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Abstract
This paper proposes a stochastic optimizationbased energy and reserve bidding strategy for a
virtual power plant (VPP) with mobile energy storages, renewable energy resources (RESs)
and load demands at multiple buses. In the proposed bidding strategy, the energy markets
include the dayahead and real-time energy markets, and the reserve markets include operat-
ing, regulation up and regulation down reserve markets. In view of the differences of energy
and reserve prices, renewable generations and load demands between buses on the next day,
the mobile energy storages can be delivered to different buses for maximizing the VPP’s to-
tal expected profit considering its risk preference. In the stochastic optimization model for
generating the bidding strategies, the uncertain market prices, renewable power productions
and load demands are represented via scenarios, and the conditional value at risk (CVaR) is
used as the risk measure to manage the VPP’s risks in the worst case scenarios related to
a confidence level. Since the VPP may need to manage the risks related to multiple confi-
dence levels, the proposed model maximizes multiple CVaRs with different confidence levels.
Finally, case studies are carried out to verify the effectiveness of proposed bidding strategy
with mobile energy storages and multiple CVaRs.
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Abstract—This paper proposes a stochastic optimization-
based energy and reserve bidding strategy for a virtual power 
plant (VPP) with mobile energy storages, renewable energy 
resources (RESs) and load demands at multiple buses. In the 
proposed bidding strategy, the energy markets include the day-
ahead and real-time energy markets, and the reserve markets 
include operating, regulation up and regulation down reserve 
markets. In view of the differences of energy and reserve prices, 
renewable generations and load demands between buses on the 
next day, the mobile energy storages can be delivered to 
different buses for maximizing the VPP’s total expected profit 
considering its risk preference. In the stochastic optimization 
model for generating the bidding strategies, the uncertain 
market prices, renewable power productions and load demands 
are represented via scenarios, and the conditional value at risk 
(CVaR) is used as the risk measure to manage the VPP’s risks 
in the worst case scenarios related to a confidence level. Since 
the VPP may need to manage the risks related to multiple 
confidence levels, the proposed model maximizes multiple 
CVaRs with different confidence levels. Finally, case studies are 
carried out to verify the effectiveness of proposed bidding 
strategy with mobile energy storages and multiple CVaRs. 

Keywords— bidding strategies, energy markets, mobile energy 
resources, reserve markets, virtual power plant 

I. INTRODUCTION 
The deregulated electricity markets in North America are 

operated by independent system operators or regional 
transmission organizations for providing reliable electricity to 
the consumers and maximizing the total social welfare of all 
the market participants [1]. The energy markets consist of day-
ahead (DA) and real-time (RT) markets, which are the trading 
floors where the participants can buy or sell power 
strategically. The reserve markets, which mainly includes 
operating, non-operating and regulation reserve markets, are 
used to ensure the reliability of the power system operation, 
and all of these reserve markets have different clearing prices 
[2]. Therefore, it is a complicated portfolio optimization 
problem for market participants to maximize their total 
expected profits in multiple energy and reserve markets, 
where both the uncertain market prices and the properties of 
their physical assets should be considered. Moreover, in the 
last two decades, large scale intermittent renewable energy 
resources (RESs) have been integrated in the power grid, and 
these renewable power producers not only need to face the 
volatile energy and reserve prices, but also need to handle their 
uncertain renewable power productions [1]. To increase the 
economic benefits of multiple RESs, a framework of virtual 
power plant (VPP) has been proposed to manage the 
aggregated renewable energy and demand sources as a single 
participant in the electricity markets [4].  

There is abundant literature on developing the optimal 
bidding strategies used by the VPPs in the electricity markets, 

