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Abstract
In this paper, we present a novel approach for classification of unseen object instances from
interactive tactile feedback. Furthermore, we demonstrate the utility of a low resolution
tactile sensor array for tactile perception that can potentially close the gap between vision and
physical contact for manipulation. We contrast our sensor to high-resolution camera-based
tactile sensors. Our proposed approach interactively learns a one-class classification model
using 3D tactile descriptors, and thus demonstrates an advantage over the existing approaches,
which require pre-training on objects. We describe how we derive 3D features from the
tactile sensor inputs, and exploit them for learning one-class classifiers. In addition, since our
proposed method uses unsupervised learning, we do not require ground truth labels. This
makes our proposed method flexible and more practical for deployment on robotic systems.
We validate our proposed method on a set of household objects and results indicate good
classification performance in real-world experiments
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Interactive Tactile Perception for Classification
of Novel Object Instances

Radu Corcodel, Siddarth Jain and Jeroen van Baar

Abstract— In this paper, we present a novel approach for
classification of unseen object instances from interactive tactile
feedback. Furthermore, we demonstrate the utility of a low
resolution tactile sensor array for tactile perception that can
potentially close the gap between vision and physical contact
for manipulation. We contrast our sensor to high-resolution
camera-based tactile sensors. Our proposed approach interac-
tively learns a one-class classification model using 3D tactile
descriptors, and thus demonstrates an advantage over the
existing approaches, which require pre-training on objects. We
describe how we derive 3D features from the tactile sensor
inputs, and exploit them for learning one-class classifiers.
In addition, since our proposed method uses unsupervised
learning, we do not require ground truth labels. This makes our
proposed method flexible and more practical for deployment
on robotic systems. We validate our proposed method on a
set of household objects and results indicate good classification
performance in real-world experiments.

I. INTRODUCTION

Robotic manipulation has been evolving over the years
from simple pick-and-place tasks, where the robot’s en-
vironment is predominantly well structured, to dexterous
manipulation where neither the objects nor their poses are
known to the robotic system beforehand [1], [2]. Structured
pick-and-place tasks leverage the artificially reduced task
complexity and thus require minimal sensing, if any, for
grasping operations. Dexterous manipulation on the other
hand, must rely more heavily on sensing not only to confirm
successful grasp attempts, but also to localize, distinguish
and track graspable objects, as well as planning grasps
autonomously [3].

Typically, robotic manipulation systems rely on “clas-
sic” machine vision, e.g., depth cameras, LiDAR or color
cameras, which require line-of-sight with the environment.
Although some of the inherent vision problems can be
mitigated by using multiple points of view, in-wrist camera
systems, and visual servoing, the final stage of the grasp,
i.e., physical contact, still remains blind and open loop. More
importantly, the state of the object after grasping and during
manipulation is very difficult to estimate (for example, due
to material properties).

Objects that may appear similar to an advanced vision
system can differ completely in terms of their material prop-
erties. Tactile feedback can close the gap between vision and
physical manipulation. There have been recent advancements
in tactile manipulation and state-of-the-art approaches use
vision-based tactile feedback using deformable gel mounted
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Fig. 1. Experimental setup for tactile perception. A 7-DoF (Degrees of
Freedom) arm, with attached parallel jaw gripper equipped with barometric
tactile sensors (zoomed-in insert).

above a camera which provides high-resolution image obser-
vations of the grasped objects [4]. Although effective, such
sensors are usually bulky and may introduce computational
overhead while processing high-resolution images. In this
work, taking motivation from human fingertips which can
account for roughly 100 taxels 1 per square centimeter [5],
we propose utilization of a low resolution tactile device based
on barometric MEMS devices (Micro Electro-Mechanical
System) [6].

Object classification is an important task of robotic sys-
tems. Vision-based approaches require pre-training on a set
of a priori known objects for classification. We propose
instead to perform classification of novel objects based on
interactive tactile perception, using unsupervised learning
without any pre-training. This could make a robot system
more practical and flexible. The contributions described in
this paper can be summarized as:

• Using off the shelf barometric MEMS devices, we
present construction and integration of a low-cost and
low resolution tactile sensor array for robotic grasping
and manipulation.

