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Abstract
We propose an end-to-end deep learning model for phase noise-robust optical communications.
A convolutional embedding layer is integrated with a deep autoencoder for multi-dimensional
constellation design to achieve shaping gain. The proposed model offers a significant gain up
to 2 dB.
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Abstract We propose an end-to-end deep learning model for phase noise-robust optical communi-
cations. A convolutional embedding layer is integrated with a deep autoencoder for multi-dimensional
constellation design to achieve shaping gain. The proposed model offers a significant gain up to 2 dB.

Introduction

Due to laser linewidth and fiber nonlinerity, phase
noise (PN) has been one of the major issues in
coherent optical communications. To tackle the
PN issue, there has been a lot of research re-
lated to carrier phase estimation[1] and PN-robust
techniques[2]. For example, modified closed-form
log-likelihood ratio (LLR) calculations[2],[3] have
been proposed to deal with the residual PN.
High-dimensional modulation (HDM)[4],[5] has also
shown benefit to mitigate nonlinear PN.

Recently, deep learning (DL) has garnered a
lot of attention in the field of optical communica-
tions. DL has been used for various tasks such
as mitigation of fiber nonlinearity[6]–[9], modulation
classification, link quality monitoring, resource al-
location, and end-to-end (E2E) design[10]–[13]. In
many of these advancements, deep neural net-
works (DNN) have been applied to optimize an
individual function of the optical communication
sub-systems, e.g., coding, modulator, demodula-
tor, and equalizer. However, such an approach
may be sub-optimal and therefore, an E2E de-
sign could be more beneficial for next-generation
optical communications. E2E method is a novel
concept that can be utilized to optimize the the
transmitter and receiver jointly in interaction with
the communication channel in an end-to-end pro-
cess. It was shown that E2E approaches[10]–[13]

can achieve a significant shaping gain in vari-
ous fiber-optic systems, by jointly optimizing HDM
constellation paired with DNN demodulator.

However, in most existing E2E literature, one-
hot encoding of the input message is considered,
which limits the practical application to only small
codeword lengths. In this paper, we propose an
E2E framework optimized for optical communica-
tions, enabling scalability to larger codelengths as
well as robustness against PN. Our E2E frame-
work employs tail-biting convolutional embedding
layers integrated with a deep autoencoder to deal

with codeength scalability and residual PN. The
main contributions are summarized below:

1. We apply DL to joint optimization of both the
HDM constellations and DNN demapper in
an E2E framework for optical communication
channels.

2. We develop a PN-robust E2E model using
convolutional embedding layers, which en-
ables scaling to larger code lengths.

3. We verify that the E2E model can achieve
high shaping gain close to the Polyanskiy’s
bound[14].

4. We demonstrate that the PN-robust E2E can
offer 2 dB gain in the presence of strong PN.

Phase Noise-Robust End-to-End System
We implement a typical optical communications
system including the encoder, the decoder, and
channel as a complete E2E deep neural network
with a focus on PN channels as shown in Fig. 1.
Unlike the typical E2E methods, the input mes-
sage to our embedding layers is not one-hot en-
coded, but instead represented as a k-bit vec-
tor x ∈ {0, 1}K . This representation of the input
enables scalability to larger block lengths, while
we introduce a tail-biting convolutional embed-
ding layer to retain rich encoding capability with
reasonable computational efficiency. This em-
bedding layer, parameterized by a dictionary of
2m embedding vectors of length L, maps each
segment of m consecutive bits to an embedding
vector of size L. This embedding layer is cyclically
applied across the K message bits with a stride
of one. Then all of the embeddings are concate-
nated vertically to form a vector xe, which is given
as input to the encoder. In our experiments, we
use m = 3 and L = 8.

