
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Modelica-Based Control of A Delta Robot
Bortoff, Scott A.; Okasha, Ahmed

TR2020-154 December 09, 2020

Abstract
In this paper we derive a dynamic model of the delta robot and two formulations of the
manipulator Jacobian that comprise a system of singularity-free, index-one differential alge-
braic equations that is well-suited for model-based control design and computer simulation.
One of the Jacobians is intended for time-domain simulation, while the other is for use in
discretetime control algorithms. The model is well posed and numerically well-conditioned
throughout the workspace, including at kinematic singularities. We use the model to derive
an approximate feedback linearizing control algorithm that can be used for both trajectory
tracking and impedance control, enabling some assembly tasks involving contact and colli-
sions. The model and control algorithms are realized in the open-source Modelica language,
and a Modelica-based software architecture is described that allows for a seamless develop-
ment process from mathematical derivation of control algorithms, to desktop simulation, and
finally to laboratory-scale experimental testing without the need to recode any aspect of the
control algorithm. Simulation and experimental results are provided.

ASME Dynamic Systems and Control Conference

c© 2020 MERL. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission
to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided
that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi
Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and
all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall
require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Proceedings of the ASME 2020 Dynamic Systems and Control Conference
DSCC 2020

October 4-7, 2020, Pittsburgh, USA

DSCC2020

MODELICA-BASED CONTROL OF A DELTA ROBOT

Ahmed Okasha∗

Department of Mechanical Engineering
Michigan State University

East Lansing, MI 48824, USA
Email: aokasha@msu.edu

Scott A. Bortoff †

Mitsubishi Electric Research Laboratories
Cambridge, MA 02139, USA

Email: bortoff@merl.com

ABSTRACT
In this paper we derive a dynamic model of the delta robot

and two formulations of the manipulator Jacobian that com-
prise a system of singularity-free, index-one differential alge-
braic equations that is well-suited for model-based control de-
sign and computer simulation. One of the Jacobians is intended
for time-domain simulation, while the other is for use in discrete-
time control algorithms. The model is well-posed and numer-
ically well-conditioned throughout the workspace, including at
kinematic singularities. We use the model to derive an approxi-
mate feedback linearizing control algorithm that can be used for
both trajectory tracking and impedance control, enabling some
assembly tasks involving contact and collisions. The model and
control algorithms are realized in the open-source Modelica lan-
guage, and a Modelica-based software architecture is described
that allows for a seamless development process from mathemat-
ical derivation of control algorithms, to desktop simulation, and
finally to laboratory-scale experimental testing without the need
to recode any aspect of the control algorithm. Simulation and
experimental results are provided.

INTRODUCTION
In industrial applications, delta robots [1] are used primarily

for light-duty, pick-and-place operations because of their rela-
tively low cost and high speed. Control for these applications
generally requires no more than the inverse kinematics and high-

∗This work was done during an internship at MERL
†Address all correspondence to this author

gain PID control. But their low mass and high mechanical stiff-
ness make them an attractive platform for precise robotic assem-
bly applications. These applications demand more sophisticated
control algorithms, such as programmable impedance control for
soft collisions and for contact force control.

To derive new control algorithms for robust delta robot as-
sembly, it is important to construct and use system-level dynamic
models of the complete robotic manipulator, the assembly task
(including appropriate representations of object contact and col-
lision) and also the control algorithms themselves. Our long-term
objectives are (1) to invent new control algorithms for the delta
robot that make assembly processes robust with respect to uncer-
tainty in the environment (especially uncertainty in the location
of an object), and exploit new types of sensors, such as touch sen-
sors, (2) to accelerate the process of experimental validation, and
(3) to accelerate and simplify the process of controller parameter
tuning that is done at commissioning time.

Modelica1 is an open-source computer language used to
model complex, heterogeneous, multi-physical systems and in-
cludes synchronous language features to precisely and correctly
define and synchronize sampled-data systems, making it an ex-
cellent platform for such research and development. Modelica
libraries serve as a repository that archive new algorithms and
models in a high-level language, and Modelica models can be
used for desktop simulation, model-based control design, and
even real-time laboratory scale experimental testing without hav-
ing to recode any aspect of the control algorithm, thus supporting
all three of our objectives.