• We introduce a meaningful 3D representation for local
geometry of objects using the proposed low-resolution
tactile sensing.

• We propose an unsupervised machine learning approach
for classifying novel objects, which fits a model to
tactile representations acquired with interactive manip-
ulation, without the need for pre-training and labeled
ground truths across an entire training set of objects.

1A taxel is short for tactile element, analogous to a pixel.



II. RELATED WORK

A number of prior works have studied related tactile recog-
nition problems, particularly with supervised learning [7].
Some examples of such tactile perception problems include
recognition of object instances [8], surface texture informa-
tion [9], and stiffness properties [10]. Prior work has focused
on recognizing object instances, when the number/types of
object classes are known a priori. In contrast, in this work
we aim to recognize novel object instances with tactile
manipulation in a setting where the robot has no a priori
information about the number of classes and the associated
object labels. Our work helps address the questions whether
interaction with touch can provide significant information
about novel object identity and whether the global geometry
and appearance properties can be approximated with such
information.

A number of prior works have explored supervised learn-
ing with training datasets for classification of object cat-
egories using tactile sensing. Spiers et al. [8] proposed a
gripper hardware comprising of a simple two-finger under-
actuated hand equipped with TakkTile [6] barometric pres-
sure sensors for performing object classification. They use a
random forests (RFs) classifier to learn to recognize object
instances based on training data over a set of objects.
Schneider et al. [11] identify objects with touch sensors
installed in the finger tips of a manipulation robot using an
approach that operates on low-resolution intensity images
obtained with touch sensing. Such tactile observations are
generally only partial and local views, similar as in our
work. They adapt the Bag-of-Words framework to perform
classification with local tactile images as features and create a
feature vocabulary for the tactile observations using k-means
clustering. Drimus et al. [12] proposed a novel tactile-array
sensor based on flexible piezoresistive rubber and present an
approach for classification of a number of household objects.
They represent the array of tactile information as a time
series of features for a k-nearest neighbors classifier with
dynamic time warping to calculate the distances between
different time series.

More recently, deep learning based approaches are also
proposed for recognizing object instances with touch and vi-
sion. Lin et al. [13] proposed a convolutional neural network
(CNN) for cross-modality instance recognition in which they
recognize given visual and tactile observations, whether or
not these observations correspond to the same object. In
their work, they use two GelSight sensors [4] mounted on
the fingers of a parallel jaw gripper. The GelSight tactile
sensor provides high-resolution image observations, and it
can detect fine surface features and material details using
the deformable gel mounted above a camera in the sensor.
Although their approach does not require specific class labels
during training, it still needs a large dataset for training as
with all deep learning based methods. Researchers have also
proposed supervised techniques for inferring object prop-
erties from touch. For example, Yuan et al. [14] proposed
estimating the hardness of objects using a convolutional

Fig. 2. Touch sensing array used to equip both the inside and outside
faces of the gripper fingers. The array consists of four TakkStrip2 devices
(RightHand Robotics, Inc.) connected to a main I2C bus. Our tactile arrays
consist of 48 taxels arranged in a 4×6 array, with a dot pitch of roughly
7.5mm

neural network and the GelSight tactile sensor.
Other than the recognition problem, tactile sensing has

also been utilized for improving robotic manipulation and
grasping. Calandra et al. [15] proposed a multimodal sensing
framework that combines vision and touch to determine the
utility of touch sensing in predicting grasp outcomes. They
use a deep neural network (DNN) with inputs from RGB
images from the front camera and the GelSight sensors in
order to predict whether the grasping will be successful or
not. Hogan et al. [16] proposed a novel re-grasp control
policy that makes use of tactile sensing for improving
grasping with local grasp adjustments. In the next section,
we discuss the tactile sensing hardware and the generation
of tactile data.

