
sources,” IEEE Trans. Inf. Theory, vol. 19, no. 4, pp. 471–480, Sep.
1973.

[2] A. Wyner and J. Ziv, “The rate-distortion function for source coding
with side information at the decoder,” IEEE Trans. Inf. Theory, vol. 22,
no. 1, pp. 1–10, Jan 1976.

[3] D. Schonberg, S. Draper, and K. Ramchandran, “On compression of
encrypted images,” in Int. Conf. Image Proc., Oct. 2006, pp. 269–272.

[4] D. Schonberg, S. C. Draper, C. Yeo, and K. Ramchandran, “Toward
compression of encrypted images and video sequences,” IEEE Trans.
Inf. Forensics Security, vol. 3, no. 4, pp. 749–762, Dec. 2008.

[5] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero, “Distributed
video coding,” Proc. IEEE, vol. 93, no. 1, pp. 71–83, Jan 2005.

[6] V. Toto-Zarasoa, A. Roumy, and C. Guillemot, “Source modeling for
distributed video coding,” IEEE Trans. Circuits Syst. Video Technol.,
vol. 22, no. 2, pp. 174–187, 2012.

[7] S. Rane, Y. Wang, P. Boufounos, and A. Vetro, “Wyner-Ziv coding of
multispectral images for space and airborne platforms,” in Proc. 28th
Picture Coding Symp. (PCS), Nagoya, Japan, Dec. 2010.

[8] Y. Wang, S. Rane, P. T. Boufounos, and A. Vetro, “Distributed com-
pression of zerotrees of wavelet coefficients,” in Proc. IEEE Int. Conf.
Image Proc. (ICIP), Brussels, Belgium, Sep. 2011.

[9] D. Valsesia and P. T. Boufounos, “Universal encoding of multispectral
images,” in Proc. IEEE Int. Conf. Acoust. Speech Sig. Proc. (ICASSP),
Shanghai, China, Mar. 2016.

[10] M. Goukhshtein, P. T. Boufounos, T. Koike-Akino, and S. Draper,
“Distributed coding of multispectral images,” in Proc. IEEE Int. Symp.
Info. Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 3240–3244.

[11] T. M. Cover and J. A. Thomas, Elements of Information Theory. New
York, NY, USA: Wiley-Interscience, 2006.

[12] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge
University Press, 2011.

[13] A. Wyner, “Recent results in the Shannon theory,” IEEE Trans. Inf.
Theory, vol. 20, no. 1, pp. 2–10, Jan 1974.

[14] T. Ancheta, “Syndrome-source-coding and its universal generalization,”
IEEE Trans. Inf. Theory, vol. 22, no. 4, pp. 432–436, Jul 1976.

[15] S. S. Pradhan and K. Ramchandran, “Distributed source coding using
syndromes (DISCUS): design and construction,” IEEE Trans. Inf. The-
ory, vol. 49, no. 3, pp. 626–643, Mar 2003.

[16] E. J. Candes and T. Tao, “Decoding by linear programming,” IEEE
Trans. Inf. Theory, vol. 51, no. 12, pp. 4203–4215, Dec 2005.

[17] N. Parikh and S. Boyd, “Proximal algorithms,” Found. Trends Optim.,
vol. 1, no. 3, pp. 127–239, Jan. 2014.

[18] M. Friedlander, H. Mansour, R. Saab, and O. Yilmaz, “Recovering
compressively sampled signals using partial support information,” IEEE
Trans. Inf. Theory, vol. 58, no. 2, pp. 1122–1134, Feb 2012.

[19] L. Jacques, D. K. Hammond, and J. M. Fadili, “Dequantizing com-
pressed sensing: When oversampling and non-Gaussian constraints
combine,” IEEE Trans. Info. Theory, vol. 57, no. 1, pp. 559–571, Jan
2011.



GOUKHSHTEIN et al.: DISTRIBUTED CODING OF QUANTIZED RANDOM PROJECTIONS 13

[20] W. Dai, H. V. Pham, and O. Milenkovic, “Distortion-rate functions for
quantized compressive sensing,” in Proc. IEEE Info. Theory Workshop
on Netw. and Info. Theory, Volos, Greece, Jun. 2009, pp. 171–175.

