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Abstract
We propose a novel Conditional Variational Autoencoder (CVAE) model for designing nanopat-
terned integrated photonic components. In particular, we show that prediction capability of
the CVAE model can be significantly improved by adversarial censoring and active learn-
ing. Moreover, generation of nanopatterned power splitters with arbitrary splitting ratios
and 550 nm broadband optical responses from 1250 nm to 1800 nm have been demonstrated.
Nanopatterned power splitters with footprints of 2.25 x 2.25 um2 and 20 x 20 etch hole
positions are the design space, with each hole position assuming a radius from a range of
radii. Designed nanopatterned power splitters using methods presented herein demonstrate
an overall transmission of about 90% across the operating bandwidth from 1250 nm to 1800
nm. To the best of our knowledge, this is the first time that a state-of-the-art CVAE deep
neural network model has been successfully used to design a physical device.
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We propose a novel Conditional Variational Autoencoder
(CVAE) model for designing nanopatterned integrated pho-
tonic components. In particular, we show that prediction
capability of the CVAEmodel can be significantly improved
by adversarial censoring and active learning. Moreover, gen-
eration of nanopatterned power splitterswith arbitrary split-
ting ratios and 550 nm broadband optical responses from
1250 nm to 1800 nm have been demonstrated. Nanopat-
terned power splitterswith footprints of 2.25×2.25 µm2 and
20 × 20 etch hole positions are the design space, with each
hole position assuming a radius from a range of radii. De-
signed nanopatterned power splitters using methods pre-
sented herein demonstrate an overall transmission of about
90%across the operating bandwidth from 1250 nm to 1800 nm.
To the best of our knowledge, this is the first time that
a state-of-the-art CVAE deep neural network model has
been successfully used to design a physical device.
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Optimization of nanopatterned photonic devices is an active area of research
where several optimization methods have been proposed. For example, direct
binary search (DBS) [1, 2, 3], genetic algorithm [4, 5], and particle swarm optimiza-
tion [6], etc. have been used for various optimization applications; each shown to
have unique advantages. All of these methods, however, usually involve a large
amount of time and computing resources. For example, a DBS optimization setup
with 20 × 20 hole vectors has an extremely large number of possible combina-
tions (2400), which requires many electro-magnetic (EM) simulations such as finite-
difference time-domain (FDTD) computations. In order to reduce such heavy EM
simulation load, machine learning (including deep learning) is becoming more pop-
ular to assist the design process of photonic devices to accelerate the underlying
optimization process in the past few years. Recent successes of deep learning
in modeling complex input-output relationships in spatial-temporal data have in-
spired the idea of intuitive physics engines that can learn physical dynamics in
mechanics [7, 8, 9], material discovery [10, 11, 12], particle physics [13], and op-
tics [14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25].

Deep neural network (DNN) approaches may require large amounts of data for
training and could often be notoriously difficult to train. However, once the net-
work is trained properly, the execution of forward propagation on the trained net-
work can bemuch faster than expensive EM simulations (e.g., orders of magnitude
faster than EM simulations). A critical criterion for the application of such learning-
based models for physical systems is their generalization capability to problems
beyond the training data set. Such generalization capability would enable the use
of artificial neural network (ANN) models as a forward design optimization engine
that is trained on a limited partially optimized data set.

In the field of integrated photonics, there have been several attempts in using
machine learning methods for nanopatterned photonic design. We previously de-
veloped an artificial intelligence integrated optimization process usingNN that can
accelerate optimization by reducing the number of numerical simulations involved
in the optimization process [24, 25]. Moreover, Tahersima et al. [14] used DNN
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models in the forward/backward directions, i.e., correlate target performance data
(such as transmission spectra) and device design. TheDNNmodels used (i.e., resid-
ual networks), however, involved one-to-one mapping that generates only one de-
vice for each performance criterion. Previous demonstrations have shown meth-
ods for design/optimization of binary pixels (i.e., fixed-size etch hole being present
or not). Here, we demonstrate a multilevel pixel structure (i.e., multi etch hole di-
mensions) that is a more complex optimization problem than previous studies and
requires more sophisticated optimization algorithms.