where different types of market frameworks and physical 
assets are taken into account [3]-[8]. In [3], a nonlinear mixed-
integer programming problem was established to generate a 
VPP’s bidding strategies in energy and operating reserve 
markets, which was solved by using genetic algorithm. The 
authors of [4] studied the VPP participating in the DA and RT 
energy markets, where the distributed energy resources and 
consumers with inelastic demands were considered. In [5] and 
[6], energy storages were utilized in the VPP’s optimal 
bidding strategies, where stochastic optimization and robust 
optimization were used to handle the uncertainties faced by 
the VPP, respectively. Additionally, in the bidding strategies 
proposed by the authors of [7] and [8], different types of 
demand response programs were developed based on the 
flexibility of the VPP’s load demands. In the existing 
literature, energy storages were used to handle the uncertain 
renewable energy productions and market prices. Energy 
storages can help the VPP arbitrage the price differences in 
different time periods, because the renewable power can be 
stored by the storages during the time periods when the market 
prices are low, and then be sold by the VPP during other time 
periods with higher prices. Considering its response speeds are 
usually fast enough for providing different types of reserve 
services, the VPP can also pursue higher profits by 
participating in multiple reserve markets.  

In the existing literature, the energy storages were located 
at fixed locations. However, the VPP may consists of multiple 
RESs and load demands at different buses, where the 
renewable power productions, load demands and market 
prices may be different, so the energy storages located at fixed 
buses may not sufficiently maximize of the VPP’s total 
expected profit in the multiple energy and reserve markets. In 
recent years, large scale mobile energy storages have been 
used for the distribution systems and microgrids [9] and [10]. 
In [9], a bi-objective optimization based method was proposed 
for a distribution system with RESs to utilize mobile battery 
energy storages, which was shown to be helpful for improving 
the system’s reliability. In [10], for the microgrids, the 
physical assets were modeled as shiftable loads and mobile 
energy storages, and a multi-objective optimization model 
was proposed to design the configuration of the microgrid. 
However, in the existing literature, the mobile energy storage 
has not been utilized or studied in the VPP’s optimal bidding 
strategies in the electricity market.  

To consider the uncertainty arising from market prices, 
renewable power productions and load demands of the VPP, 
stochastic optimization models are widely used to generate the 
bidding strategy in the market [5]. To manage the risks in the 
worst case scenarios, the conditional value-at-risk (CVaR) can 
also be used in the stochastic bidding strategies, whose value 
depends on the confidence level specified by the VPP. In the 
existing bidding strategies in the electricity market, only a 
single CVaR is used by the market participant, which means      Dongliang Xiao attended this research during his internship at MERL. 



only the risk related to one confidence level is considered. 
However, in practice, the risks related to multiple confidence 
levels may need to be considered when determining the VPP’s 
optimal bidding strategy with uncertainties. On the one hand, 
a VPP owner may be interested in controlling the risks related 
to multiple confidence levels. On the other hand, a VPP may 
be owned or managed by multiple decision makers, and they 
may care about the risks related to different confidence levels. 
Therefore, this paper proposes a stochastic optimization based 
energy and reserve bidding strategy for a VPP with mobile 
energy storages, in which multiple CVaRs with different 
confidence levels are used to measure and minimize the risks 
related to multiple confidence levels, and renewable energy 
resources (RESs) and load demands at multiple buses are 
considered.  

The contributions of this paper are as follows: 1) Mobile 
energy storages are utilized in a VPP’s optimal bidding 
strategies in multiple energy and reserve markets for the first 
time. 2) Multiple CVaRs with different confidence levels are 
optimized simultaneously in the proposed stochastic 
optimization model to minimize the risks related to multiple 
confidence levels. 3) The proposed model is formulated as a 
mixed integer linear programming (MILP) problem, which 
can be solved by using most of the existing solvers directly. 4) 
Comparative studies are carried out to verify the potential 
benefits of using mobile energy storages and multiple CVaRs 
for the proposed energy and reserve bidding strategy of the 
VPP. 

II. MARKET FRAMEWORK AND RISK MANGEMENT FOR 
THE VPP 

The VPP has both power generation and demand resources, 
it may either buy or sell power in the energy market, which 
depends on its real-time power generation and demand levels. 
Additionally, it can provide ancillary services in the reserve 
market, as long as its bidding capacities and response speed 
satisfy the reserve market requirements. The VPP can provide 
three types of reserves to the reserve market, including 
operating reserve, non-operating reserve, and regulation 
reserve. The operating and regulation reserve resources should 
be online and able to adjust power output within the required 
time frames, but the regulation reserves need to respond to 
power imbalances within a very short time period, which 
could be just several seconds. In contrast, the non-operating 
reserves could be offline and their response time is much 
longer than those of the operating and regulation reserves.  