III. TACTILE DATA GENERATION

A. Tactile sensing hardware

Our tactile sensing hardware consists of four tightly
packed arrays of Takktile sensor strips [6], arranged as the
inside and outside touch pads of a two-finger parallel jaw
gripper (see Figure 2). The Takktile sensors use a series of
MEMS barometric IC devices casted in a soft elastomer and
packaged as strips of six taxels (tactile sensor cells). The
main benefit of these devices is that they provide all the ana-
log signal conditioning, temperature compensation and ana-
log to digital conversion (ADC), on chip. As opposed to other
tactile sensing technologies [17][18], barometric sensors read
the tactile pressure and temperature input directly, and are
thus more akin to human touch sensing. Moreover, compared
with vision-based touch sensing alternatives, MEMS pressure
sensors communicate over a significantly lower bandwidth
while allowing for a more flexible spatial arrangement of
the taxels (i.e. not bounded to planar touch pads).

Each gripper finger is fitted with eight Takktile strips,
divided into two groups: one for exterior grasps and the
other for interior grasps, totalling a number of 48 taxels per
finger. For convenience, the touch pads are planar, although
this is not a design limitation. In fact, each sensor cell can
be isolated and addressed with minimal hardware changes,



while the device footprint can be further reduced by using
equivalent MEMS barometric devices. The current iteration
of the touch sensing array used in our experiments measures
30×45mm and contains 4×6 taxels (thus a dot pitch of
7.5mm).

All devices communicate over a single I2C standard bus.
Data collision and other transfer safeties are handled “on-
strip” by a traffic controller that, when addressed by a master
I2C controller, wakes each connected device in a loop which
triggers it to load the pressure data on the bus (detailed
information about the Takktile’s communication protocol
can be found in [6]). Using a I2C-USB device interface,
the sensors are connected to a Raspberry Pi 4 acting as a
physical ROS node which publishes raw tactile data to our
ROS-enabled robot controller. With this setup we achieve a
64Hz sampling rate with all 96 taxels connected.

B. Raw signal processing

The tactile raw data consists of an array of 96 pressure
and temperature values, corresponding to each taxel. As a
first processing step, the individual pressure values are tem-
perature compensated as stated in the sensor manufacturer’s
datasheet [6]. Despite a relatively low noise (0.01 N) and
good linearity (less than 1% typ.) the barometer cells exhibit
a slow drift after a few hours of use. To compensate for the
noise drift, we use a simple moving average filter with an
arbitrarily chosen window of 30 samples and uniform weight
across all data points. This filter doubles as a measure of
the unloaded sensor state. Though not a requirement of our
tactile sensing pipeline, we offset the measured steady state
for each taxel (given by the moving average filter), so that
our filtered readout reflects only tactile load and temperature
information.

C. Generating the pressure maps

An initial goal of this paper consists of generating a mean-
ingful 3D representation of the objects’ local geometry using
a low-resolution tactile device. To achieve this we represent
the contact between the touch pad and the manipulated object
as a continuous 3D pressure map. We generate this pressure
map by uniformly sampling a Non-rational Uniform B-spline
(NURBS) surface patch, where each node pij in the control
net (represented as a quadrilateral mesh), is computed from
a linear combination of taxels’ location in the 3D space xTij

,
and their respective filtered pressure reading, expressed as a
displacement on the z-axis in the spline’s reference frame:

pij = xTij + k
[
0 0 P fij

]T
(1)

where k is an arbitrary scaling constant which controls
the surface’s z-range, and Tij is the taxel at grid location
{i, j} with its corresponding filtered pressure value P fij . We
uniformly evaluate the NURBS surface using the well known
formulation of [19]:

S(u, v) =

∑n
i=0

∑m
j=0Nip(u)Njq(v)wijpij∑n

i=0

∑m
j=0Nip(u)Njq(v)wij

(2)

where Nip and Njq are B-spline basis functions and the
degree of each NURBS curve generator (n and m, respec-
tively) is the number of control points less one, along each
parametric coordinate (i.e. no internal knots in the two knot
vectors). The weight is kept at wij = 1 for all control
points. The surface is uniformly sampled by sweeping the
normalized parametric domain {u, v} = [0, 1] × [0, 1] with
a constant parameter increment du, and respectively dv,
calculated based on a user-defined resolution and the aspect
ratio of the NURBS control mesh. In our testing we used a
surface sampling resolution of 2166 and an aspect ratio of
2÷ 3.