In the field of metamaterials, a few studies have been proposed to use gen-
erative networks for designing nanopatterned metamaterial. A generative net-
work can provide a series of well-optimized patterns based on random initial con-
ditions. Liu et al. and An et al. have applied the Generative Adversarial Networks
(GAN) [15, 26] andMa et al. has employed the Variational Autoencoder (VAE) [23]
for such applications. Inspired by these works, we first developed a model that
uses a Conditional Variational Autoencoder (CVAE) [27] in the design of a nanopat-
terned power splitter application. One advantage of the VAE-based models com-
pared to some other generative networks (i.e., GAN) is that it takes into account
a probability distribution of the initial data for the generation of new data (i.e.,
nanopatterned power splitter geometries). Thismakes the generated pattern obey
the physics (the general light propagation path) while having the variance with de-
tailed pattern parameters.

The VAEs allow us tomodel a distribution of the nanopatterned power splitters
with various splitting ratios. Therefore, VAE can generate novel patterns subject to
the same distribution using variational data sampling. When conditions (i.e., opti-
cal responses) are supplied in conjunction with the latent variables, a VAE evolves
into a CVAE, which enables generation of patterns satisfying given target optical
responses. For the arbitrary power splitting application, we have included differ-
ent hole sizes to define the geometrical structure of the nanopatterned power
splitters. Doing so, the generated power splitter can have additional control pa-
rameters in wave-guiding an incoming beam by varying phase control and am-
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plitude control at each hole position by determining a radius for the hole. We
demonstrate that the additional control parameters can yield generated power
splitter designs with a flat spectrum response across a wide bandwidth.

However, one major drawback of the CVAE model itself is that the target per-
formance data (i.e., the condition) leaks into the patterns after the training. This
degrades the quality of the geometrical design, leading to non-ideal performances.
In order to circumvent this issue, we explore adding an adversarial block [28] to
isolate the pattern from the device optical performance (transmission and reflec-
tion spectra) during the training to further improve the generation performance of
the decoder of the machine learning model, as presented herein. We call this the
Adversarial CVAE (A-CVAE). Even though the A-CVAEwas originally applied to im-
age attribute adjustment [29], the character style transfer problem [28], and brain
wave classification problem [30], this paper is the first time that the A-CVAE was
successfully applied to a design problem of any physical device, and nanophotonic
devices in particular.

The design space of the nanopatterned power splitters has a footprint of 2.25×
2.25µm2 with a 20× 20 etch hole positions. We confirm that the optimized device
has an overall performance close to 90% across all the bandwidth from C-band to
O-band (1250 nm to 1800 nm). To the best of the authors’ knowledge, this is the
smallest broadband power splitter with arbitrary ratios.

Figure 1a shows an exemplary footprint of a nanopatterned power splitter and
Figure 1b shows a Transverse Electric (TE) mode propagating inside the input port
and the two output ports. The nanopatterned power splitters are silicon photonic
devices, each having a square section with a footprint of 2.25 × 2.25 µm2. Each
device has an input port and two output ports that are all 2 µm long, tapered and
connected at one end to optical waveguides with a width of 500 nm and a height
of 220 nm and connected to an square section of that device at the other end. The
square section includes 20× 20 Hole Vector (HV) to define geometrical structures
of the device. The silicon photonic device is built on top of a 2 µm-thick silicon
dioxide on a silicon substrate, and is covered with silicon oxide cladding. Hole
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spacings are 112 nm from center to center of each hole position, and themaximum
and minimum hole diameters are 77 nm, and 42 nm respectively, corresponding to
the variable value of 1 and 0.3, with hole area proportional to the variable. If
the variable is below 0.3, there is no hole. The HV training data only consist of
binary numbers initially and is obtained through the direct binary search method.
Note that the VAE models the probabilistic distribution for the different HV, each
generated value of the HV is a Bernoulli distribution. In order to best reflect the
result, continuous variable hole sizes are used to represent the probability of the
appearance of etch holes at certain locations.
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F IGURE 1 Schematic of the power splitter. a) Top view, whereT1 andT2 denote the modal transmissions of
output ports 1 and 2, and R denotes the reflection at input port. b) Cross-section of the input/output waveguide.