[21] P. T. Boufounos, L. Jacques, F. Krahmer, and R. Saab, “Quantization
and compressive sensing,” in Compressed sensing and its applications.
Springer, 2015, pp. 193–237.

[22] J. Z. Sun and V. K. Goyal, “Optimal quantization of random measure-
ments in compressed sensing,” in Proc. IEEE Int. Symp. on Info. Theory
(ISIT), Seoul, South Korea, June 2009, pp. 6–10.

[23] A. Kipnis, G. Reeves, Y. C. Eldar, and A. J. Goldsmith, “Compressed
sensing under optimal quantization,” in Proc. IEEE Int. Symp. on Info.
Theory (ISIT), Aachen, Germany, June 2017, pp. 2148–2152.

[24] P. Boufounos and R. Baraniuk, “Quantization of sparse representations,”
in Proc. Data Compression Conf., Snowbird, UT, USA, Mar. 2007, pp.
378–378.

[25] A. Zymnis, S. Boyd, and E. Candes, “Compressed sensing with quan-
tized measurements,” IEEE Signal Proc. Lett., vol. 17, no. 2, pp. 149–
152, Feb 2010.

[26] W. Dai, H. V. Pham, and O. Milenkovic, “A comparative study of
quantized compressive sensing schemes,” in Proc. IEEE Int. Symp. on
Info. Theory (ISIT), Seoul, South Korea, June 2009, pp. 11–15.

[27] U. Kamilov, “Optimal quantization for sparse reconstruction with re-
laxed belief propagation,” Master’s thesis, EPFL/MIT, 2001.

[28] L. Jacques, K. Degraux, and C. De Vleeschouwer, “Quantized iter-
ative hard thresholding: Bridging 1bit and high-resolution quantized
compressed sensing,” in Proc. 10th Int. Conf. Sampling Theory Appl.
(SampTA), Bremen, Germany, Jul. 2013, pp. 105–108.

[29] J. N. Laska, P. T. Boufounos, M. A. Davenport, and R. G. Baraniuk,
“Democracy in action: Quantization, saturation, and compressive sens-
ing,” Applied and Computational Harmonic Analysis, vol. 31, no. 3, pp.
429–443, Nov. 2011.

[30] R. G. Baraniuk, V. Cevher, M. F. Duarte, and C. Hegde, “Model-based
compressive sensing,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1982–
2001, 2010.

[31] A. Gersho and R. M. Gray, Vector Quantization and Signal Compression.
USA: Kluwer Academic Publishers, 1991.

[32] D. Baron, M. F. Duarte, M. B. Wakin, S. Sarvotham, and R. G. Baraniuk,
“Distributed compressive sensing,” 2009, arXiv:0901.3403.

[33] M. F. Duarte, M. B. Wakin, D. Baron, S. Sarvotham, and R. G. Bara-
niuk, “Measurement bounds for sparse signal ensembles via graphical
models,” IEEE Trans. Inf. Theory, vol. 59, no. 7, pp. 4280–4289, 2013.

[34] L. Kang and C. Lu, “Distributed compressive video sensing,” in Proc.
IEEE Int. Conf. Acoust. Speech Sig. Proc. (ICASSP), Taipei, Taiwan,
Apr. 2009, pp. 1169–1172.

[35] H. Liu, Y. Li, S. Xiao, and C. Wu, “Distributed compressive hyperspec-
tral image sensing,” in Proc. Sixth Int. Conf on Intelligent Information
Hiding and Multimedia Sig. Proc. (IIH-MSP), Darmstadt, Germany, Oct.
2010, pp. 607–610.

[36] A. Shirazinia, S. Chatterjee, and M. Skoglund, “Distributed quantization
for compressed sensing,” in Proc. IEEE Int. Conf. Acoust. Speech Sig.
Proc. (ICASSP), Florence, Italy, May 2014, pp. 6439–6443.

[37] A. Shirazinia, S. Chatterjee, and M. Skoglund, “Distributed quantization
for measurement of correlated sparse sources over noisy channels,” 2014,
arXiv:1404.7640.

[38] P. Boufounos, “Universal rate-efficient scalar quantization,” IEEE Trans.
Inf. Theory, vol. 58, no. 3, pp. 1861–1872, Mar. 2012.

