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Abstract
Rotor speed estimation is one of the key problems in speed-sensorless motor drives. Adaptation-
based approaches, assuming the rotor speed as a parameter and based on the original coordi-
nates, admit simple estimator designs, albeit suffer from the lack of guaranteed convergence
of estimation error dynamics. Focusing on stable speed estimation, this paper proposes a
new algorithm based on transforming the motor model into an adaptive observer form via a
change of state coordinates. The resultant adaptive estimator renders globally exponentially
convergent estimation error dynamics, under persistent excitation condition. The proposed
algorithm is advantageous for its guaranteed stability, ease of tuning, and robustness. Exper-
iments demonstrate its effectiveness.
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Abstract—Rotor speed estimation is one of the key problems
in speed-sensorless motor drives. Adaptation-based approaches,
assuming the rotor speed as a parameter and based on the
original coordinates, admit simple estimator designs, albeit
suffer from the lack of guaranteed convergence of estimation
error dynamics. Focusing on stable speed estimation, this
paper proposes a new algorithm based on transforming the
motor model into an adaptive observer form via a change
of state coordinates. The resultant adaptive estimator renders
globally exponentially convergent estimation error dynamics,
under persistent excitation condition. The proposed algorithm
is advantageous for its guaranteed stability, ease of tuning, and
robustness. Experiments demonstrate its effectiveness.

Index Terms—Speed-sensorless, motor drives, induction mo-
tors, adaptive estimation

I. INTRODUCTION

Speed-sensorless motor drives, with rotor position/speed
unmeasured, are practically favored due to reduced cost and
improved reliability [1], [2]. Speed-sensorless control design
is however challenging due to the absence of the speed sensor
as well as nonlinearity in motor dynamics, and thus has
attracted tremendous theoretical interests [3]–[5]. Commer-
cialized motor drives suffer performance degradation from
the elimination of the speed sensor, as well as loss of stability
in certain operation region. State estimation is identified as
the main bottleneck to speed regulation performance.

Adaptation-based approaches are widely used [6]–[8].
They circumvent the difficulty caused by nonlinear dynamics
via treating the speed as an unknown parameter. Treating a
state as an unknown parameter necessarily compromises the
speed control performance. This disadvantage serves as thrust
for work without the parameter assumption, to name a few,
[5], [9]–[16]. Relying on singular perturbation analysis, work
[5] establishes local stability results. Work [9]–[12] relies
on a triangular observable form (TOF) where the system
dynamics have triangular state dependence [17]. Nonlinear
terms with general state dependence however have to be
treated as disturbances to ensure that the transformed system
dynamics admit the TOF. Such a treatment necessarily results
in conservative design. Resorting to high gain observer design

Y. Wang is with Mitsubishi Electric Research Laboratories, Cambridge,
MA 02139, USA (email: yebinwang@ieee.org).

A. Satake, S. Sano, and S. Furutani are with the
Advanced Technology R&D Center, Mitsubishi Electric
Corporation, Amagasaki City, 661–8661, Japan. (emails:
Satake.Akira@dy.MitsubishiElectric.co.jp,
Sano.Sota@ce.MitsubishiElectric.co.jp,
Furutani.Shinichi@dw.MitsubishiElectric.co.jp).

based on a non-triangular observable form, work [16] relaxes
the restriction on the system structure, however is difficult to
implement in practice.

Balancing theoretical guarantee and practical effective-
ness, this paper revisits the adaptation idea, and develops a
normal form-based estimation algorithm. It targets on two
issues of conventional adaptation-based approaches: lack of
global convergence guarantee [18]; and non-trivial tuning
of speed adaptation gains. This work first puts the motor
model into an adaptive observer form (AOF) by a parameter-
dependent state transformation; and then performs adaptive
state estimation in the new coordinates. The resultant estima-
tion error dynamics are Globally Exponentially Stable (GES)
under the well-known Persistent Excitation Condition (PEC).
In addition to guaranteed stability, the proposed algorithm
also enjoys ease of tuning and robustness. Effectiveness of
the proposed algorithm is validated by experiments. Com-
pared with [19], this work casts light on general benefits
and disadvantages of conducting estimation in transformed
coordinates.