The network configuration of the CVAE is shown in Figure 2a. The original
HVs are passed to two convolutional layers and reduced to two sets of interme-
diate parameters of a probability density function (PDF), representing the means
µ := (µ1, . . . , µJ ) and standard deviations σ := (σ1, . . . ,σJ ). In order to make the
back propagation possible for the network, a reparameterization method is ap-
plied, described by the following equation:

zi = µi + σi εi , (1)

where εi are independent and identical distributed samples drawn from the stan-
dard Gaussian distribution. After the reparameterization process, the latent vari-
able z := (z1, . . . , zJ ) is concatenatedwith the encoded condition parameter s (the
dimension reduced from the original 63 to 9 through one fully connected layer) to
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F IGURE 2 a) The CVAE model structure, wherein the input is the 20 × 20 hole vector. The first convolutional
layer has 16 channels with a kernel size of 3. The second convolutional layer has 32 channels with a kernel of 3. The
condition s is the transmission and reflection spectra obtained from the FDTD simulation to form a 3 × 21 matrix,
and is fed to the latent variable through a fully connected (FC) layer. b) The A-CVAE model structure, wherein the
input right now becomes the two channels of 20 × 20 hole vector, where the first channel is the hole vector of the
device and the second channel is the decoded spectra data. The main difference from a) is that one adversarial block
is added, which is composed by two FC layers. c) The active learning method added for the A-CVAE method, where
1000 newly generated continuous variable data are added to the original 15,000 binary training data. d) One sample
training data, wherein the left figure is the pattern (hole vector) and the right figure shows the three spectra of the
training device (the transmission for the two ports and the reflection). Each spectra response has 21 data points,
which will be fed into the network as the Optical response.
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deconvolute back to the HV. Here the condition input is the optical response for
the device including the transmission spectra of the two ports. and the reflection
spectra (shown in Figure 2d). Each spectra has 21 data points which make the
total condition input with the dimension of 63. The loss function is constructed
by two parts: a) a cross-entropy loss between the original HV x := (x1, . . . , xn )
and the decoded HV y := (y1, . . . , yn ), and the Kullback–Leibler (KL) divergence
between the latent variables and the Gaussian prior. The equation of loss function
is shown as follows:

Loss = −
n∑
i=1

[
yi log xi + (1 − yi ) log(1 − xi )

]
+
1

2

J∑
j=1

[
µ2j + σ

2
j − log(σ

2
j ) − 1

]
. (2)

Convolutional neural networks (CNN) have been shown to be effective in han-
dling geometrical input data [20, 21, 23, 31]. In this work, we use two convolu-
tional layers both for the encoder and the decoder. The number of channels for
the two layers are 16 and 32, and the max pooling stride is 2, after that there is
one fully connected layer to reduce the latent variable to 63. The output is then
concatenated with the performance data and feed them into the decoder. The
validations are calculated by using the EM simulation to verify a figure of merit
(FOM) of generated patterns, where the FOM is calculated by:

FOM = 1 − 10 ×
∫ λmax

λmin

[��T1(λ) −T ?1 (λ)��2 + ��T2(λ) −T ?2 (λ)��2 + α × R 2(λ)
]
dλ. (3)

where T1(λ), T2(λ), R (λ), and [·]? denote transmissions of output ports 1 and 2,
reflection at input port at a given wavelength λ, and corresponding target values,
respectively. The target values are the desired optical performances. For example,
for the 6 : 4 type device, we set T1(λ) = 60%, T2(λ) = 40% and R (λ) = 0. α is a
weighting factor where α = 4 is used to balance between the contributions from
transmission and the reflection. We take the average of FOM over the FDTD
simulation spectral range. As T1(λ) and T2(λ) approach their target spectra, and
as R (λ) decreases, the FOM increases. For an ideal power splitter with no excess
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loss and no reflection, the FOM should be 1.

Figure 3 shows the training loss and the validation result as a function of the
training iterations. The solid black line represents the training loss and the solid
blue line represents the trend for validations for the CVAE model. The plot shows
that the training result approaches its optimal point when the epoch number is
between 10 to 15. The validation results further decreased beyond the epoch
number of 30. Here, we used about 15,000 binary training data, including power
splitters semi-optimized by DBS with the target splitting ratios of 5 : 5, 6.5 : 3.5,
and 1 : 0. The validation result is an FOM calculated over 20 devices of each type.

F IGURE 3 The general model performance (training loss and validation result) with different epoch number, for
both CVAE and A-CVAE model. Regarding the validation, the FOM is calculated after running FDTD simulation for
different generated HV patterns. It shows that the model has generally good performance when the epoch number
is between 5 and 15.