[39] P. T. Boufounos, “Hierarchical distributed scalar quantization,” in Proc.
9th Int. Conf. Sampling Theory Appl. (SampTA), Singapore, May 2011.

[40] D. Valsesia and P. T. Boufounos, “Multispectral image compression
using universal vector quantization,” in Proc. IEEE Inf. Theory Workshop
(ITW), Cambridge, UK, Sept. 2016.

[41] G. Coluccia, E. Magli, A. Roumy, and V. Toto-Zarasoa, “Lossy com-
pression of distributed sparse sources: A practical scheme,” in Proc. 19th
European Sig. Proc. Conf., Barcelona, Spain, Aug.-Sep. 2011.

[42] G. Coluccia, C. Ravazzi, and E. Magli, Compressed sensing for dis-
tributed systems. Springer, 2015.

[43] A. Elzanaty, A. Giorgetti, and M. Chiani, “Lossy compression of noisy
sparse sources based on syndrome encoding,” IEEE Trans. Commun.,
vol. 67, no. 10, pp. 7073–7087, 2019.

[44] A. Eftekhari and M. B. Wakin, “New analysis of manifold embeddings
and signal recovery from compressive measurements,” Applied and
Computational Harmonic Analysis, vol. 39, no. 1, pp. 67 – 109, 2015.

[45] D. Van Veen, A. Jalal, M. Soltanolkotabi, E. Price, S. Vishwanath, and
A. G. Dimakis, “Compressed sensing with deep image prior and learned
regularization,” 2018, arXiv:1806.06438.

[46] L. Schuchman, “Dither signals and their effect on quantization noise,”
IEEE Trans. Commun. Technol., vol. 12, no. 4, pp. 162–165, Dec. 1964.

[47] H. Imai and S. Hirakawa, “A new multilevel coding method using error-
correcting codes,” IEEE Trans. Inf. Theory, vol. 23, no. 3, pp. 371–377,
May 1977.

[48] N. Ailon and H. Rauhut, “Fast and RIP-optimal transforms,” Discrete
Comput. Geom., vol. 52, no. 4, pp. 780–798, Dec. 2014.

[49] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun,
K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive
sampling,” IEEE Sig. Proc. Mag., vol. 25, no. 2, pp. 83–91, Mar. 2008.

[50] J. A. Tropp, “Improved analysis of the subsamples randomized
Hadamard transform,” Adv. Adaptive Data Analysis, vol. 03, 11 2010.

[51] J. Chen, D. . He, and A. Jagmohan, “The equivalence between slepian-
wolf coding and channel coding under density evolution,” IEEE Trans.
Commun, vol. 57, no. 9, pp. 2534–2540, 2009.

[52] J. Chen, D. He, and A. Jagmohan, “On the duality between slepian–wolf
coding and channel coding under mismatched decoding,” IEEE Trans.
Inf. Theory, vol. 55, no. 9, pp. 4006–4018, 2009.

[53] A. Abrardo, M. Barni, E. Magli, and F. Nencini, “Error-resilient and
low-complexity onboard lossless compression of hyperspectral images
by means of distributed source coding,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 4, pp. 1892–1904, Apr. 2010.

[54] D. Valsesia and E. Magli, “A novel rate control algorithm for onboard
predictive coding of multispectral and hyperspectral images,” IEEE
Trans. Geosci. Remote Sens., vol. 52, no. 10, pp. 6341–6355, Oct. 2014.

[55] J. N. Laska and R. G. Baraniuk, “Regime change: Bit-depth versus
measurement-rate in compressive sensing,” IEEE Trans. Sig. Proc.,
vol. 60, no. 7, pp. 3496–3505, July 2012.

[56] Y. Polyanskiy, H. V. Poor, and S. Verdu, “Channel coding rate in the
finite blocklength regime,” IEEE Trans. Inf. Theory, vol. 56, no. 5, pp.
2307–2359, 2010.

[57] V. Y. F. Tan, “Asymptotic estimates in information theory with non-
vanishing error probabilities,” Foundations and Trends R© in Communi-
cations and Information Theory, vol. 11, no. 1-2, pp. 1–184, 2014.

[58] U. Kamilov, “A parallel proximal algorithm for anisotropic total varia-
tion minimization,” IEEE Trans. Image Proc., vol. 26, no. 2, pp. 539–
548, 2017.