In this paper, the VPP with mobile energy storages is 
assumed to participate in multiple energy and reserve markets. 
Considered that the non-operating reserve prices are usually 
lower than those of the operating and regulation reserves, the 
non-operating reserve market is not considered for the VPP in 
the proposed bidding strategy Therefore, the energy, operating 
reserve and regulation reserve markets are assumed to be the 
VPP’s trading floors, and the VPP is assumed to be a price-
taker due to its small generation and demand capacities, which 
indicates the energy and reserve prices are not affected by the 
VPP’s bidding strategies.  

There are two trading floors available for the VPP, which 
includes the DA and RT markets. In the DA market, the 
energy and reserve bids are submitted by the VPP one day 
before the operating day, and those bids are cleared at the DA 
energy and reserve prices. In the RT market, the RT power 
deviations, the deployed operating reserves and the deployed 
regulation reserves are all settled at RT electricity prices on 
the operating day. To maximize the total profits of the VPP, 
the mobile energy storages can be delivered to other buses 

during the first several hours of the operating day. In this 
circumstance, the operating and regulation reserve bids are 
limited by both the energy levels and delivery schedules of the 
VPP’s mobile energy storages. 

When generating bidding strategies in the markets, the 
VPP faces multiple uncertainties, including uncertain DA 
energy price, uncertain RT energy price, uncertain operating 
reserve price, uncertain regulation up/down reserve prices, 
uncertain renewable energy production, and uncertain load 
demand. All these uncertainties can be represented using a set 
of typical scenarios. To manage the risks introduced by those 
uncertainties, the VPP may take either a risk-neutral strategy, 
a risk-averse strategy, or a risk-seeking strategy to determine 
its stochastic bidding strategy. The risk-neutral strategy is 
seeking the maximization of expected profit over all the 
scenarios. In contract, the risk-aversion strategy might be 
willing to scarify the expected profits but avoid potential loss 
or low profits in some low profitable scenarios, and the risk-
seeking strategy might be willing to scarify the expected 
profits but avoid losing potential high profits for some high 
profitable scenarios. This paper only focuses on the risk-
aversion strategy. 

To quantity the bidding risks faced by a VPP, the CVaR can 
be used to measure the risks in the worst case scenarios. Each 
CVaR corresponds to a confidence level 𝛼! (0 < 𝛼! < 1) that 
specified by the decision maker. The CVaR with confidence 
level 𝛼! can be denoted as 𝐶𝑉𝑎𝑅"!, whose value is equal to 
the expected profit of the (1 − 𝛼!) × 100% least profitable 
scenarios. Considered that the decision maker might need 
examining risks at different confident levels, multiple CVaRs 
are used in this paper corresponding to different confidence 
levels. The risk-aversion VPP can determine its bidding 
strategy by maximizing a weighted sum of expected profit 
over all uncertain scenarios and multiple CVaRs 
corresponding to different sets of least profitable scenarios. 
The weight assigned to each 𝐶𝑉𝑎𝑅"!  measures the risk 
aversion degree of the VPP. A larger risk aversion degree for 
𝐶𝑉𝑎𝑅"! indicates the VPP is more risk averse, who is willing 
to decrease the total expected profit of all the scenarios to 
improve the expected profit of the (1	 −	𝛼!) × 100% worst 
scenarios. By doing so, the total expected profit and multiple 
CVaRs can be maximized simultaneously by using the 
proposed stochastic optimization model as described in next 
section. 

III. PROPOSED STOCHASTIC OPTIMIZATION MODEL 
A stochastic optimization model is proposed for 

generating the bidding strategies for the VPP on the next day. 
The objective function of proposed model is to maximize the 
weighted sum of the total expected profit and the CVaRs with 
different confidence levels,	𝜋#$#%& as described in (1): 
max
'
	𝜋#$#%& = 𝛽(∑ 𝑝𝑟)8𝜋)*+ + 𝜋),- + 𝜋)