Additionally, we also compute the surface normal for each
sample of the pressure map, which is required for computing
geometric descriptors (i.e. 3D feature vectors, see Section
IV-B). To calculate the surface normal, we follow a similar
approach to [20] in which the surface normal is obtained by
taking the cross product of the partial derivatives with respect
to the u and v parameters. To prevent poles while computing
the partial derivatives, we enforce that the weights wij > 0.

IV. FRAMEWORK: INTERACTIVE TACTILE
CLASSIFICATION OF NOVEL OBJECTS

Our goal is to use tactile feedback to classify objects as
novel or seen before. In recent years, DNNs have achieved
good performance on various classification tasks, e.g. [21],
[16]. The networks are trained with supervisory signals, i.e.
ground truth class labels, and thus fall under the umbrella of
supervised learning methods. In addition, DNNs require co-
pious amounts of training data to achieve good performance.
Due to these requirements, using DNNs is not a practical
solution to achieve our goal.

We instead propose to learn online, one object at a time,
without any need for pre-training. Object instances that have
been manipulated before by the robot should be classified as
such, and novel objects should be detected, learned, classified
and added to the set of previously manipulated objects. The
main motivation behind our approach is data efficiency and
active exploration. For a practical manipulation task, a real
robotic system can only ”afford” a short amount of time to
determine if the object is novel, which implies too few tactile
samples for deep learning. Moreover, knowing the span of
object geometry and material properties, i.e., the range of
tactile feel, beforehand, defeats the purpose of a generic
tactile manipulation framework, and would simply fall into
the usual robotic pick-and-place in a structured environment.

A. Problem Formulation

The problem we address in this paper can be formulated
as follows. Given several palpations or sampled grasps on
objects, can the robot automatically classify different unseen
objects from tactile feedback alone? Initially the set of
objects is empty, and each object with which the robot
interacts should be classified as either known (belonging
to the same category that it has seen before) or unknown
(novel instance). In the case of an unknown object, it should
then learn a representation of that object based on interactive



Fig. 3. Household objects used in our experiment spanning a wider range of material properties (specially hardness) and geometry.

tactile manipulation, and update the instance as a known
category. We propose to solve this problem using 3D tactile
features obtained by grasps interaction on the objects and
unsupervised learning with one class classification.

B. Learning Local Tactile Representations for Novel Objects

Given an ensemble of objects to be sorted by object
category, the robot would perform the following tasks:

1) Use a depth camera to capture a depth map of the scene
containing unknown objects.

2) Record a depth map of individual object in the scene
and determine candidate grasp poses.

3) Palpate an object in the scene with a selection of grasps
chosen from the candidate grasps using tactile sensing.

4) Generate 3D tactile features and learn an unsupervised
model using the local tactile information.

5) Record a depth map of other individual objects in the
scene and determine candidate grasp poses.

6) Determine if the object is of known or unknown type,
using the learned model (object specific).

7) If unknown, classify the object as novel and compute
a representation based on the pressure maps recorded
for each grasp and learn a new unsupervised model for
the object.

8) Classify all objects in the scene, using the learned
models and place them in representative bins.

For each grasp in Step 3 above we record the point cloud
derived from the pressure map (see Section III-C). From
the point cloud we compute a Viewpoint Feature Histogram
(VFH) [22]. Each VFH is a 308-dimensional feature vector.
We compute one for each finger of the gripper, and store
a grasp as a combination of two VFHs, a 616-dimensional
feature vector. The robot grasps (palpates) an object ng times
to acquire a set of local feature representations for an object.