[59] Japan Aerospace Exploration Agency Earth Observation Research
Center. “About ALOS - AVNIR-2”. [Online]. Available:
http://www.eorc.jaxa.jp/ALOS/en/about/avnir2.htm

[60] A. Bora, A. Jalal, E. Price, and A. G. Dimakis, “Compressed sensing
using generative models,” in Proc. 34th Int. Conf. Machine Learning
(ICML), Sydney, NSW, Australia, 2017, pp. 537–546.

APPENDIX A
PROOF OF THEOREM 1

Proof: Consider a single measurement of the signal x ∈
Rn and its prediction x̂ ∈ Rn,

y =
1

∆
〈a,x〉+ w, ŷ =

1

∆
〈a, x̂〉+ w, (36)

where a ∈ Rn is the measurement vector, ∆ ∈ R+ is a scaling
parameter, w is dither, and a, ∆ and w are common in both
measurements. Assume entries of a are drawn from an i.i.d.,
N (0, σ2) distribution, and w is drawn uniformly in [−1, 0).
Let

Qn(y) = q(n)q(n−1) . . . q(1) (37)

represent the values of the first n LSBs of the quantized
measurement Q(y) of y.
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Fig. 7: The error probability p3 corresponds to the area of
the union of inconsistent intervals (shaded).
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The decoder predicts q(k) based solely on ŷ and Qk−1(y),
which is assumed perfectly known or already correctly de-
coded. Knowledge of Qk−1(y) is equivalent to knowledge of
y quantized using a (k−1)-bit universal quantizer [38]. Such a
quantizer is equivalent to a uniform scalar quantizer with only
the k − 1 LSBs preserved, i.e., one with 2k−1 distinct levels,
which repeat every 2k−1 quantization intervals. An example
2-bit universal quantizer is shown in Fig. 7. The value of the
third bit, q(3), alternates every 22 = 4 quantization intervals.

Let IQk−1(y) denote the set of all quantization intervals that
map to Qk−1(y), that is

IQk−1(y) = {[a, b) | Qk−1(t) = Qk−1(y) ∀t ∈ [a, b)}. (38)

Similarly, I0Qk−1(y) (I1Qk−1(y)) naturally extends the above
definition for the case when the kth bit is 0 (1). In Fig. 7,
Q2(y) = 11 therefore IQk−1(y) = I11 corresponds to
the union of all the intervals shown in bold ellipses, while
I0Qk−1(y) = I011 corresponds to the union of the intervals
shown in bold ellipses only in the non-shaded regions.

To generate a prediction q̂(k) of q(k), the decoder first finds
the interval I? ∈ IQk−1(y) with midpoint closest to ŷ:

I? = argmin
I∈IQk−1(y)

∣∣∣∣ŷ −
sup(I) + inf(I)

2

∣∣∣∣ . (39)

The decoder then assigns q̂(k) the value associated with the
k-bit quantization interval which contains I?, that is

q̂(k) =

{
0 if ∃Ĩ ∈ I0Qk−1(y) such that I? ⊂ Ĩ
1 otherwise

. (40)

This bitplane prediction process is illustrated in Fig. 7. If ŷ
is inside the shaded regions, it will be closest to an interval
I? ∈ IQ2(y) = I11 which is contained in an interval of
I1Q2(y) = I111, thus predicting q̂(3) = 1. Similarly, if ŷ is
inside a non-shaded region, the decoder assigns q̂(3) = 0.

For a given y, we call intervals of R which would result
in the kth bit of ŷ to be mapped to q̂(k) = q(k), consistent
intervals. The width of any consistent interval is 2k−1 and the
distance from its center to the center of a neighboring consis-
tent interval is 2k. In Fig. 7, consistent intervals correspond to
the non-shaded regions, each of which has a width of 22 = 4.
The union of all consistent intervals C(y) is given by

C(y) = by +
1

2
c+

⋃

l∈Z

[
−2k−2 + l2k, l2k + 2k−2

]
. (41)

The signed distance of the measurements, D, is defined as

D = y − ŷ =
1

∆
〈a,x− x̂〉 =

1

∆

n∑

i=1

ai (xi − x̂i) , (42)

where ai,xi and x̂i denote the ith element of the a,x and
x̂ vectors, respectively. Since D is a linear combination of n
independent Gaussian random variables, it is also a random
variable with Gaussian distribution with mean equal to