The rest of this paper is organized as follows. Problem
formulation is provided in Section II. Section III presents the
proposed speed-sensorless estimation algorithm. Experimen-
tal results in Section IV verify that the proposed algorithm is
meaningful and effective in practice. This paper is concluded
by Section V.

For the rest of this paper, letting ζ be a dummy variable,
we denote ζ̂ as its estimate, ζ∗ as its reference, ζ̃ = ζ − ζ̂ as
the estimation error, and eζ = ζ∗ − ζ̂ as the tracking error.

II. PRELIMINARIES

A. Problem Statement

The induction motor model in a frame rotating at an
angular speed ω1 is given by

i̇ds = −γids + ω1iqs + β(αΦdr + ωΦqr) +
uds
σ

i̇qs = −ω1ids − γiqs + β(αΦqr − ωΦdr) +
uqs
σ

Φ̇dr = −αΦdr + (ω1 − ω)Φqr + αLmids

Φ̇qr = −αΦqr − (ω1 − ω)Φdr + αLmiqs

ω̇ = µ(Φdriqs − Φqrids)−
Tl
J

y =
[
ids iqs

]
,

(1)

where ids, iqs,Φdr,Φqr, ω are system state, uds and uqs are
control input, y is system output, Tl external load torque, and



all the rest notations are constant parameters. Table I lists
definitions of notations. The frame with ω1 = 0 is called the
stator or stationary frame. Readers are referred to [20] for
details on motor modeling. Speed-sensorless state estimation
problem can be formulated as follows.

Problem 1: Given the induction motor model (1), recon-
struct the full state based on stator voltages uds, uqs and stator
currents ids, iqs.

TABLE I: Notations

Notation Description
ids, iqs stator currents in d- and q-axis

Φdr,Φqr rotor fluxes in d- and q-axis
ω rotor angular speed

uds, uqs stator voltages in d- and q-axis
ω1 angular speed of a rotating frame
Φ∗ rotor flux amplitude reference
ω∗ rotor angular speed reference

i∗ds, i
∗
qs references of stator currents in d- and q-axis

Tl load torque
J inertia

Ls, Lm, Lr stator, mutual, and rotor inductances
Rs, Rr stator and rotor resistances

σ
LsLr−L2

m
Lr

α Rr/Lr

β Lm/(σLr)
γ Rs/σ + αβLm

µ 3pLm/(2JLr)
p number of pole pairs

The model (1) is nonlinear, and uniform observability
[17] is necessary to facilitate convergent state estimation for
arbitrary control input. Analysis in [2], [21] corroborates the
existence of operation regimes where the model is neither
observable nor detectable. In other words, the model (1) is
non-uniformly observable. Lack of local (uniform) observ-
ability poses fundamental limitations to Problem 1. Involving
mechanical dynamics implies the knowledge of customer
information for instance, load inertia and toque profile, which
are hardly available in practice. This motivates us to adopt the
adaptation idea which circumvents mechanical parameters.

Assumption 2.1: The rotor speed is a constant parameter,
i.e., ω̇ = 0.

With Assumption 2.1, (1) is reduced to a linear time-
invariant (LTI) system with unknown parameter

ẋ = A(ω)x+Bu

ω̇ = 0

y = Cx,

(2)

where x = [ids, iqs, φdr, φqr]
>, and

A(ω) =




−γ 0 αβ βω
0 −γ −βω αβ

αLm 0 −α −ω
0 αLm ω −α


 , B =

1

σ




1 0
0 1
0 0
0 0




C =

[
1 0 0 0
0 1 0 0

]
.

Work [2] shows that (2) is state observable if and only if
√

Φ2
dr(t) + Φ2

qr(t) 6= 0. (3)

Remark 2.2: Observerability condition (3) has the nature
of ’instantaneous’, and thus allows observer design with
arbitrarily fast convergent rate. This is in fact weakened. In
fact, PEC, in the form of
∫ t+T

t

√
Φ2
dr(t) + Φ2

qr(t)dt ≥ ε > 0, ∀t ∈ [0,+∞),

is required to admit adaptive observer design with convergent
estimation error dynamics. Given the linearly parameterized
model (2), solving Problem 1 via adaptive observer design
entails that (i) the x-system in (2) is state observable; (ii)
ω is identifiable. One can readily verify that (i) holds.
Identifiability of ω is reduced to the PEC.