1https://www.modelica.org/1 Copyright c© 2020 by ASME

In this paper, we extend our earlier work on object-oriented
modeling and control of delta robots [2,3], deriving two formula-
tions of the manipulator Jacobian that are useful for time-domain
simulation and in discrete-time control algorithms. We derive
an approximate feedback linearizing control algorithm, which is
novel and non-trivial due to the closed-chain kinematics, and also
describe our developing Modelica libraries that are used in a sys-
tem architecture that allows for both simulation of new control
algorithms and also real-time experimental testing of those algo-
rithms using our laboratory-scale delta robot. Aside from pro-
prietary API interface for our motion controller, the software is
entirely open-source, making use of public domain Modelica li-
braries that enable real-time simulation and also interface with
external hardware via device drivers.

This paper is organized as follows. After reviewing the dy-
namic model previously published, we derive the Jacobian for-
mulations and explain their use. We use the model to derive the
approximate feedback linearizing control algoritihm, and also a
simple gravity compensating feedback. We then describe our
software architecture and delta robot hardware, and provide an
example of a nonlinear feedback control in real-time simulation
and also experiment.

DYNAMICAL MODEL
Referring to Figure 1, the delta robot [1] consists of three

(or more) identical, under-actuated arms, arranged symmetri-
cally about the z3-axis (pointing down). Each arm has a prox-
imal link, attached to the servomotor shaft at the base, and a pair
of parallel distal links that are connected to the proximal link by
universal joints. The six distal links are connected to the wrist
flange by universal joints, so that the two distal links associated
with each arm remain parallel. The configuration provides three
translation degrees of freedom of the wrist flange, while the ori-
entation of the wrist flange is invariant. This feature decouples
the translational and rotational kinematics and dynamics, sim-
plifying control. The servomotor angles are measured, but the
universal joint angles are not.

Translational Kinematics and Dynamics
The delta robot is a complex2 closed kinematic chain [4]. It

is not possible to compute an analytic formula for the forward
kinematics (the function from measured servomotor angles to
the location of the wrist flange), although the inverse kinemat-
ics may be computed and expressed in closed-form. This makes
the derivation of the dynamics more complex than for serial link
manipulators.

One formulation of the delta robot dynamics first defines the
dynamics for each unconstrained arm, and then adds the holo-
nomic coupling constraint that represents the connections to the

2Meaning one link has a degree of connectivity ≥ 3.

FIGURE 1. DELTA ROBOT.

Proximal Link 1

Distal Link 1

Distal
Link 3

Distal
Link 2

Proximal
Link 2

Wrist
Flange

l0

Arm 1

Arm 2

Arm 3

Base

Proximal
Link 3

q13

q23

q33

FIGURE 2. DELTA ROBOT COORDINATES, LOOKING UP.

wrist flange [2, 3]. The resulting index-3 differential algebraic
equation (DAE) is stabilized using Baumgarte’s method [5, 6],
giving an index-1 DAE. The DAE has 18 differential equations
and variables, and six algebraic equations and variables, but the
solution evolves on a six-dimensional, invariant, zero-dynamics
manifold, and is mathematically equivalent to the solution of
conventional dynamic equations written in six generalized coor-
dinates [2]. This formulation has several advantages: It is a sin-
gle set of singularity-free equations, despite the robot’s kinematic
singularities, it is computationally efficient, transparent (easy to
verify), and useful for derivation of model-based control algo-
rithms.

Summarizing the derivation here for completeness, let qi ∈
R3 denote the joint angles of arm i, ordered so that qi1, is the
ith servomotor angle, and the remaining two angles correspond
to the universal joints, for 1 ≤ i ≤ 3, as shown in Figure 2. (See
[2] for details, especially the definitions of qi j, 1 ≤ i, j ≤ 3, that

2 Copyright c© 2020 by ASME

TABLE 1. KINEMATIC PARAMETER DEFINITIONS.