E[D] = E

[
1

∆

n∑

i=1

ai (xi − x̂i)

]
=

1

∆

n∑

i=1

E[ai](xi − x̂i) = 0,

(43)

where we recall that the x and x̂ are arbitrary, non-random,
vectors. The variance of D equals

Var(D) = E
[
D2
]

=
1

∆2
E



(

n∑

i=1

ai (xi − x̂i)

)2

 (44)

=
1

∆2

n∑

i=1

E
[
a2
i

]
(xi − x̂i)

2
=
(σε

∆

)2

. (45)

In other words, D ∼ N
(

0,
(
σε
∆

)2)
and fD(·) denotes its

probability density function (pdf).
For a given y, the probability that q̂(k) = q(k) is the

probability that ŷ ∈ C(y). This probability can be determined
by integrating fD(·) over the coset C(y)− y as follows:

Pr(q̂(k) = q(k) | y) =

∫

u∈C(y)−y

fD(u)du. (46)

In order to evaluate (46), we introduce the function g(·), which
is a rectangular function of width 2k−1, repeated at intervals
of 2k, defined as

g(u) = rect
( u

2k−1

)
∗
∞∑

l=−∞
δ
(
u− l2k

)
, (47)

where δ(·) is the Dirac delta function, ∗ is the convolution
operator on a pair of functions f and h defined as

(f ∗ h) (u) =

∫ ∞

−∞
f (τ)h (u− τ) dτ (48)

and rect (·) is the rectangular function of unit width and height

rect (u) =

{
0 for |u| > 1

2

1 for |u| ≤ 1
2

. (49)

Noting that the support of g(u− by + 1
2c) is exactly equal to

C(y), we evaluate (46) as

Pr(q̂(k) = q(k) | y) =

∫ ∞

−∞
fD (u) g (u− t) du, (50)

where t = by + 1
2c − y. Note that the value of t (rather than

direct knowledge of y) suffices for evaluation of the right-
hand side of (50), so we can equivalently write Pr(q̂(k) =
q(k) | y) = Pr(q̂(k) = q(k) | t) i.e.,

Pr(q̂(k) = q(k) | t) =

∫ ∞

−∞
fD (u) g (u− t) du, (51)

As y is a random variable and not known at the decoder,
t is also a random variable. Due to the additive dither w, the
position of y is uniformly distributed across the quantization
interval and therefore t is distributed uniformly in

[
− 1

2 ,
1
2

]

[46]. Thus, the pdf of t is ft (·) = rect(·).
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To determine the probability that q̂(k) = q(k), we marginal-
ize out the dependence in (51) on t i.e.,

Pr
(
q̂(k) = q(k)

)
=

∫ 1
2

− 1
2

Pr
(
q̂(k) = q(k) | τ

)
ft (τ) dτ (52)

=

∫ ∞

−∞

[∫ ∞

−∞
fD (u) g (u− τ) du

]
ft (τ) dτ (53)

=

∫ ∞

−∞
fD (u) [(g ∗ ft) (u)] du (54)

=

∫ ∞

−∞
F {fD (u)} [F {g (u)}F {ft (u)}] dξ, (55)

where in (53) we note that the support of ft(·) is only
[
− 1

2 ,
1
2

]
,

and in (55) F {·} denotes the Fourier transform, defined as

F {x (u)} =

∫ ∞

−∞
x (u) e−j2πξudξ. (56)

Line (55) follows from the equivalence of convolution in time
with multiplication in frequency and Plancherel’s theorem. The
Fourier transforms of the functions in (55) equal

F {fD (u)} = F





1√
2π
(
σε
∆

)2 e
− u2

2(σε∆ )
2



 = e−2(πσεξ∆ )

2

,

(57)
F {ft (u)} = F {rect(u)} = sinc (ξ) , (58)

where sinc (u) = sin(πu)
πu is the normalized sinc function, and

F {g (u)} = F
{

rect
( u

2k−1

)
∗

+∞∑

l=−∞
δ
(
u− l2k

)
}

(59)

= F
{

rect
( u

2k−1

)}
F
{ ∞∑

l=−∞
δ
(
u− l2k

)
}

(60)

=
1

2
sinc(2k−1ξ)