B. Baseline Adaptive Estimator & Stability Analysis

Let a short notation A be in place of A(ω) for a concise
presentation. The baseline adaptive estimator is given by

˙̂x = Âx̂+Bu+ L(y − ŷ)

˙̂ω = λβ(̃idsΦ̂qr − ĩqsΦ̂dr)
ŷ = Cx̂,

(4)

where Â = A(ω̂), L is the observer gain matrix, and λ > 0
is adaptive gain. The resultant estimation error dynamics are

˙̃x = (A− LC)x̃+ ∆Ax̂

˙̃ω = −λβ(̃idsΦ̂qr − ĩqsΦ̂dr),
(5)

where x̃ = x − x̂ is the state estimation error, and ∆A =
A− Â.

The speed adaptation law in (4) is designed to ensure
negative definiteness of the time derivative for the Lyapunov
function candidate: V = x̃>x̃+(ω−ω̂)2/λ. Next we illustrate
that the adaptive law in (4) does not suffice to guarantee the
stability, even though the following assumption holds

Assumption 2.3:
(A-1) There exists a matrix L such that (A−LC)>+ (A−

LC) = −Q, with Q negative definite for all ω in a
bounded set.

(A-2) System (2) is persistently excited.
Given (5), the time derivative of V is

V̇ = x̃>((A− LC)> + (A− LC))x̃+
2

λ
ω̃(ω̇ − ˙̂ω)

+ω̃
(
2β(̃idsΦ̂qr − ĩqsΦ̂dr) + (Φ̃qrΦ̂dr − Φ̃drΦ̂qr)

)

=x̃>((A− LC)> + (A− LC))x̃

+ω̃

(
2β(̃idsΦ̂qr − ĩqsΦ̂dr)−

2 ˙̂ω

λ
+ Φ̃qrΦ̂dr − Φ̃drΦ̂qr

)

=x̃>((A− LC)> + (A− LC))x̃+ ω̃d(x̃, x̂),

where d(x̃, x̂) = Φ̃qrΦ̂dr − Φ̃drΦ̂qr is non-definite. Even
under Assumption 2.3, V̇ is not necessarily negative for all
non-zero x̃ and ω̃. In other words, stability of the estimation
error dynamics result from the baseline adaptive estimator (4)
cannot be established. Additionally, it is non-trivial to deter-
mine L such that Assumption 2.3 holds for all ω ∈ Ω ∈ R
with Ω being a compact set.



III. STABLE ADAPTIVE ESTIMATION

This section conducts stable adaptive estimation, in order
to address the stability issue and challenge of tuning L. This
is achieved by first transforming (2) into an AOF with a
parameter-dependent state transformation, and then design
adaptive observer in the transformed coordinates.

A. Adaptive Observer Form

The proposed design pivots on the following AOF

ż = Azz + ψ(y, u)Θ +Bzu

y = Czz,
(6)

where z ∈ Rn is the state, Θ ∈ Rs the vector of unknown
parameters, y ∈ Rp, u ∈ Rm, Bz is a constant matrix, and
for i, j ∈ {1, . . . , p},

Az =



A11 . . . A1p

... Aij
...

Ap1 . . . App


 , Cz =



Cz1 . . . 0

... Czi
...

0 . . . Czp




Aij =





[
∗ I

∗ 0

]
, i = j

[
∗ 0

∗ 0

]
, i 6= j

Czi =
[
1 0

]
.

Given a system in the AOF, one can design an adaptive
state estimator which yields stable estimation error dynamics
[22], [23]. Work [24, Lem. II.1] establishes that a linear time-
invariant (LTI) system such as the linear motor model (2) is
transformable to the AOF via a linear state transformation if
and only if the model is state observable.