./0 − 𝐶)+*1 −)∈3

𝐶4/&5 − 𝐶56!#: + ∑ 𝛽!𝐶𝑉𝑎𝑅"!!∈1 													(1)  
where Ξ is the set of decision variables. 𝑊 and 𝑆 are the sets 
of uncertain scenarios and CVaR scenarios, respectively. 𝛽( 
is the weight assigned to the expected profit, and 𝛽!  is the 
weight, i.e. risk aversion degree assigned to CVaR scenario s 
with confidence level 𝛼! . All weights in the objective 
function should satisfy (𝛽( +∑ 𝛽!!∈1 ) = 1 . 	𝑝𝑟)  is the 
probability of uncertain scenario w. 𝜋)*+ , 𝜋),-  and 𝜋)

./0are 
total revenues obtained from the DA and RT energy markets, 
the operating reserve market, and regulation reserve markets 
for scenario w, respectively. 𝐶)+*1 , 𝐶4/&5  and 𝐶56!#  are the 
total expected costs of energy storage operation, energy 



storage delivery, and energy storage installation for scenario 
w, respectively. 

The expected profit for scenario w is equal to the total 
expected revenue minus the total expected cost. The total 
expected revenue for scenario w is the sum of the revenue in 
the energy market 𝜋)*+ , the revenue in operating reserve 
market 𝜋),- , and the revenue in regulation reserve market 
𝜋)
./0, which are calculated using (2)-(4): 
𝜋)*+ = ∑ ∑ (𝜆6#)78 𝑃6#78 + 𝜆6#)-9 𝑃6#)-9: − 𝜆6#)-9 𝑃6#)-9;)6∈<#∈9  (2) 

𝜋),- = ∑ ∑ (𝜆6#),- 𝑃6#,- + 𝜂6#,-𝜆6#)-9 𝑃6#,-)6∈<#∈9          (3) 
𝜋)
./0 = ∑ ∑ A𝜆6#)

./0,>?𝑃6#
./0,>? + 𝜆6#)

./0,4$)6𝑃6#
./0,4$)6 +6∈<#∈9

𝜆6#)-9 8𝜂6#
./0,>?𝑃6#

./0,>? + 𝜂6#
./0,4$)6𝑃6#

./0,4$)6:B         (4) 
where, 𝑇 is the set of  time periods for the next day, 𝑁 is the 
set of buses associated with VPP’s resources and loads, 
𝜆6#)78 ,	𝜆6#)-9 ,	𝜆6#),- , 𝜆6#)

./0,>? and 𝜆6#)
./0,4$)6 are DA energy price, 

RT energy price, operating reserve price, regulation up 
reserve price, and regulation down reserve price at bus n and 
time period t for scenario w. 𝑃6#78 , 𝑃6#,- , 𝑃6#

./0,>?	  and  
𝑃6#
./0,4$)6  are the power bid in DA energy market,  the 

operating reserve bid, and the regulation up and down reserve 
bids at bus n and time period t. 𝑃6#)-9:  and 𝑃6#)-9;  are the 
positive and negative RT deviations at bus n and time period 
t. 𝜂#6,- , 𝜂#6

./0,>?  and 𝜂#6
./0,4$)6  are the percentages of the 

deployed operating, regulation-up, and regulation-down 
reserves at bus n and time period t. 

 The total expected cost for scenario w is the sum of the 
energy storage operation cost 𝐶)+*1, energy storage delivery 
cost 𝐶4/&5  and energy storage installation cost 𝐶56!# , which 
are calculated using (5)-(7): 

𝐶)+*1 = ∑ ∑ ∑ 𝑂𝐶@8𝑃@6#)
45!,-9 + 𝑃@6#)

AB,-9:@∈C6∈<#∈9     (5) 
𝐶4/&5 = ∑ ∑ ∑ 𝐷𝐶@@∈C 𝑑D6𝑏@D

*1,(𝑏@6*1D∈<6∈<         (6) 
𝐶56!# = ∑ ∑ ∑ 𝐼𝐶@@∈C 𝑏@D

*1,(𝑏@6*1D∈<,DE66∈<        (7)  
where, 𝐾 is the set of mobile energy storages for the VPP, 
𝑃@6#)
AB,-9and 𝑃@6#)

45!,-9 are the RT charge and discharge power of 
energy storage k at bus n and time period t.  𝑂𝐶@,	𝐷𝐶@ and 
𝐼𝐶@ are the operation cost of per unit power, the delivery cost 
(i.e. fuel and labor) of per unit distance, and the installation 
cost (i.e. labor) per times for energy storage k. 𝑏@6*1 is a binary 
variable, which is equal to 1 if the energy storage k is 
delivered to bus n, otherwise 0. 𝑏@D

*1,( is the initial status of 
𝑏@D*1  at the beginning period. 𝑑D6  is the delivery distance 
between bus m and n. 