∞∑

l=−∞
δ

(
ξ − l

2k

)
. (61)

Substituting (57), (58) and (61) into (55), we get

Pr
(
q̂(k) = q(k)

)

=
1

2

∞∫

−∞

e−2(πσεξ∆ )
2

sinc (ξ) sinc(2k−1ξ)

∞∑

l=−∞
δ

(
ξ − l

2k

)
dξ

=
1

2

∞∑

l=−∞
e−2(πσεl

∆2k
)
2

sinc

(
l

2k

)
sinc

(
2k−1l

2k

)
(62)

=
1

2
+

∞∑

l=1

e−
1
2 ( πσεl

∆2k−1 )
2

sinc

(
l

2k

)
sinc

(
l

2

)
. (63)

Finally, the probability of a bit error is

pk = Pr
(
q̂(k) 6= q(k)

)
= 1− Pr

(
q̂(k) = q(k)

)
(64)

=
1

2
−
∞∑

l=1

e−
1
2 ( πσεl

∆2k−1 )
2

sinc

(
l

2k

)
sinc

(
l

2

)
. (65)

00 0000 00 0000

A1(3,c)
A2(3,c)

Fig. 8: Calculating L3(ŷ) by determining the areas A1(3, c)
(gray) and A2(3, c) (striped).

APPENDIX B
PROOF OF THEOREM 2

Proof: The proof is similar to the proof of Thm. 1 and
uses Qk−1(y) and IQk−1(y), as defined, respectively, in (37)
and (38) in Appendix A. When decoding, the quantity c
denotes the distance from ŷ to the center of the closest interval
consistent with Qk−1(ŷ), that is

c = min
I∈IQk−1(ŷ)

∣∣∣∣ŷ −
sup(I) + inf(I)

2

∣∣∣∣ . (66)

Fig. 8 illustrates the case where the first k − 1 = 2 bits are
00. The quantity c extends from the predicted measurement ŷ
to the center of the closest 00 quantization interval.

Consider the random variable D = y − ŷ, with pdf fD (·),
distributed as N (0,

(
σε
∆

)2
), as shown in Thm. 1. Let A1(k, c)

denote the probability that D takes values in the quantization
intervals which are consistent with the k bits, IQk(ŷ), that is

A1(k, c) =

∫

t∈T
fD(t)dt, (67)

where T =
⋃
I∈IQk(ŷ)

I. Similarly, let A2(k, c) denote the
probability that D takes values in the quantization intervals
which are not consistent with IQk(ŷ). The areas under fD(·)
associated with these two probabilities are shown in Fig. 8.

We estimate the likelihood that the kth bit is flipped as

Lk = Pr
(
q̂(k) 6= q(k) | ŷ, Qk−1(ŷ)

)
(68)

=
A2(k, c)

A1(k, c) +A2(k, c)
. (69)

We use the 2k-periodic rectangular function of unit width

g(t) = rect(t) ∗
+∞∑

l=−∞
δ
(
t− l2k

)
, (70)

to express (67) as A1(k, c) =
∫ +∞
−∞ fD(t)g(t− c)dt, i.e.,

A1(k, c) =

∫ +∞

−∞
F {fD(t)}F {g(t− c)} dξ (71)

=

+∞∫

−∞

(
e−2(πσεξ∆ )

2)
(
e−i2πξcsinc(ξ)

1

2k

+∞∑

l=−∞
δ

(
ξ − l

2k

))
dξ

=
1

2k

+∞∫

−∞

e−2(πσεξ∆ )
2

cos(2πξc)sinc(ξ)

+∞∑

k=−∞
δ

(
ξ − k

2k

)
dξ

=
1

2k

(
1 + 2

+∞∑

l=1

e−
1
2(

πσεl

2k−1∆
)
2

cos

(
πck

2k−1

)
sinc

(
l

2k

))
. (72)
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Similarly, we note that inconsistent quantization intervals are
shifted by 2k−1 with respect to consistent intervals, and hence

A2(k, c) = A1(k, 2k−1 − c)

=
1

2k

(
1 + 2

+∞∑

l=1

e−
1
2(

πσεl

2k−1∆
)
2

cos

(
πl
(
2k−1 − c

)

2k−1

)
sinc

(
l

2k

))
.

(73)
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