The mechanism of applying the trained CVAE model is to feed the trained de-
coder with the desired condition along with the latent variable following the nor-
mal distribution, by which a series of updated designs are generated as the output
of the trained decoder. Ideally, the latent variables should obey the normal dis-
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tribution N (0, 1). When the input pattern information becomes encoded during
training of the preliminary model, however, the performance data (transmission
spectrum) may also be encoded into the latent variable. This will cause partial
clustering to the extracted latent variables (shown in Figure 4 and will result in
the degradation of the device performance for the pattern generation because
random sampling at latent space can adversely impact the target spectra. To ad-
dress such a problem of the standard CVAEmodel, an adversarial block was added
as shown in Figure 2b, where a separate branch to an adversary block is used for
isolating the latent variable z from the nuisance variations s (the performance
data) in order to fit the device distribution better [28, 29, 30]. Figure 2b shows
the detailed structure of the A-CVAE network. We use a decoder structure to
expand the performance feature s into a 20 × 20 matrix and then combine with
the original 20× 20 hole vector to form a 2-channel input, then process it through
two convolution layers. One additional step is when the latent z variable is ex-
tracted, it will also be fed into an adversarial block to generate s̄ := (s̄1, . . . , s̄n ).
The updated loss function is shown as follows:

Loss = −
n∑
i=1

[
yi log xi + (1 − yi ) log(1 − xi )

]
+
1

2

J∑
j=1

[
µ2z j + σ

2
z j − log(σ

2
z j ) − 1

]
− β
n

n∑
i=1

(s i − s̄ i )2. (4)

The loss function has three parts. The first is the VAE reconstruction loss, i.e., the
Binary Cross-Entropy (BCE) loss and the second is the KL divergence, which are
the same as in Equation (2). The last part is a regularization term which is the
mean squared error (MSE) loss of the adversarial block. Since the condition in-
formation contained in the latent variable z needs to be minimized, the MSE loss
between s and s̄ needs to bemaximized. A complete update of the network gener-
ally requires alternating updates in two iteration cycles. The first iteration is used
to backpropagate and update the CVAE model based on the loss function stated
above. The second iteration is used to update the adversarial block solely based
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on the MSE loss between s and s̄ . In Figure 3, the dashed black line represents
the training loss and the dashed blue line represents the trend for validations for
the A-CVAE model. The optimum number of epoch is between 5 to 15. During
the training, we found when the adversary regularization coefficient β is 5, the
generative model gives the best performance. The detailed information about the
networks is shown in Table 1.

TABLE 1 The deep learning model parameter comparison

Model CVAE A-CVAE A-CVAE with AL

Encoder 2 Conv, 2 FC 2 Conv, 2 FC 2 Conv, 2 FC

Decoder 2 Conv 2 Conv 2 Conv

Adversarial block None 2 FC 2 FC

Training samples approx. 15,000 approx. 15,000 approx 16,000

Input dimension One channel (20 × 20) Two channels (20 × 20) Two channels (20 × 20)

Loss function Eq. (2): BCE + KLD Eq. (4): BCE + KLD + MSE Eq. (5): MSE + KLD + MSE

Ave. FOM 0.771 0.888 0.901

AL: Active Learning, FC: Fully Connected Layer
BCE: Binary Cross Entropy, KLD: KL Divergence

MSE: Mean Squared Error

Figure 4a shows the latent variable distribution of the CVAE model for groups
of devices with four different types splitting ratios. The original latent variables
are in dimension of 63 and the t-distributed Stochastic Neighbor Embedding (t-
SNE) method is used to reduce the dimension to 2 for better visualization. This
clearly shows that the four groups are clustered, and their centroids are widely dis-
tributed. Figure 4b shows the similar plot for the A-CVAEmodel. The figure clearly
shows that with adversarial censoring, all the latent variables are distributed simi-
larly, with centroids almost overlapping. They obey the normal distributionN (0, 1),
which is expected. It implies that A-CVAE offers more degrees of freedom to gen-
erate different potential devices achieving the target performance by sampling
normal latent variables concatenated with desired spectra in the conditional de-
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coder. Note that the visualization of multi-dimensional data in a 2D space using
the t-SNE is a stochastic process and also depends on the perplexity parameter.
We varied the perplexity parameter from 1 to 60, and the trend of much less clus-
tering in the case of A-CVAE is robust and repeatable. We chose the perplexity
parameter of 30 in Figure 4.