In (6), the energy storage delivery cost is proportional to 
the delivery distance 𝑑D6 if it is delivered from bus m to bus 
n. In (7), the installation cost is zero, if the energy storage 
does not reallocate to a different bus on the next day. 

The 𝐶𝑉𝑎𝑅"!  is equal to the expected profit of the 
(1 − 𝛼!) × 100% least profitable scenarios, and calculated 
as: 

𝐶𝑉𝑎𝑅"! = 𝜁! −
F

F;"!
∑ 𝑝𝑟)𝜂)!)∈3                          (8) 

where, 𝜁!  and 𝜂)!  are the ancillary variables used for 
calculating  𝐶𝑉𝑎𝑅"!, which are subject to the constraints of 
(9) and (10): 

𝜂)! ≥ 0                                            (9) 
𝜁! − 𝜂)! ≤ 𝜋)*+ + 𝜋),- + 𝜋)

./0 − 𝐶)+*1 − 𝐶4/&5 − 𝐶56!#	(10) 
The detailed explanations for the formulation of calculating 
𝐶𝑉𝑎𝑅"!  are provided in [11]. (8)-(10) can also be used to 
model the risk-seeking strategy with slight modifications. 

The stochastic optimization model is further subject to a 
set of constraints (11)-(28) regarding real-time power and 

energy balance, bidding capacities, mobile energy storage 
delivery schedule and capacity limits. 

Constraint (11) ensures the RT power balance of the VPP 
at each bus, where the total power sold to the energy and 
reserve markets should be equal to the RT renewable power 
productions and the discharged power of the energy storages 
minus the load demand consumption and the charged power 
of the energy storages:  

𝑃!"#$ + 𝜂!"%&𝑃!"'%& + 𝜂!"
()*,,-𝑃!"

()*,,- − 𝜂!"
()*,./'!𝑃!"

()*,./'! +
𝑃!"'&01 − 𝑃!"'&02 = ∑ 𝑃3"'&453∈7!" +∑ '𝑃!8"'

.39,&0𝜂8
.39,45 −8∈:

𝑃!8"'
;<,&0 𝜂8

;<,45( ) − ∑ 𝑃="'>#=∈7!
#           (11) 

where, 𝛹6G  and 𝛹6
H  are the sets of the RESs and demands 

located at bus n. 𝑃3"'&45 and 	𝑃="'>#  are the generation output of 
renewable resource 𝑖 , and the power consumption of load 
demand 𝑗  at time period 𝑡  for scenario w, 
respectively. 𝜂@

AB,*1 and 𝜂@
45!,*1  are the charging, and 

discharging efficiencies of energy storage k, respectively.	 
Constraints (12)-(17) ensures the lower and upper bounds 

of the bidding capacities in the DA energy market, RT energy 
market, operating reserve market, regulation up reserve 
market and regulation down reserve market: 

𝑃78,D56 ≤ 𝑃6#78 ≤ 𝑃78,D%I                    (12) 
0 ≤ 𝑃6#)-9: ≤ 𝑀𝑏6#)-9                               (13) 

0 ≤ 𝑃6#)-9; ≤ 𝑀(1 − 𝑏6#)-9 )                        (14) 
0 ≤ 𝑃6#,- , 𝑃6#

./0,>?                            (15) 
𝑃6#,- + 𝑃6#

./0,>? ≤ ∑ 𝜂@
45!,*1𝑃@6#)

45!,-9
@∈C           (16) 

0 ≤ 𝑃6#
./0,4$)6 ≤ ∑ 𝑃@6#)

AB,-9 𝜂@
AB,*1T@∈C               (17) 

where, 𝑃78,D%I and 𝑃78,D56 are the upper and lower bounds 
of the bidding capacity in the DA energy market for the VPP. 
M is a large enough constant. 𝑏6#)-9 	is a binary variable, which 
is equal to 1 if the RT power deviation of the VPP is positive 
at bus n in time t for scenario w otherwise 0. 