B. Transform to Adaptive Observer Form

Next we construct a linear state transformation z = Tx
which puts the model (2) into the AOF. As an intermediate
step, we transforms the model into the Luenberger observable
canonical form

ż =

[
A11(ω) A12(ω)
A21(ω) A22(ω)

]
z +

[
Bz1(ω)
Bz2(ω)

]
u

ω̇ = 0

y =

[
Cz1 0
0 Cz2

]
z,

(7)

where for i, j ∈ {1, 2},

Aij(ω) =





[
∗ 1

∗ 0

]
, i = j

[
∗ 0

∗ 0

]
, i 6= j

Czi =
[
1 0

]
.

To this end, one verifies that the model (2) is state observable
with a set of observability indices {2, 2}. The corresponding

state transformation Tx is determined by the following
procedure.

Step-(i) Compute an observability matrix Qo

Qo =




C1

C1A
C2

C2A


 ,

where C1 = [1, 0, 0, 0] and C2 = [0, 1, 0, 0].
Step-(ii) Solveing starting vectors g1, g2 from

(Qog1)> =
[
0 1 0 0

]

(Qog2)> =
[
0 0 0 1

]
,

we have

g1 = [0, 0,
α

α2 + ω2
,

ω

α2 + ω2
]>

g2 = [0, 0,
−ω

α2 + ω2
,

α

α2 + ω2
]>.

Step-(iii) Calculate the inverse of the state transformation

T−1z =
[
Ag1 g1 Ag2 g2

]
x

=




1 0 0 0
0 0 1 0
− 1
β

α
β(α2+ω2) 0 −ω

β(α2+ω2)

0 ω
β(α2+ω2) − 1

β
α

β(α2+ω2)


 z,

which also implies the state transformation as
follows

Tx =




1 0 0 0
α ω αβ βω
0 1 0 0
−ω α −βω αβ


x.

With the state transformation z = Tx, the model (2) is
transformed to

ż = Ā(ω)z + B̄(ω)u

ω̇ = 0

y = C̄z,

(8)

where the system matrices Ā = TAT−1, B̄ = TB, C̄ =
CT−1 are given as follow

Ā(ω) =




−γ − α 1 −ω 0
−α(γ − αβLm) 0 −ω(γ − αβLm) 0

ω 0 −γ − α 1
ω(γ − αβLm) 0 −α(γ − αβLm) 0




B̄(ω) =
1

σ




1 0
α ω
0 1
−ω α


 , C̄ =

[
1 0 0 0
0 0 1 0

]
.

(9)

The transformed system (8) is in the Luenberger observable
canonical form. Taking into consideration y1 = z1, y2 = z3,



one can further rearrange the transformed system (8) in the
form of the AOF (6) with matrices given by Cz = C̄, and

Az =




−γ − α 1 0 0
−ακ 0 0 0

0 0 −γ − α 1
0 0 −ακ 0




ψ(y, u) =




−y2
−κy2 +

uq

σ
y1

κy1 − ud

σ


 , Bz =

1

σ




1 0
α 0
0 1
0 α


 ,

(10)

where κ = γ − αβLm. The derivation of the model in the
form of (6) is completed.

C. Adaptive Observer Design

Given the model in the form of (6), a multitude of
adaptive observers can be utilized to fulfill adaptive state
estimation. For the illustration purpose, we employ the result
in [23] and take the adaptive observer below

˙̂z = Az ẑ + ψ(y, u)ω̂ +Bzu+ Lz(y − ŷ) +M ˙̂ω

Ṁ = (Az − LzCz)M + ψ(y, u)

˙̂ω = λM>C>z (y − ŷ)

ŷ = Cz ẑ,

(11)

where Lz ∈ R4×2 is a constant gain matrix. Considering
M = [M11,M21,M31,M41]>, the adaptive law in (11) is
simplified as

˙̂ω = λ(M11ỹ1 +M31ỹ2).

For the sake of self-completeness, the stability analysis
of the resultant estimation error dynamics is offered below.
Let

η = z −Mω,

and define η̂ = ẑ −Mω̂, η̃ = η − η̂, ω̃ = ω − ω̂. We have

˙̃η = (Az − LzCz)(η̃ +Mω̃) + ψ(y, u)ω̃ −M ˙̂ω − Ṁω̃ −M ˙̃ω

= (Az − LzCz)η̃.