Symbol Description (Units) Experimental Values

l0 Base radius (m) 0.165m

l1 Length of proximal link (m) 0.2m

l2 Length of distal link (m) 0.4m

l3 Width of wrist flange (m) 0.0562m

place the universal joint’s kinematic singularity outside of the
robot’s work volume.) Then the position of the geometric center
of the wrist flange relative to the base frame, denoted z ∈ R3, is
expressed in terms of arm 1 coordinates as

z = ψ(q1) =

 l2 sin(q12)sin(q13)
l0− l3 + l1 cos(q11)+ l2 cos(q12)
l1 sin(q11)+ l2 sin(q12)cos(q13),

 , (1)

where the parameters are defined in Table 1. Similarly, we may
also write

z = R2ψ(q2), and (2a)
z = R3ψ(q3), (2b)

to express the kinematic constraint that z is just as well a function
of arm 2 and 3 coordinates, respectively, where R2 =Rz(−2π/3),
R3 = Rz(2π/3) and Rz(θ) is the standard rotation matrix about
the “z”-axis by an angle θ .

Defining q = [qT
1 qT

2 qT
3]

T ∈ R9 and v = q̇, the translational
dynamics can be written as the index 1 DAE

q̇ = v (3a)

M(q)v̇+C(q,v)+D(v)+G(q) = HT (q)λ +B(u+ τu)+ τv (3b)

ḧ(q,v, v̇)+α1ḣ(q,v)+α0h(q) = 0 (3c)

where the constraint h(q) : R9→ R6 follows from (1)-(2),

h(q) =
[

ψ(q1)−R2ψ(q2)
ψ(q1)−R3ψ(q3)

]
= 0, (4)

H(q) is the Jacobian of h(q), λ ∈ R6 is the Lagrange multiplier,
τu ∈ R3 is the vector of matched disturbance torques, τv ∈ R9 is
the vector of virtual disturbance torques, u ∈ R3 is the control
input torque vector, positive constants α0 and α1 are such that
s2 +α1s+α0 is a Hurtwitz (stable) polynomial, M, C, D, G and
B are the inertia matrix, Coriolis and centripetal torque, damping,
gravity, and input vectors, respectively (see [2] for details), and

y = [q11 q21 q31]
T (5)

is the vector of measured servomotor angles. The distinction be-
tween τu and τv is explained in the next subsections.

Forward Kinematics
The forward kinematics can be computed algorithmically

from (4). Defining

x = [q12 q13 q22 q23 q32 q33]
T , (6)

whose elements are the unmeasured joint angles, rewrite (4) by
reordering the arguments as

h(x,y) = 0. (7)

For a given y, the solution x to these six nonlinear equations can
be computed iteratively using Newton’s method,

∂h
∂x

(xk,y) · (xk+1− xk) =−h(xk,y), (8)

which converges locally and quadratically assuming the robot is
not near a kinematic singularity (which implies ∂h

∂x is nonsingu-
lar). Then (1) is used to compute z. In practice, (8) may be used
in a real-time control algorithm that samples y at a sufficiently
high frequency so that it converges to seven digits of precision in
2-3 iterations.

Inverse Kinematics
The inverse kinematics, i.e., the function from z to y (and q)

can be computed in closed form by solving (1)-(2) for the three
elements of q1, and efficient formulations have been reported [7,
8]. First solve the z1 equation for q12, giving

q12 = π− arcsin(z1/l2 sinq13) , (9)

where the π is included because q12 is defined relative to the
horizontal plane, so π/2 < q12 < π . Next, substitute (9) into the
z3 equation and solve for q11, which is also defined relative to the
horizontal plane and is assumed to satisfy −π/2 < q11 < π/2 to
avoid kinematic singularities, giving, after simplification

q11 = arcsin
(

z3− z1cot(q13)

l1

)
. (10)

Finally, substituting (9) and (10) into the z3 equation gives√
l2
1 − (z3− z1cot(q13))

2−
√

l2
2 − z2

1csc(q13)2+ l0− l3−z2 = 0 , (11)

which can be solved for q13 with the aid of symbolic computing
software such as Mathematica. (The solution is omitted for space
reasons.) Solutions to (2) are similar.

3 Copyright c© 2020 by ASME

Manipulator Jacobians
The manipulator Jacobian is the map between end effector

velocity / force and joint angular velocity / torque, respectively,
and is important for (a) modeling and simulating the effect of
force disturbances on the end effector, and also for (b) control
purposes, such as computing reference joint velocities from ref-
erence velocities of the end effector. For serial link robots, it is
the mathematical Jacobian of the forward kinematics. For the
delta robot, this is nontrivial because the forward kinematics are
not expressible analytically. In fact, the two uses for the Jaco-
bian described above require two different expressions for the
Jacobian.