In (12), the lower and upper bounds of the DA bidding 
capacities are limited by the VPP’s credits and the total 
generation and demand capacities. (13) and (14) ensure either 
the positive or the negative RT power deviation of the VPP is 
zero. (16) and (17) limit the reserve bidding capacities based 
on the charging and discharging power capacities of the 
energy storages, because it is assumed only the energy 
storages satisfy the requirements of providing the reserve 
services. 

Constraint (18) ensures that each energy storage can be 
located at only one of the VPP’s buses:  

∑ 𝑏@6*16∈< = 1                                  (18) 
Constraints (19)-(21) limit the energy level of the energy 

storages in each time period t considering their initial 
locations: 

𝐸@6#) = 𝑏@6*1𝐸@
C,( + (𝑃@6#)

AB,-9 − 𝑃@6#)
45!,-9)∆𝑡 	𝑖𝑓	𝑡 = 1  (19) 

𝐸@6(#:F)) = 𝐸@6#) + (𝑃@6#)
AB,-9 − 𝑃@6#)

45!,-9)∆𝑡	∀𝑡 > 1  (20) 
0 ≤ 𝐸@6#) ≤ 𝐸@

C,D%I𝑏@6*1                           (21) 
where, 	∆𝑡  is the duration of time period, 𝐸@6#)  is the RT 
energy level of storages k in time t in scenario w, and 𝐸@

C,( 
and 𝐸@

C,D%I are the initial and maximum energy capacities for 
energy storage k. 

Constraints (22)-(26) limit the power charging and 
discharging capacities considering the energy storage 
delivery status in the first several hours on the next day: 

𝑃@6#)
45!,-9 + 𝑃@6#)

AB,-9 ≤ 𝑃@
C,D%I𝑏@6*1                (22) 

∑ 𝑃@6#)
45!,-9

@∈C ≤ 𝑀(1 − 𝑏6#)AB )               (23) 
∑ 𝑃@6#)

AB,-9
@∈C ≤ 𝑀𝑏6#)AB                     (24) 

0 ≤ 𝑃@6#)
AB,-9 ≤ 𝑀∑ 𝑏@D

*1,(𝑓D6#D∈<               (25) 
0 ≤ 𝑃@6#)

45!,-9 ≤ 𝑀∑ 𝑏@D
*1,(𝑓D6#D∈<              (26) 



where, 𝑏6#)AB  is a binary variable, which is equal to 1 if the 
energy storages at bus n are charging at time period n for 
scenario w, and 0 if discharging. 𝑓D6# is a binary parameter, 
which is equal to 0 if the energy storage is on the way of being 
delivered from bus m to bus n otherwise 1.  

Specifically, (25) and (26) indicate that the energy storage 
cannot charge or discharge power during the delivery 
process, where the parameter 𝑓D6#  (if 𝑚 ≠ 𝑛) is calculated 
using (27): 

𝑓D6# = ]0, 𝑡 ≤ 𝐷D6/𝑣
1, 𝑡 > 𝐷D6/𝑣

								∀𝑚, 𝑛, 𝑡        (27) 
where 𝑓D6# is equal to 0 if the time 𝑡 is less than the time of 
delivering the energy storage from bus m to n, and the energy 
storage cannot be charged or discharged in time period 𝑡. v is 
the driving speed of the carrier of the energy storages. The 
efficiency of the bidding strategy can be improved by 
increasing the carrier delivery and installation speed. 

Constraint (28) address the binary variables used in the 
optimization model: 

𝑏@6*1, 𝑏6#)-9 , 𝑏6#)AB ∈ {0,1}        ∀𝑘, 𝑛, 𝑡, 𝑤      (28) 
Therefore, after calculated the modeling parameters base 

on (27), the optimization model (1)-(28) can be solved as a 
mixed integer linear programming (MILP) problem. By 
doing so, the optimal energy and reserve bidding strategies 
for the VPP and the delivery schedules for the mobile energy 
storages can be generated simultaneously considering the 
VPP’s risk preference.  