To further improve the model’s performance, we introduce the active learning
concept on top of the A-CVAE model. The process is showen in Figure 2c. A pre-
liminary A-CVAE model is first trained using the original binary data. Then, the
trained preliminary A-CVAE model is used to generate 1,000 continuous variable
hole size patterns with different splitting ratios. The loss function is further modi-
fied by changing the Binary Cross-Entropy loss to theMSE loss for the VAE, which
is shown as follows:

Loss =
n∑
i=1

(yi − xi )2 +
1

2

J∑
j=1

[
µ2z j + σ

2
z j − log(σ

2
z j ) − 1

]
− β
n

n∑
i=1

(s i − s̄ i )2. (5)

The FDTD results of the 1,000 devices are added as labels, and the data are ap-
pended to the training data for the second round. There is a significant boost in
terms of performance after we apply the A-CVAE model along with the active
learning. The simulation results are shown in the next section.

After training the proposedmachine learningmodel, we test theA-CVAEmodel
by executing it to generate HVs representing the nanopatterned power splitter de-
vices. Since the VAE analyzes the probabilistic distribution for the generated HVs,
it makes each generated value of the HV a Bernoulli’s distribution. In order to
best reflect the result, different hole sizes are used to represent the probability of
the appearance of etch holes at certain locations. In order to verify effectiveness
of the generative model, we choose four different types of devices with different
splitting ratios (5 : 5, 6 : 4, 7 : 3, 8 : 2). Figure 5 shows the comparison of the per-
formance among the devices generated by the CVAE model and the devices gen-
erated by the A-CVAE. The FOM is calculated for 20 randomly generated devices
from the CVAE models and from the best device in the training data. This figure
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F IGURE 4 t-SNE output of the latent variables. The latent variables are obtained from 4 different types of
devices. We use the t-SNE to reduce the dimension to 2 for better visualization. The filled triangle markers are the
centroid for each device group. a) Latent variables for the CVAE model, which shows clear clustering. b) Latent
variables for the A-CVAE model, where the centroid of the four groups overlap with each other.

shows that the conventional CVAE model can generally learn the distribution of
the data, but it cannot beat the training data in terms of performance. With the
help of the adversarial censoring, the generated devices generally have a better
performance than the training data. The active learning process further improves
the performance.

Figure 6 shows the results generated by the A-CVAE model along with the
FDTD verification. The solid lines show the transmission and reflection spectra for
the four types of devices that are generated by the A-CVAE model. The reflection
is lower than −20dB and the achieved transmission is grater than 87% across the
broad bandwidth between 1250 nm–1800 nm and over 90% transmission between
1500 nm–1600 nm. The dashed lines show the transmission and the reflection for
the best devices in the training data. As shown in Figure 6, generated devices for
6 : 4, 7 : 3 and 8 : 2 power splitting ratios have significantly improved transmission
across a wide range of wavelengths compared to the best training data for those
splitting ratios. The generated device for the 5 : 5 power splitting ratio is close
to the best training data because the training data already include near optimal
solution of that specific power splitting ratio.
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F IGURE 5 FOM comparison for different CVAE models: conventional CVAE (star marker), A-CVAE (round
marker) and A-CVAE with active learning (triangle marker). Four different splitting ratios are used as a target value to
test the model performance (marked with dashed lines). The devices generated by the active learning assisted CVAE
model can fit the target splitting ratio better with excellent total transmission. The average FOM for the three
models are: 0.771, 0.888, 0.901, respectively.

The adjoint method is widely used in the inverse design of nanophotonic de-
vices [32, 33, 34]. Given an ideal initial condition for parameters, the optimiza-
tion process can be done in a small number of iterations (tens of EM simulations).
However, the initial condition needs to be carefully chosen in order to get the
best optimal result. Our A-CVAE-based method is very different. It is essentially
a generative model which is trained from a library (training data) of EM simulation
results. They may come from previous imperfect optimization results with multi-
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F IGURE 6 FDTD results (transmission and reflection) of the generated patterns via the active learning-assisted
A-CVAE model. Since the variable-sized holes are used to express the floating numbers generated by the model, it
turns out the generated devices have a much larger bandwidth than the binary training devices (which have the
bandwidth of 100nm). After the validation using FDTD simulator, we find the generated devices have the total
transmissions above 87% across a 550nm bandwidth also with small reflection (lower than −20dB). The dashed lines
show the results of the best training devices around the target splitting ratio.

ple target conditions (splitting ratio and bandwidth, in our case). Then the A-CVAE
will try to learn/generalize from the library, and generate a series of improved re-
sults for a given condition. Once the model is trained, inverse designs for multiple
conditions can be generated in almost no timewithout any further EM simulations
required.