First, in order to model and simulate the effect of force dis-
turbances, we compute the Jacobian that maps an external distur-
bance force f ∈R3 that is applied to the wrist flange to the vector
of virtual torques τv that is applied to all of the joints. Summing
equations (1)-(2), and normalizing by 1/3, we can write

z = (ψ(q1)+R2ψ(q2)+R3ψ(q3))/3. (12)

Differentiating gives the 3×9 virtual Jacobian

Jv(q) =
1
3

[
∂ψ

∂q
(q1) R2

∂ψ

∂q
(q2) R3

∂ψ

∂q
(q3)

]
, (13)

which we use to compute the virtual torque vector τv in (3b),

τv = JT
v (q) · f . (14)

Equations (1) - (5), (13) and (14) comprise a smooth, singularity-
free, computationally efficient index-1 DAE model that is useful
for simulation and model-based control design. Importantly, Jv
is non-singular, even at manipulator kinematic singularities, as
we show below.

A second formulation of the Jacobian is needed for control
purposes: The map between end effector forces / velocities and
servomotor torques / velocities. We denote it the control Jaco-
bian, Jc. Because it depends on the forward kinematics, it is
computed algorithmically, as follows. By the Implicit Function
Theorem, there exists g : R3→ R6 such that

h(g(y),y) = 0, (15)

so that we may write x = g(y), if ∂h
∂x is nonsingular in a neighbor-

hood of (x,y). Define

z = Ψ(x,y) = ψ(y1, x1, x2). (16)

Then the 3×3 control Jacobian is

Jc =
∂ z
∂y

=
∂Ψ

∂x
· ∂g

∂y
+

∂Ψ

∂y
. (17)

Each of the terms on the right-hand side of (17) is computed as
follows. First, differentiating (15) and rearranging,

∂g
∂y

=−
(

∂h
∂x

)−1

· ∂h
∂y

, (18)

where (∂h
∂x)
−1 is computed in the forward kinematics (8) and ∂h

∂y
is computed by differentiating h, rewritten in (x,y) coordinates,

h(x,y) =
[

ψ(y1,x1,x2)−R2ψ(y2,x3,x4)
ψ(y1,x1,x2)−R3ψ(y3,x5,x6)

]
. (19)

The other two terms in (17) are computed by differentiating (1),
giving

Jc =

(
∂Ψ

∂y1
+ ∂Ψ

∂x1

∂g1
∂y1

+ ∂Ψ

∂x2

∂g2
∂y1

)T(
∂Ψ

∂x1

∂g1
∂y2

+ ∂Ψ

∂x2

∂g2
∂y2

)T(
∂Ψ

∂x1

∂g1
∂y3

+ ∂Ψ

∂x2

∂g2
∂y3

)T

T

, (20)

where ∂Ψ

∂y1
, ∂Ψ

∂x1
and ∂Ψ

∂x2
are all 3× 1 column vectors, and the

transposes are used to express Jc compactly. Note there are sev-
eral equivalent formulations that use (2) instead or in combina-
tion with (16).

It is important to emphasize that τu = JT
c · f should never be

used instead of (14) in (3b) for time-domain simulation to com-
pute the effects of the disturbance f , for two reasons. First, Jc
is undefined at kinematic singularities, as we show in the next
subsection. It is important that the dynamic model remain well-
defined and numerically well-conditioned, even at kinematic sin-
gularities, since the physics certainly is. Second, using Jc in
this manner would cause the dynamic model to include an algo-
rithm, since it is computed numerically by iteration, making the
DAE non-smooth because of the termination condition. This can
wreck havoc on numerical solvers and is generally considered
poor modeling practice [9, 10]. Besides, Jv is more numerically
efficient.

Simulation through a Kinematic Singularity
The model (1) - (5), (13) and (14) has been realized in the

Modelica language for purposes of simulation, model-based con-
trol design [2] and now also experimental validation. We de-
scribe the latter in the next section, but first we show an interest-
ing simulation of the robot at one of its kinematic singularities.