As stated above, we want to avoid pre-training on objects,
and handle objects as they are manipulated by the robot.
Furthermore, we want to eliminate the need for known object
labels which are required in supervised learning methods.
We use an unsupervised learning approach based on once
class classification. One class classification aims to learn
a representation for the grasps, and then classify seen vs.
unseen objects. We choose the One Class SVM (OC-SVM)
classifier [23], which can be formulated as:

min
w,ξi,ρ

1

2
||w||2 + 1

νn

n∑
i=1

ξi − ρ

s.t.(w · φ(xi)) ≥ ρ− ξi for all i = 1, · · · , n
ξi ≥ 0 for all i = 1, · · · , n

(3)

where, ξi is the slack variable for sample i, n is the size of
training samples and ν is the regularization parameter. The
SVM hyperplane is represented by w and ρ. Points on one
side of this hyperplane are classified as inliers, and points
on the other side as outliers. For details on Eq. 3 we refer
the reader to [23]. For unseen objects, we consider the VFH
features for all n = ng grasps simultaneously, and fit the
OC-SVM to this data. We then store this OC-SVM as a
representation for the object.

C. Classifying Objects

Using the OC-SVM representation, we classify an object
by evaluating the decision function, defined as:

f(x) = sgn((w · φ(xi))− ρ)

= sgn

(
n∑
i=1

αiK(x, xi)− ρ

)
,

(4)

where αiK(x, xi) is w · φ(xi) expressed with a kernel
function K [23]. We use an RBF kernel function for all
experiments in this paper. Each value within the sgn() rep-
resents a signed distance to the hyperplane. Positive distances
represent inliers, while negative distances represent outliers.

D. Novel Object Discovery

We can compute the decision function from Eq. 4 for each
of the VFH representations corresponding to the ng grasps,
and determine for each whether they are inlier or outlier.
However, this ignores the signed distances αiK(x, xi) − ρ
to the decision boundary. Instead, we compute the mean
over the ng signed distances corresponding to the grasps.
The final classification of the object as inlier (seen) or
outlier (unseen) is then based on the mean signed distance.
We repeat this process with OC-SVM for each previously
manipulated object type.

E. Sampling Grasps for Objects

We rely on vision only to determine grasp candidates for
objects that the robot interacts with. The robot has an on-
board RGBD camera which provides a 3D point cloud of the
scene. There exists a number of approaches to autonomously
generate robotic grasps on objects [24], [25], [26], [27],
[28], In this work, we use grasp pose detection (GPD) [28]
to propose a set of possible autonomy grasps. GPD can
directly operate on point clouds and can provide a ranked
set of potential grasp candidates. The grasps are filtered to
avoid collisions of the robot with the environment. We select
ng grasps from the proposed set of grasps for an object,
according to filtered grasp directions.



TABLE I
PERFORMANCE OF HUMAN-DIRECTED TACTILE CLASSIFICATION. TABLE REPORTS SCALED MEAN SIGNED DISTANCE TO THE DECISION BOUNDARY (0

MEANS THE OBJECT IS STRONGLY CONSIDERED AN OUTLIER, WHEREAS A VALUE OF 1 INDICATES THAT IT IS STRONGLY CONSIDERED AN INLIER).
SEE TEXT UNDER PERFORMANCE MEASURE AND EXPERIMENT I IN SECTION V FOR A MORE DETAILED EXPLANATION.

pc sc tb wb ob ap wg box kb le fb
paper cup (pc) 0.88 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04
soda can (sc) 0.0 0.93 0.0 0.70 0.0 0.12 0.0 0.81 0.0 0.63 0.0
tennis ball (tb) 0.0 0.0 0.83 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
water bottle (wb) 0.0 0.16 0.25 0.86 0.0 0.0 0.0 0.21 0.0 0.46 0.0
oil bottle (ob) 0.0 0.41 0.0 0.20 0.63 0.0 0.0 0.99 0.0 0.20 0.0
apple (ap) 0.06 0.0 0.69 0.0 0.0 0.78 0.04 0.0 0.0 0.08 0.0
wine glass (wg) 0.0 0.0 0.0 0.0 0.0 0.0 0.87 0.14 0.0 0.0 0.0
box 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0 0.0 0.0
koala bear (kb) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.82 0.0 0.0
camera lens (le) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.99 0.0
football (fb) 0.93 0.0 0.45 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.95

The tactile features on the selected grasps should essen-
tially form some sort of basis when fitting the OC-SVM. The
more we can uniformly sample an object across its surface,
the more likely the model can classify it correctly. In the next
section, we present the evaluation of our proposed method
in two experiments.