Table 2 provides a comparison of power splitters using different optimization
methods, including a more conventional y-junction device optimized by particle
swarmoptimization (PSO) [35], and nanophotonic splitters designed by the adjoint
method [32, 34] and the fast search method [36]. Our work has the most broad
bandwidth with very small device footprint and low insertion loss.

Since the network structure is relatively shallow, it significantly reduces the
training time for the whole system. The optimizer we used is Adamwith the learn-
ing rate of 0.001. For all the convolutional layers used, the kernel size is 3 and
stride is 1. The batch size that we are using is 128, and optimized epoch number
is between 10 to 15 and the total training data is a 15,000 binary hole vector pat-
tern set (further increased to 16,000 for the active learning process). The detailed
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TABLE 2 Comparison of simulation results for photonics power splitters using different optimization methods

Split ratio Insertion loss Bandwidth footprint Reference

1:1 0.09 dB 100 nm 2 × 2 µm2 Lalau-Keraly et. al.[32]

1:1 0.32 dB 40 nm 2.6 × 2.6 µm2 Wang et. al.[34]

1:1 0.13 dB 80 nm 1.2 × 2 µm2 Zhang et. al.[35]

4:6 1 dB (measured) 30 nm 3.6 × 3.6 µm2 Xu et. al.[36]

4:6 0.65 dB 550 nm 2.25 × 2.25 µm2 this work

3:7 0.51 dB 550 nm 2.25 × 2.25 µm2 this work

hyperparameters are included in Table 3. We are using an Nvidia GTX 1080 GPU
board and the total training time is around 5 minutes.

TABLE 3 The hyperparameters for the A-CVAE model

Hyperparameter Value Description

Input shape [2,20,20] Input hole vector shape

Number of Convolution Layers [2,2] Convolutional layers for encoder and decoder

Number of Convolution Kernel [16, 32, 32, 16] Number of the kernels for Convolutional Layers

Kernel Size (3,3) Kernel size for the Convolutional Layers

Number of Max Pooling Layer [2, 2] Max polling for encoder and decoder

Kernel Size of Max Pooling Layers (3,3) Kernel size of the Max Pooling Layers

Act. function in Convolution Layer ReLU Activation function for Convolutional Layer

Fully Connected Layer 1 [800→ 63] The fully connected layer in the encoder

Fully Connected Layer 2 [63→ 9] Connected to the latent variables

Fully Connected Layer 3 [63→ 400] Connected to the input

Fully Connected Layer 4 [63→ 100] Fully Connected Layer for the adversarial block

Fully Connected Layer 5 [100→ 63] Fully Connected Layer for the adversarial block

Act. function for Fully Connected Layers ReLU Activation function for Fully Connected Layer 1 - 5

Optimizer Adam The optimizer used for the NN model

Learning rate for CVAE 1e−3 Learning rate for the CVAE model

Learning rate for adversarial block 1e−5 Learning rate for the adversarial block

Batch size 128 Batch size for the training data
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To conclude, a state-of-the-art conditional variational autoencoder with adver-
sarial censoring called A-CVAE has been used to design nanopatterned power
splitters for photonic integrated circuits. The VAE model takes the binary hole
vector as the training sample and can generate patterns with variable hole size.
No additional optimization step is needed after the generative model is trained to
reproducewell optimized patterns. In addition, with the help of adversarial censor-
ing, the performance of generated patterns was significantly improved (about 5%
increase in total transmission). Overall, the devices that are generated through the
A-CVAE model described herein show good transmission (with over 90% in total
transmission) and a broadband spectral response across the wavelength range of
1250 nm and 1800 nm. To the best of authors’ knowledge, this is the first demon-
stration that an A-CVAE model was applied to a physical design problem. This
generative model may be applicable to a wide range of photonic device design
problems, including wavelength selective devices.
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