If the three servomotor angles assume a constant value of

yi = acos
(

l3− l0
l1

)
4 Copyright c© 2020 by ASME

FIGURE 3. DELTA ROBOT WITH PID FEEDBACK.

for 1 ≤ i ≤ 3, then the six distal links are all parallel to one-
another, and the wrist flange is free to swing as a spherical pen-
dulum. The robot is at a kinematic singularity, the forward kine-
matics are not defined, ∂h

∂x is singular (actually rank four), and
therefore Jc is undefined. However, the DAE model (1) - (5),
(13) and (14) is perfectly well-defined because H(q) retains full
rank and (1) is well-defined for all qi away from the universal
joint singularity at qi3 = π/2, 1 ≤ i ≤ 3, which is not mechani-
cally reachable anyway.

A Modelica realization of the DAE model with a PID feed-
back controller and references for the servomotor angles that
drive the system to this configuration is shown in Figure 3, and
simulation results are shown in Figure 4. The PID feedback
drives the servomotor angles to the singularity at yi ≈ 2.15rad,
1≤ i≤ 3, by t = 20s (top), an impulsive force applied to the wrist
flange in the z1 direction at t = 25s (second), resulting in free
pendulum motion of the wrist flange, plotted in the z-coordinates
(third), with no displacement in the z2-direction. Note the regu-
lation of y1 by the PID after the impulse, and the Lagrange mul-
tipliers (bottom), which are 0 at the singularity in equilibrium.
This shows the advantages of modeling the robot as a set of 24
singularity-free index-1 DAEs, namely that the modeling equa-
tions are well-posed throughout the possible robot configuration
space, even though at this particular configuration, it becomes
uncontrollable and practically useless as a manipulator. On the
other hand, if the model was expressed as a set of six DAEs or
ODEs written using the servomotor angles and velocities as gen-
eralized coordinates, which is possible locally, then the simula-
tion would have failed as it approached the singularity.

CONTROL
Our interest is using the delta robot for assembly operations,

which manifest frequent collisions and contact. High-gain posi-
tion feedback control is not appropriate for this application. Here
we derive an approximate feedback linearization algorithm that
can be used as a basis for programmable impedance control.

FIGURE 4. SIMULATION AT KINEMATIC SINGULARITY.

Gravity Compensation
The control system measures only the servomotor angles y.

From these measurements, the forward kinematic equations are
solved, providing q, z and Jc. Referring to (3a), we compute a
value for τc that cancels the effect of G(q), by solving the six-
dimensional set of nonlinear equations

[B HT (q)]
[

τu
λ

]
= G(q) (21)

for τu and λ . (Note that the controller does not measure λ .)
This is well-posed throughout the manipulator workspace, and
is solved by Newton’s method in practice.

Approximate Feedback Linearization
Applying the value τc computed in (21) to (3a), results in the

gravity-compensated model

M(q)v̇+C(q,v)+D(v) = Bu. (22)

Note that M is 9× 9 and B is rank 3. Using the definition of x
in (6), and rearranging the order of equations in (22) so that the

5 Copyright c© 2020 by ASME

measured joint angles y appear as the top block gives

[
M̄11(q) M̄12(q)
M̄21(q) M̄22(q)

][
ÿ
ẍ

]
+

[
C̄1(q,v)
C̄2(q,v)

]
+

[
D̄1(v)
D̄2(v)

]
=

[
u
0

]
, (23)

where the overbar denotes the reordering. Next we write ẍ in
terms of ÿ by differentiating the holonomic constraint (7) twice,
giving

∂h
∂y

ÿ+
∂h
∂x

ẍ+ ẏT ∂ 2h
∂y2 ẏ+ ẋT ∂ 2h

∂x2 ẋ = 0. (24)

Solving for ẍ, substituting into (23) and ignoring higher-order
terms in ẋ and ẏ (v, reordered), gives

M̄y · ÿ = u, (25)

where the 3×3 inertia matrix

M̄y = M̄11− M̄12 ·
∂h
∂x

−1

· ∂h
∂y

. (26)

The approximate feedback linearizing control is then

u = M̄y (kp(r− y)+ kd(ṙ− ẏ)+ r̈) , (27)

which, applied to (22) gives

ë+ kd ė+ kpe = 0, (28)

(ignoring higher-order terms), where e = y− r, r, ṙ and r̈ are the
reference trajectory and its first two derivatives, and kp and kd
are position and derivative gains, respectively. Note that the Ja-
cobians of h (and the inverse) are computed in the forward kine-
matic algorithm (18), so few additional operations are required
to compute M̄y. Also note that (26) is singular at kinematic sin-
gularities, which is to be expected.