The encoder is implemented as a feed forward
MLP, which consists of an input layer, one hidden
layer that uses tanh activation and an output layer,
followed by a power normalization layer. The in-
put layer is of size KL, which is equal to that of
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Fig. 1: Proposed architecture of end to end model.

the output of the embedding layer, xe. The output
layer size is N , which effectively yields encoding
with the parameters (N,K). We use hidden layer
size equal to the sum of the input layer and output
layer sizes for simplicity. The power normalization
is performed with batch normalization (BN), while
disabling scale and shift operations.

The PN channel is modeled as r = exp(θ)s +

w, where r is the received symbols vector at the
demapper, s is the transmitted symbols vector,
θ is the residual PN, which follows the Gaussian
distribution of zero mean and variance σ2

ρ, and w

is an additive white Gaussian noise (AWGN) vec-
tor, whose element follows circularly symmetric
complex-Gaussian distribution of zero mean and
variance σ2. In coherent optical communications,
the PN may come from laser spectrum linewidth,
fiber nonlinearity, imperfect phase recovery, etc.
In the presence of laser linewidth ∆ν, the effec-
tive PN variance is expressed as σ2

ρ = 2π∆νTs
where Ts is the symbol duration.

The decoder is also implemented as a feed for-
ward MLP, which consists of an input layer, one
hidden layer with tanh activation and an output
layer. The input layer and output layer sizes are
equal to N and K, respectively. The hidden layer
size is equal to the sum of the input layer and out-
put layer sizes. The output layer of decoder uses
a sigmoid activation to output a vector x′ repre-
senting the likelihoods for each bit. We use bi-
nary cross entropy (BCE) loss to train the E2E
network, and hence the DNN output can be di-
rectly fed into a soft-decision FEC without relying
on an external LLR converter.

Performance Analysis
We evaluated the performance of the proposed
E2E system for the AWGN and PN channels.
Fig. 2 compares the word error rate (WER) of our
proposed method for a (7, 4) code in the AWGN
channel against BCH (7, 4) maximum likelihood
decoding (MLD). Note that there is no better lin-
ear codes than this BCH code in term of minimum
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Fig. 2: AWGN performance for (4,7) codeword.
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Fig. 3: AWGN performance for (7,15) codeword.

Hamming distance for (7, 4) codes. Here, we also
plot the Polyanskiy normal approximation (NA)[14].
From the figure, it can be observed that our
proposed model outperforms the BCH-MLD by
nearly 1 dB for a WER of 10−3. This suggests that
our E2E design can enjoy the geometric shaping
gain over the best-known linear coded hyper-cube
modulation. The proposed E2E model also out-
performs the Polyanskiy’s bound, which is due to
the NA being loose for small codeword lengths.

Fig. 3 shows performance for a (15, 7) code
in AWGN channels. As observed, our pro-
posed model consistently outperforms MLD per-
formance of the BCH code across all SNRs. We
can also observe that performance of our E2E
model approaches the Polyanskiy NA.

We verified that our E2E method can achieve
excellent performance close to Polyanskiy’s NA in
the AWGN channels. We now show the benefit of
the E2E design in the PN channels. Fig. 4 shows
the performance of E2E shaping methods with-
/without residual PN. We assume a residual PN
variance of σ2

ρ = 0.05, which corresponds to an
effective linewidth of 239 MHz for 30 GBd. When
E2E is trained at AWGN channels without deal-
ing with the PN, the optimized E2E works well for
the AWGN channel as expected, whereas it can
suffer from a significant degradation in the pres-
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Fig. 4: PN-robust E2E design in presence of PN.

ence of PN. The E2E design becomes more ro-
bust when it is trained for the PN channels. The
PN-robust E2E design can compensate for the
PN loss by up to 2 dB at a WER of 10−3, while
it still achieves good performance comparable to
that of the E2E trained and applied to AWGN with-
out PN.

Conclusions
We proposed a new E2E design employing a con-
volutional embedding layer to be scalable for ar-
bitrary code lengths. We first demonstrated that
our E2E can outperform the best known linear
codes and achieve high shaping gain close to the
Polyanskiy’s bound. We then showed the benefit
of the phase noise-aware E2E method to achieve
2 dB gain in the presence of large phase noise.
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