Finally we have the estimation error dynamics

˙̃η = (Az − LzCz)η̃
Ṁ = (Az − LzCz)M + ψ(y, u)

˙̃ω = ρM>C>z Cz(η̃ +Mω̃).

(12)

Globally exponential stability of the zero solution of (12) is
guaranteed if the following PEC holds: there exist positive
finite constants ρ1, ρ2, T such that for any t > 0

0 < ρ1 ≤
∫ t+T

t

M>(t)C>z CzM(t)dt ≤ ρ2 < +∞.

Remark 3.1: We have the integrated function in the PEC
as M2

11(t) +M2
31(t). From the M -dynamics, one learns that

M11 is excited by y2 and uq , whereas M31 by y1 and ud. If
ud and uq are zero for a long period, then the PEC is not
satisfied; otherwise, the PEC generally holds. That is to say,
the PEC is barely a restriction.

Note that the gain matrix Lz is to stabilize Az , which
is always possible in the virtue of state observability. Partic-
ularly, Lz could be constant, instead of being ω-dependent
for the baseline. This affirms that the proposed design offers
ease of tune.

Remark 3.2: A speed-sensorless control algorithm should
be robust w.r.t. offsets and noises in actuators and sensors.
Thanks to the GES, the estimation error dynamics (12) is
robust to bounded additive disturbances, under the persistent
excitation condition. This fact can be easily observed by
combining the fact that the undisturbed part of (12) is GES
and input-to-state stable w.r.t. additive disturbances.

IV. EXPERIMENTAL VALIDATION

We perform closed-loop experiments, where either the
proposed (11) or the baseline estimation algorithm 4 runs in
closed-loop, and the other runs in open-loop. Experiments
demonstrate that during the operation where the motor is
persistently excited, the proposed algorithm leads to im-
proved speed tracking performance, by effectively rejecting
uncertainties arising from model mismatches, sensors and the
voltage source inverter.

The testbed comprises Matlab/Simulink®, dSPACE®
ACE Kit DS1104, a Myway®DC-AC inverter, and a
Marathon®three-phase AC induction motor with an iner-
tial load. During experiments, the dSPACE executes the
data acquisition and real-time estimation and control tasks.
Both the control loop and the PWM operates at 4kHz.
The motor has parameter values: rated power 0.18KW ,
Rs = 11.05Ω, Rr = 6.11Ω, Ls = Lr = 0.3165H,Lm =
0.2939H,J = 1.2e − 3kgm2. Note that although a higher
PWM frequency might improve system performance, it how-
ever overruns the dSPACE and leads to compilation failure.

A. Tracking Controller and State Estimator

PI1

∑ ∑
PI2

∑

State
estimator

PI3

∑ ∑
PI4

∑

Inverse
Clarke & Park
transformation

Motor

Clarke & Park
transformation

Φ∗ eΦ i∗ds eids

ia, ib, ic

ids
√

Φ̂2
dr + Φ̂2

qr

ids, iqs

u∗
ds

udsff

u∗
qs

uqsff

ω∗ eω i∗qs eiqs

iqsω̂

ids, iqs

Va, Vb, Vc

Fig. 1: The IFOC block diagram.

The tracking controller implements an indirect field ori-
ented control (IFOC) shown in Fig. 1. Four Proportional
and Integral (PI) controllers PIi, 1 ≤ i ≤ 4 are used to
regulate the speed, the rotor flux amplitude, the q-axis stator
current, and the d-axis stator current, respectively. Feedfor-
ward udsff = −σω1iqs and uqsff = σ(ω1ids + βωΦ̂dr) are
employed to improve the tracking control performance.

For the baseline estimator (4), its speed adaptation gain
λβ and flux observer gain L are tuned by trial and error
to balance the harmonics reduction during steady state and
fast estimation during transient. For the proposed estimator
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Fig. 2: Speeds: solid blue–reference; solid black–measured; solid green– estimated from baseline; solid red–estimated from
the proposed algorithm

(11), its flux observer gain Lz is determined by placing the
poles Az − LzCz at p = −400, in order to achieve robust
flux estimation against model mismatches, whereas the speed
adaptation gain is tuned by trial and error, with its order of
magnitude being approximately p2. The flux field angle is
estimated according to the following equation

ρ̇ = ω +
αi∗qs
i∗ds

, ρ(0) = 0.