MODELICA AS DEVELOPMENT PLATFORM
Modelica is an open-source computer language used to

model complex, heterogeneous, multi-physical systems [12–14].
It has a number of features that make it advantageous for mod-
eling the multi-body physics of the delta robot [3], its servomo-
tors, inverters, controller – in both form and function – and even
the robot manipulator’s task itself [15]. For one, it is a declara-
tive language that represents physical equations as acausal state-
ments. This means that an equals sign in the language means

the same thing as it does mathematically, unlike almost all other
computer languages, where it means assignment. This fact alone
allows for clear transcription of physical equations, without the
need for manual, often error-prone causalization that is necessary
in signal-flow type languages such as Matlab Simulink. Fun-
damentally it is based upon a hybrid DAE model of computa-
tion [16], so high-index DAEs may be correctly represented, re-
duced in index, and solved. This is important for physical sys-
tems such as the delta robot, as well as control systems. Fur-
thermore, the hybrid support allows for correct representation
and solution of discrete-event systems and their interaction with
continuous-time physics. Since Modelica 3.3 was introduced
in 2012, the language includes synchronous language features
to precisely define and synchronize sampled-data systems, in-
cluding periodic, non-periodic and event-based clocks [17]. It
is object-oriented for structure, including inheritance, redecla-
ration, and encapsulation, enabling organization of component-
oriented libraries. Indeed a large number of commercial and
open-source libraries have been created to model diverse phys-
ical processes, synchronous systems [18], and even to interface
models to real-time input and output [19], allowing for experi-
mental testing of control systems.

Taken together, these features make Modelica an excellent
platform for research and development of next generation con-
trol theory and algorithms in general, but especially for the delta
robot. At MERL, we have developed three Modelica libraries
(called packages) to represent (a) the delta robot dynamics, (b)
delta robot control algorithms, and (c) interface to real-time soft-
ware for experimental testing. A fourth is in development to
model contact and collisions of task space objects [15]. Our
system architecture is shown in Figure 5. The robot dynamics
library is described in [2], and includes both Lagrangian and
Hamiltonian formulations in addition to the virtual Jacobian Jv
described earlier. This library includes continuous - time dy-
namics of the physical system exclusively. The control library
includes a growing number of algorithms, with some imple-
mented in continuous-time, such as the PID used in Figure 3
(although this particular component is taken from the Model-
ica Standard Library), and others implemented in discrete-time
using the Modelica Synchronous Library [18]. These include
the usual PD and PID compensators for motion control, the for-
ward and inverse kinematics, control Jacobian Jc, gravity com-
pensation and approximate feedback linearization algorithms de-
scribed earlier, and also new force and impedance control algo-
rithms (beyond the scope of this paper).

The Modelica libraries serve several purposes. First, they
are an archive of research results, serving as a form of documen-
tation since the language itself is very readable, and also includes
annotations that support diagrams, description and even anima-
tion. Second, they can of course be used for desktop simula-
tion. For this a Modelica compiler is required, and there are sev-
eral proprietary and open source alternatives. We use both Dy-

6 Copyright c© 2020 by ASME

Windows 10 OS

MR-J4-B
Inverters

HG-KR 73
Servos

MR-MC 210
Motion Control Card

PC

MR-MC 210
C Language API

MERL Delta
Robot

Real-Time
Modelica Library

Modelica
Synchronous

Library

Modelica
Device
Drivers
Library

MERL Delta
Robot

Modelica
Robot Library

Developed at MERL
Open Source
Vendor-Supplied

MERL Delta
Robot

Modelica
Control Library

Modelica
Standard
Library

Delta
Robot

Hardware

FIGURE 5. DEVELOPMENT SYSTEM ARCHITECTURE.

mola and OpenModelica3. Third, our system architecture allows
for immediate experimental testing of control algorithms on our
delta robot manipulator using the Delta Robot Real-Time Mod-
elica Library. In fact, the software and hardware architecture is
designed so that any discrete-time control algorithm in the library
is simply disconnected from the continuous-time delta robot dy-
namic model, and is connected to the manipulator via custom
interface code. We need only recompile and experiments may
be conducted, with the real-time controller now running on the
PC. For this we make use of the Modelica Device Drivers Li-
brary, which supports sufficiently fast and accurate sampling and
real-time behavior for our purposes. (We typically run at a sam-
ple rate of 100-500Hz.) Importantly, there is no need to recode
anything when moving from simulation to experiment.