V. EXPERIMENTS & RESULTS

Our experimental work aims to evaluate the performance
of our approach for using interactive tactile perception in or-
der to classify novel object instances. Our research platform
for the experiments described in this section is the Gen3
Lightweight robot arm (Kinova Robotics, Canada), a 7-DoF
manipulator with a Robotiq parallel jaw gripper. We have
instrumented the fingers with the pressure sensor arrays to
enable tactile sensing (See Fig. 1 and Section III).

We used a test set of no = 11 household objects in our
experiments, namely: apple, box, camera lens, koala bear,
plush toy, glass oil bottle, paper cup, foam football, soda
can, tennis ball, plastic water bottle, and a wine glass. The
set of objects are shown in Fig. 3.

Performance Measure: To evaluate our proposed ap-
proach we first define a performance measure based on the
signed distances to the decision boundary for OC-SVM. In
OC-SVM, a larger distance to the decision boundary denotes
more confidence in the classification as inlier or outlier. As
explained in Sec. IV-D, we compute the mean of the signed
distances αiK(x, xi) − ρ to the decision boundary for the
set of grasps for which we fit the OC-SVM, and we denote
this mean signed distance as dfit. Note that dfit is a positive
number [23]. Next, we define a range [−dfit, dfit] around
the decision boundary, and scale this range to [0, 1]. In this
scaled range < 0.5 is classified as outlier, and ≥ 0.5 as
inlier. For clarity, a value of 0 means that the object is
strongly considered an outlier, whereas a value of 1 means
that it’s strongly considered an inlier. A value of 0.5 lies on
the decision boundary, and it can be considered either inlier
or outlier.

Using the same OC-SVM model for a given object, we
compute the mean signed distance for the ng grasps for each
of the remaining test objects, clip them by dfit, and scale to
[0, 1] range. Given the normalized range, we compare how
strongly an object is classified as previously seen category
or a novel instance.

Experiment I: Human-directed Grasps: To test our
proposed method, we first generated a set of human-directed
grasps in which the objects were presented in a grasp pose
selected manually by the user to the touch-enabled gripper.
Each object was grasped by the robot at ng = 25 different
user selected pose configurations and the 3D tactile features
were recorded for each touch based interaction during the
grasping. We learned an OC-SVM model representation for
each object using the 3D features. For each learned OC-SVM
model (no = 11), we presented the unseen test set of no− 1
objects to the robot twice in random order not including
the particular object instance for which the OC-SVM model
was learned. The grasp poses for the unseen test set were
again selected manually by the user when the test objects
are presented to the touch-enabled gripper. For each object,
3D tactile features are computed for each tactile interaction,
which are then used by the learned OC-SVM model to make
seen category vs. unseen object instance predictions.

Table I shows the results for human-directed grasps using
the performance measure score explained above. We empha-
size that despite the appearance, this table should not be
confused with a typical confusion matrix. Almost all objects
will be strongly classified as seen, when presented again
to the tactile sensors (see the numbers along the diagonal).
Some of the off-diagonal entries are non-zero, but below 0.5,
and thus will be correctly classified as unseen. For example, a
novel instance of apple will not be mistaken for a previously
seen soda can (second row in Table I). However, some other
off-diagonal entries indicate that an unseen object may be
wrongly classified as seen. In the case of the glass oil bottle,
the box object is more strongly classified as oil bottle (fifth
row in Table I), and a novel instance of water bottle may be
classified as a seen soda can (second row in Table I). These



TABLE II
PERFORMANCE OF REAL ROBOT TACTILE CLASSIFICATION WITH AUTONOMY GRASPS. TABLE REPORTS SCALED MEAN SIGNED DISTANCE TO THE

DECISION BOUNDARY (0 MEANS THE OBJECT IS STRONGLY CONSIDERED AN OUTLIER, WHEREAS A VALUE OF 1 MEANS IT IS STRONGLY CONSIDERED

AN INLIER). SEE TEXT UNDER PERFORMANCE MEASURE AND EXPERIMENT II IN SECTION V FOR A MORE DETAILED EXPLANATION.