IV. CASE STUDIES 

A. Simulation Setup 
To verify the proposed energy and reserve bidding strategy, 

case studies are carried out for a VPP with load demands and 
RESs located at three buses, and the distances between any 
two buses are 30 km. The VPP participates in the Southwest 
Power Pool’s energy and reserve markets. It has two identical 
mobile energy storages (e.g. batteries), and each with 8 MWh 
maximum energy capacity and 4 MW maximum power 
capacity. The charging and discharging efficiencies of energy 
storages are 0.9 respectively. The energy storage operation 
cost is $4/MW, delivery cost for the carrier is $2/km, and 
installation cost of the energy storage is $8. The speed of the 
energy storage carrier is initially set to be 20 km/h. The 
historical energy and reserve prices are obtained from the 
Southwest Power Pool (SPP) Market [12]. The historical 
wind power data are obtained from the National Renewable 
Energy Lab (NREL) [13] website, and the historical demand 
data are the residential demand data of a utility company [14]. 
The percentages of the reserves deployed in the RT market 
are all set to be 0.9. In the studied cases, 40 scenarios of the 
uncertain parameters are generated by using the latest 
historical data of 40 days directly. The proposed MILP 
problem is solved by using Yalmip toolbox [15] and Gurobi 
7.0 in MATLAB [16]. 
B. Results of the Proposed Bidding Strategy with Mobile 

Energy Storages  
The stochastic optimization based bidding strategy is first 

generated for the VPP with mobile energy storages initially 
located at Bus 3. The VPP has considered CVaRs with 
confidence levels 0.8 and 0.95 as its risk measures, and 
assigned 0.9, 0.05 and 0.05 as the weights to the total 
expected profit, 𝐶𝑉𝑎𝑅(.M and 𝐶𝑉𝑎𝑅(.NO, respectively.  

Fig. 1 gives the expected values of the renewable power 
productions and load demands of the VPP. As shown in Fig. 
1, the renewable power productions at Bus 1 are higher than 
those at the other two buses on the next day, and renewable 

power productions at these three buses are more stochastic 
than the load demands.  

Fig. 2 gives the expected values of the energy and reserve 
prices. As shown in Fig. 2, the RT energy prices are more 
volatile than the DA energy prices, because the price spikes 
are more likely to occur in the RT markets due to some 
unexpected events in the power systems, such as the power 
outages caused by extreme weather events. 

 
Fig. 1. The expected renewable productions and demands at three buses  

 
Fig. 2. The expected energy and reserve prices at three buses 

By solving the model (1)-(28) for the studied case, the 
results of the stochastic bidding strategies for one day are 
obtained. Fig. 3 and 4 have provided the expected values of 
the bidding capacities and energy levels of the storages, 
respectively. It is shown that even though the energy storages 
are initially located at Bus 3, the reserve bids are submitted at 
both Bus 1 and Bus 3, and the energy level of the storages at 
Bus 1 is positive. These results indicate one of the VPP’s 
energy storages is moved from Bus 3 to Bus 1, where 
renewable power productions are higher than those at Bus 2 
and 3. 

To further analyze the advantages of using mobile energy 
storages for the VPP, the stochastic optimization bidding 
strategy is also generated for the same VPP but with non-
mobile energy storages, where the storage locations are fixed 
at the initial buses by setting the delivery speed to be zero. 
Table I gives the comparisons of the total expected profit and 
CVaRs of the VPP obtained by using different bidding 
strategies, where v=0 means the energy storages are located 
at the initial buses and cannot be moved on the next day. 

Table I shows that the total expected profit, 𝐶𝑉𝑎𝑅(.M and 
𝐶𝑉𝑎𝑅(.NO in Case 2 are $10, $500 and $849 higher than those 
in Case 1, respectively, which indicates the mobile energy 
storages can not only increase the expected profit, but also 



decrease the risk in the worst scenarios for the VPP. 
Additionally, to study the impacts of the VPP’s risk 
preference on the bidding strategy, Case 3 is designed by 
setting 𝛽(, 𝛽F and 𝛽P to be 0.95, 0.025 and 0.025, respectively. 
Compared to Case 1, the improvements of total expected 
profit,  𝐶𝑉𝑎𝑅(.M  and 𝐶𝑉𝑎𝑅(.NO in Case 4 are $18, $430 and 
$732, respectively, which indicates when the VPP is less risk 
averse, the CVaR improvements obtained by using the 
mobile energy storages are decreased. 