Figures 6 and 7 show an example. Figure 6 shows the Mod-
elica iconic view of a real-time, closed-loop simulation model in
Dymola. For this particular controller, references for the three
axes in the task frame (z) are sampled from a joystick via the
Device Drivers library. The joystick inputs are interpreted as ve-
locity commands, and consistent position and acceleration ref-
erences are computed with filters in the Ref Gen block. These
are passed through the inverse kinematics block to provide ref-
erences in the y-coordinates to the outer loop, which is compen-
sated by the approximate feedback linearization (27), with vari-
able gains to allow for adjustable impedance during contact op-
erations. The inner loop is the gravity compensation (21). Both
inner and outer loops require q which is computed by the forward
kinematics block. The green blocks are all implemented in dis-
crete time. Sample and hold blocks interface to the continuous-
time DAE model of the delta robot labeled deltaRobot. The block
below deltaRobot models the physics of an object in the task
space, in this case a block of Lego, which interacts with the robot
via the continuous-time Jacobian Jv, which is realized inside the
deltaRobot model.

Figure 7 shows the Modelica model for exactly the same

3https://openmodelica.org/

FIGURE 6. REAL-TIME CONTROL SIMULATION.

FIGURE 7. CONTROL ALGORITHM EXPERIMENTAL TEST.

controller, but where the dynamic model of the robot has been re-
placed with interfaces to the actual robot hardware. The Torque
Adjustment and DeltaRobot blocks are from our Delta Robot
Real-Time Modelica Library. These blocks sample the position
and velocity of the servo motors, and write the value of torque to
the motion control API using a set of C functions. At the lower
left, the yellow objects contain start-up, shut-down and safety se-
quences represented as finite state machines, which start and stop
the servomotors safely and ensure operation remains within hard
limits on stroke, velocity and torque, and also prevent the robot
from colliding with itself.

7 Copyright c© 2020 by ASME

Wrist
Flange

Distal
Links

Proximal
Links

Servos

FIGURE 8. MERL DELTA ROBOT.

DELTA ROBOT HARDWARE

The MERL delta robot, known affectionately as Kamaji (af-
ter the industrious spider in the classic Japanese film Spired
Away), is shown in Figure 8, with kinematics parameters listed in
Table 1. It is a custom-built research robot intended for assembly
control experiments. Each proximal link is machined aluminum
and is directly actuated by a Mitsubishi Electric HG-KR-73B ro-
tary AC servomotor with rated power 0.75 kW, rated torque 2.4
Nm, and 22-bit encoder resolution, giving a task-space resolution
of less than 5µm. The distal links, which are under only com-
pression or tension because of the universal joints at each end,
are are hollow carbon fiber tubes to reduce weight. The wrist
flange is aluminum, and the wrist and end effector, which would
be mounted below the wrist flange, are not shown. The servo-
motors are each driven by an MR-J4-B servo amplifier, which
in turn is controlled by a single MR-MC210 motion controller
board that is installed in a PCI slot of the PC. The motion con-
troller includes an API, which is a set of C-language programs
that support myriad operating modes that are commonly used in
industry. For our purposes, only torque mode is used.

FIGURE 9. REAL-TIME SIMULATION: WRIST FLANGE POSI-
TION.

SIMULATION AND EXPERIMENTAL RESULTS
Figure 9 shows the results of the simulation model of Figure

6, running in real-time. The joysticks are moved to command a
change in velocity in the three cardinal directions in task space,
and the approximate feedback linearizing control does a good
job tracking the reference. For these simulations, kp = 1.0 and
kd = 0.25, which are very low gains. The tracking quality is due
to the inverse model in (27) with acceleration feed-forward and
the lack of any model uncertainty.

Figure 10 shows the result of an experiment using the con-
troller shown in Figure 6, where the joystick inputs are also used
to command reference velocities. This is exactly the same con-
trol law as for the simulation, but recompiled with the experimen-
tal interface instead of the delta robot DAE model. (Of course,
the reference is different.) This shows more tracking error due to
some uncertainty in the model, especially in gravity compensa-
tion and joint friction, but it is still quite good given the very low
outer-loop feedback gains.