pc sc tb wb ob ap wg box kb le fb
paper cup (pc) 0.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
soda can (sc) 0.0 0.43 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tennis ball (tb) 0.0 0.0 0.38 0.0 0.0 0.64 0.0 0.0 0.0 0.0 0.0
water bottle (wb) 0.0 0.06 0.70 0.70 0.0 0.79 0.0 0.0 0.0 0.17 0.0
oil bottle (ob) 0.0 0.22 0.0 0.0 0.42 0.0 0.0 0.0 0.0 0.0 0.0
apple (ap) 0.0 0.0 0.0 0.0 0.0 0.20 0.0 0.0 0.0 0.0 0.0
wine glass (wg) 0.16 0.07 0.65 0.51 0.0 0.95 0.67 0.0 0.0 0.42 0.0
box 0.0 0.78 0.32 0.53 0.43 0.63 0.0 0.89 0.0 0.0 0.0
koala bear (kb) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.72 0.0 0.0
camera lens (le) 0.0 0.0 0.74 0.64 0.0 0.98 0.09 0.0 0.0 0.57 0.0
football (fb) 0.0 0.0 0.05 0.0 0.0 0.12 0.0 0.0 0.0 0.0 0.87

possible misclassifications are for objects with very similar
tactile characteristics. Please see Section VI for a further
discussion.

Experiment II: Autonomy Grasps: In this experiment we
used a learned grasp pose detector (GPD)[28] to calculate
grasp candidates and have the robot arm autonomously
execute a tactile-enabled palpation on the object for each
of the autonomy grasp candidates. The depth information
needed by the GPD is provided by the wrist mounted RGB-
D camera available on the Kinova Gen3 arm. The list of
grasp candidates as computed by GPD are ranked based on
a grasp quality index (see [28] for more details), and for
each element in the list we enforce restrictions on approach
angles relative to the robot base, inverse kinematics, and
grasp location relative to the table. It is important to note
that the particular choice of a grasp pose detector has no
impact to our system. In fact any grasp detection approach
capable of producing uniformly distributed grasp candidates
relative to an object pose will suffice.

In this exploratory experiment, the objects presented to the
robot were separated (not cluttered) so that we can group the
grasps candidates generated for each individual object. Fig.
4 shows examples of grasp candidates generated by the GPD
for some of the household objects used in our experiments.
Each experiments consists of at least ng = 15 palpations
per object, in descending order of grasp quality. Ideally, we
would have ng = 25 as seen in the the human-directed
grasps. However, the GPD only provide a limited number of
good quality grasp proposals. If after grasp selection pruning
we have ng < 15, we abort the experiment and retry with a
different camera point of view. Similar to Experiment I, we
learned an OC-SVM model representation for each object
using the 3D features which are computed on the autonomy
generated grasp palpations. For each learned model (no =
11), we then presented the unseen test set of no−1 remaining
objects to the robot twice in random order not including the
particular object instance for which the OC-SVM model is
learned. In this case, the robot autonomously generated grasp
poses on the test objects and then computed the 3D tactile

Fig. 4. Examples of grasp poses proposed by the GPD for koala bear,
soda can and wine glass. The arrows indicate whether the proposed grasp
is acceptable (green), or rejected (blue and magenta: unfeasible approach
angle, red: grasp too close to table, yellow: invalid inverse kinematics

features for each tactile interaction on the computed grasps,
which were then used by the learned OC-SVM model to
make predictions.

Table II shows the results for autonomy grasps using
the performance measure score. Again, this table does not
represent a typical confusion matrix. For autonomous grasps,
the classification performance is less compared to the human-
directed grasps of Table I. A novel instance of unseen apple
or tennis ball, may be misclassified as a seen water bottle
category (fourth row in Table II). A known instance of an
apple indicated low 0.2 performance value, yet it’s distance
is the only one which is even within the dfit range, as for
all other novel instances of objects the values along the row
are 0 (sixth row in Table II). For most objects the values
along the diagonal are highest, or among the higher values, in
the corresponding rows, indicating the capability to correctly
recognize object instances. We provide further discussion on
the results in the next section.