 
Fig. 3. The expected energy and reserve bidding capacities of the VPP 

 
Fig. 4. The expected energy levels of the energy storages at three buses 

TABLE I. THE TOTAL EXPECTED PROFIT AND CVARS  
OF THE VPP FOR CASES 1-3 

Case 
No. 

𝜷𝟎 𝜷𝟏 𝜷𝟐 v 
(km 
/h) 

Total 
expected 
profit($) 

𝑪𝑽𝒂𝑹𝟎.𝟖 
($) 

𝑪𝑽𝒂𝑹𝟎.𝟗𝟓 
(S) 

1 0.9 0.05 0.05 0 12204 4870 3457 
2 0.9 0.05 0.05 20 12214 5370 4351 
3 0.95 0.025 0.025 20 12222 5300 4189 

C. Compare the Bidding Strategies with Single and 
Multiple CVaRs 
To verify the effectiveness of using multiple CVaRs in the 

proposed bidding strategy, Case 4 and 5 are designed by 
setting 𝛽F or 𝛽P to be zero, respectively. Table II gives the 
comparisons of the simulations results of Case 2, 4 and 5. 

TABLE II. THE TOTAL EXPECTED PROFIT AND CVARS  
OF THE VPP FOR CASES 2,4-5 

Case 
No. 

𝜷𝟎 𝜷𝟏 𝜷𝟐 v  
(km 
/h) 

Total 
expected 
profit ($) 

𝑪𝑽𝒂𝑹𝟎.𝟖 
($) 

𝑪𝑽𝒂𝑹𝟎.𝟗𝟓 
(S) 

2 0.9 0.05 0.05 20 12214 5370 4351 
4 0.9 0.1 0 20 12222 5300 4189 
5 0.9 0 0.1 20 12209 5269 4416 

In Case 4, since 𝛽P is set to be zero and 𝐶𝑉𝑎𝑅(.NO is not 
optimized in the stochastic optimization model, the 𝐶𝑉𝑎𝑅(.NO 
is $162 lower than that in Case 2. In Case 5, since 𝛽F is set to 
be zero and 𝐶𝑉𝑎𝑅(.M 	is not optimized in the stochastic 
optimization model, the 𝐶𝑉𝑎𝑅(.M is $101 lower than that in 

Case 2. Therefore, the simulation results in Table 2 show that 
the multiple risks related to different confidence levels can be 
optimized simultaneously by using the proposed bidding 
strategy. Additionally, the expected profit in Case 4 is the 
higher than that in Case 5, and it shows that maximizing the 
𝐶𝑉𝑎𝑅(.M does not decrease the total expected profit as much 
as maximizing the 𝐶𝑉𝑎𝑅(.NO , because 𝐶𝑉𝑎𝑅(.M  is closer to 
the expected profit of all the scenarios than 𝐶𝑉𝑎𝑅(.NO. 

V. CONCLUSIONS 
This paper proposed a stochastic energy and reserve 

bidding strategy for a VPP with mobile energy storages, 
which has RESs and load demands at multiple buses. In the 
proposed stochastic optimization model, the uncertainties 
faced by the VPP were represented via scenarios, and 
multiple CVaRs with different confidence levels were 
maximized simultaneously considering the VPP’s risk 
preference.  

Case studies have been carried out for a VPP participating 
in the Southwest Power Pool’s energy and reserve markets, 
and the effectiveness of proposed bidding strategy using 
mobile energy storages and multiple CVaRs were verified via 
case studies. The simulation results showed that the total 
expected profit was increased and the risks were decreased 
for the VPP by using the mobile energy storages instead of 
the stationary ones. Moreover, by using the proposed bidding 
strategy, multiple CVaRs can be maximized simultaneously 
in the model considering the VPP’s risk preferences in the 
energy and reserve markets. 
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