8 Copyright c© 2020 by ASME

FIGURE 10. REAL-TIME EXPERIMENT: WRIST FLANGE PO-
SITION

CONCLUSION
In this paper, we extended our earlier work on object-

oriented modeling and control of delta robots by deriving two
formulations of the manipulator Jacobian and also an approx-
imate feedback linearizing control law. The Jacobian for-
mulations are useful for different purposes, specifically for
continuous-time simulation of the effect of external disturbance
forces, and for feedback control. Both are computationally effi-
cient and may prove useful for applying optimization-based path
planning methods. We also described a software and hardware
architecture that is realized primarily in the Modelica language,
enabling representation, desktop and real-time simulation, and
also real-time experimental testing of new robot control algo-
rithms. The Modelica software architecture allows us to test al-
gorithms in simulation and experiment without recoding, and is
based almost entirely on open-source software, offering an com-
petitive alternative to commercial software and hardware.

REFERENCES
[1] Clavel, R., 1990. Device for the movement and positioning

of an element in space. U.S. Patent 4, 976, 582, Dec. 11.
[2] Bortoff, S. A., 2018. “Object-oriented modeling and con-

trol of delta robots”. In IEEE Conference on Control Tech-
nology and Applications, pp. 251–258.

[3] Bortoff, S. A., 2019. “Using Baumgarte’s method for index
reduction in Modelica”. In Proceedings of the 13th Inter-
national Modelica Conference, pp. 333–342.

[4] Merlet, J.-P., and Gosselin, C., 2008. Springer Handbook
of Robotics. Springer, ch. Parallel Mechanisms and Robots.

[5] Baumgarte, J. W., 1972. “Stabilization of constraints and
integrals of motion in dynamic systems”. Computer Meth-
ods in Applied Mechanics and Engineering, 1, pp. 1–16.

[6] Baumgarte, J. W., 1983. “A new method of stabilization
for holonomic constraints”. ASME Journal of Applied Me-
chanics, 50, pp. 869–870.

[7] Brinker, J., Corves, B., and Wahle, M., 2015. “A com-
parative study of inverse dynamics based on Clavel’s delta
robot”. In Proceedings of the 14th IFToMM World
Congress.

[8] Brinker, J., and Corves, B., 2015. “A survey of parallel
robots with delta-like architecture”. In Proceedings of the
14th IFToMM World Congress.

[9] Cellier, F. E., and Greifeneder, J., 1991. Continuous System
Modeling. Springer.

[10] Cellier, F. E., 2006. Continuous System Simulation.
Springer.

[11] Staicu, S., and C., D. C. C.-C. D., 2003. “Dynamic analy-
sis of Clavel’s delta parallel robot”. In Proceedings of the
2003 International Conference on Robotics and Automa-
tion, pp. 4116–4121.

[12] Otter, M., 2011. Modelica overview. August.
[13] Fritzon, P., 2015. Principles of Object Oriented Modeling

and Simulation with Modelica 3.3: A Cyber-Physical Ap-
proach. Wiley.

[14] Tiller, M., 2001. Introduction to Physical Modeling with
Modelica. Springer.

[15] Bortoff, S. A., 2020. “Modeling contact and collisions for
robotic assembly control”. In Proceedings of the American
Modelica Conference.

[16] MODELICA ASSOCIATION, 2017. Modelica Language
Specification Version 3.4. https://www.Modelica.org/.

[17] Elmqvist, H., Otter, M., and Mattsson, S. E., 2011. “Funda-
mentals of synchronous control in Modelica”. In Proceed-
ings of the 11th International Modelica Conference, pp. 15–
25.

[18] Otter, M., Thiele, B., and Elmqvist, H., 2011. “A library for
synchronous control systems in modelica”. In Proceedings
of the 11th International Modelica Conference, pp. 27–36.

[19] Thiele, B., Beutlich, T., Waurich, V., Sjölund, M., and Bel-
mann, T., 2017. “Towards a standard-comform, platform-
generic and feature-rich Modelica device drivers library”.
In Proceedings of the 12th International Modelica Confer-
ence, pp. 713–723.

9 Copyright c© 2020 by ASME

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-154.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9