The estimated flux field angle is used in the Clarke/Park
transformation and its inverse blocks.

B. Experimental Results

With a focus on the bandwidth of speed estimation
(related to the speed tracking), we conduct tests where
the reference speed includes step changes, and examine
how fast two estimation algorithms converge. Baseline and
proposed (11) algorithms work well when the gain of the
speed controller is low. As the proportional gain, denoted by
KP
ω , of the speed controller gradually increases, the speed

tracking performance result from the baseline degrades more
significantly. This is shown in Fig. 2.

Fig. 3 compares speed tracking responses of two closed-
loop systems against steps of reference speed. Oscillation
in Fig. 3(a) is largely due to harmonics in estimated speed
induced by model mismatches and uncertainties in current
sensors and the voltage source inverter. Fig. 3(c) infers that
system with the proposed algorithm in the loop performs
reliably. Fig. 3(b) indicates that the proposed estimator (11)
in open-loop quickly tracks the speed. Fig. 3(d) says that
baseline tracks the speed, albeit slowly.

During experiment, we observed significant harmonics
in the rotor speed curves when the speed tracking control
block adopts a large proportional gain. This indeed means
that the speed estimation is not fast enough. We attribute the
difficulty in cranking up speed controller gain to the presence
of large model mismatches in motor dynamics. Typically, the
estimator gain should be large enough to attenuate model mis-
matches, which however amplifies measurement noises. Such
an apparent trade-off prevents us from using large gains in
estimator, and renders slow and biased speed estimation. We
stress that with the same controller, the proposed algorithm
renders better speed tracking performance, over the baseline
algorithm, where similar levels of tuning efforts are invested



2.6 2.7 2.8 2.9 3
40

50

60

70

(a) Baseline-in-the-loop, KP
ω = 2.5

3.3 3.4 3.5 3.6 3.7 3.8
40

50

60

70

(b) Baseline-in-the-loop, KP
ω = 5

0.6 0.8 1 1.2
45

50

55

60

65

70

(c) Proposed-in-the-loop, KP
ω = 2.5

0.6 0.7 0.8 0.9
35

40

45

50

55

(d) Proposed-in-the-loop, KP
ω = 5

Fig. 3: Speeds: solid blue–reference; solid black–measured; solid green– estimated from baseline; solid red–estimated from
the proposed algorithm

in the proposed and baseline algorithms. This corroborate that
the proposed algorithm, under the assumption of persistent
excitation condition, is relatively more robustness.

Remark 4.1: The proposed algorithm ensures stability
under the condition of persistent excitation, which essentially
requires that the rotor flux is time-varying for a certain period
of time interval. In other words, the proposed algorithm is
not suitable in the operation regions when the rotor flux
barely changes. As far as computation complexity, it presents
a heavier load compared to baseline. In fact, it is evident that
the baseline estimator involves integrating 6 first order or-
dinary differential equations (ODEs) at every sampling time,
whereas the proposed estimator involves 21 first order ODEs,
because the auxiliary signal M is a 4 × 4 matrix, and it is
generated by integrating 16 first order ODEs. Consequently,
the proposed algorithm possesses a comparable computation
load against Kalman filter-based estimators.

Remark 4.2: Experiment in this work remains preliminary,
in the sense that the induction motor is tested in a small
operation region. Specifically, the induction motor is merely
coupled with an inertia load, and not subject to external
torque. We leave extensive experimental validation for future

work.

V. CONCLUSION AND FUTURE WORK

This paper proposed and verified a new estimation al-
gorithm for speed-sensorless motor drives. The proposed
algorithm first transforms the motor model into an adaptive
observer form by a change of state coordinates, and then
performs adaptive observer design in the new coordinates.
Globally exponential stability can be obtained for the esti-
mation error dynamics in the original coordinates, as long
as the PEC holds. Closed-loop experiments verified the
effectiveness and advantages: guaranteed stability and ease
of tuning.
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