VI. DISCUSSION AND FUTURE WORK

Our envisioned system would take as input a cluttered
ensemble of unknown objects and perform classification
of objects into bins based on interactive tactile sensing.
The robot would grasp objects one at a time, interactively
manipulate them in a designated grasping area, and then
classify the object accordingly using the proposed approach.



In this paper we focus on the tactile representation learning
and classification in exploratory experiments, rather than
present a full manipulation system.

Our results are encouraging and it is important to note
that with local tactile sensing, objects of similar shape (e.g.
cylindrical) may be difficult to distinguish. For example, the
water bottle and lens, or the apple and tennis ball have very
similar local geometry and thus tactile sensing will produce
similar features for the particular grasps proposed by the au-
tonomous GPD. In addition, soft objects which may deform
drastically during grasping (for example, the football or a
paper cup) can also result in features that are not sufficiently
discriminative based on the sampled grasps. It is important to
get a good representation of the sampled grasps for the local
tactile feature to capture the global geometry of the object.
For example, as seen in the results a box may be misclassified
as a soda can or an oil bottle in scenarios when the sampled
grasps were on the flat sides of the box and oil bottle. This
fails to produce good VFH features and subsequent OC-
SVM representations. Moreover, for large enough cylindrical
objects, such a soda can, can be misclassified (for example,
as a box) primarily because its curvature is large compared
to the surface area of the tactile array. Ideally, our system
should identify novel objects through a mix of geometric
information and material properties (especially hardness and
texture). While a low resolution sensing device may limit the
minimum feature size we are manipulating, our preliminary
results show that a taxel pitch of 7.5mm is sufficient for a
variety of household objects.

In addition to OC-SVM for one class classification, we
also evaluated a one-class version of Gaussian Mixture
Model (OC-GMM) [29]. In order for OC-GMM to perform
well, pre-training to determine the decision boundaries or
a confidence threshold for classifying the objects as inliers
or outliers is required. However, any pre-training on all
object classes is precisely what we want to avoid, as we
focus on interactive and online learning about objects in an
unsupervised manner.

Results with our current hardware prototype are encourag-
ing. The average experiment time per object was typically 60
seconds. Only a small fraction of the time was spent learning
the OC-SVM model, while most of the time was spent in
performing interactive manipulation by the robot. We believe
that the performance can be improved further, since the
geometric features which can be resolved with the current
tactile sensors configuration are rather coarse. In future
work, we focus on prototyping a new version of the sensor
array which has a greater taxel density and use non-planar
tactile sensitive surfaces. Our choice of barometric pressure
taxels was due mostly to anthropomorphism to animal tactile
sensing where touch is primarily sensed by pressure and
temperature. The advantage of using a barometric device
becomes apparent while grasping hyper-elastic objects; while
the object deforms beyond its unloaded state and complies to
the gripper finger, the pressure applied to the array is propor-
tional to its undeformed geometry. Even though we severely
deform the object during manipulation, the tactile sensor can

determine, to some degree, the undeformed geometry from
the sensed pressure distribution.

We empirically chose a fixed number of sample grasps
to fit the OC-SVM in the case of autonomy grasps ex-
periment. Our future work will focus on a more thorough
evaluation of how many grasps, and particularly which grasp
poses should be selected autonomously to further optimize
the performance. Fewer, but more informative grasps are
preferred from a practical standpoint. The point cloud can
further be analyzed in terms of geometric properties (i.e. a
ridge or extrusion) and grasps proposed by the GPD near
those geometric properties could be favored for sampling
the object. Having a better reconstruction of the object under
consideration could also help with sampling. Furthermore, an
externally mounted depth sensor can overcome the limited
point cloud reconstructions or alternatively, the object may
also be scanned from different directions with the robot
mounted RGBD sensor.

VII. CONCLUSION

We have proposed a method to classify novel objects based
on tactile feedback, without the need of pre-training and
ground truth labels for supervision. Our proposed method
uses One-Class SVM to fit a set of features derived from
grasp pressure maps acquired from interactive tactile ma-
nipulation on objects, and subsequently classify instances
by interacting with the objects. In real robot experiments,
we have shown that the results of our proposed approach
are encouraging for classification of novel objects based on
interactive tactile sensing.
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