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Safe Approximate Dynamic Programming via
Kernelized Lipschitz Estimation

Ankush Chakrabarty1,:, Devesh K. Jha1, Gregery T. Buzzard2, Yebin Wang1, Kyriakos G. Vamvoudakis3

Abstract—We develop a method for obtaining safe initial
policies for reinforcement learning via approximate dynamic
programming (ADP) techniques for uncertain systems evolving
with discrete-time dynamics. We employ kernelized Lipschitz
estimation to learn multiplier matrices that are used in semidef-
inite programming frameworks for computing admissible initial
control policies with provably high probability. Such admissible
controllers enable safe initialization and constraint enforcement
while providing exponential stability of the equilibrium of the
closed-loop system.

Index Terms—Data-driven Lipschitz constant estimation; ker-
nel density estimation; approximate dynamic programming;
incremental quadratic constraints; semidefinite programming.

I. INTRODUCTION

Recent advances in the field of deep and machine learning
have led to a renewed interest in using learning for control
of physical systems [1]. Reinforcement learning (RL) is a
learning framework that handles sequential decision-making
problems, wherein an ‘agent’ or decision maker learns a
policy to optimize a long-term reward by interacting with the
(unknown) environment. At each step, an RL agent obtains
evaluative feedback (called reward or cost) about the perfor-
mance of its action, allowing it to improve the performance
of subsequent actions [2], [3]. While RL has witnessed huge
success in recent times [4]–[7], there are several unsolved
challenges which restricts use of these algorithms for industrial
systems. In most practical applications, control policies must
be designed to satisfy operational constraints. This leads to
the challenge that one has to guarantee constraint satisfaction
during learning and policy optimization. Therefore, initializing
with an unverified control policy is not ‘safe’ (in terms of
stability or constraint handling). In other words, using on-
line RL for expensive equipment or safety-critical applications
necessitates that the initial policy used for obtaining data for
subsequently improved policies must be at least stabilizing,
and generally, constraint-enforcing. The work presented in this
paper is motivated by this challenge. We present a framework
for deriving initial control policies from historical data that can
be verified to satisfy constraints and guarantee stability while
learning the optimal control policy on-line, from operational
data.
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A successful RL method needs to balance a fundamental
trade-off between exploration and exploitation. One needs
to gather data safely (exploration) in order to best extract
information from this data for optimal decision-making (ex-
ploitation). One way to solve the exploration and exploitation
dilemma is to use optimistic initialization [8]–[11], but this
assumes the optimal policy is available until data is obtained
that proves otherwise. Such approaches have been applied
to robotics applications, where systems with discrete and
continuous state-action spaces [12], [13]. A limitation of these
methods is that, before the optimal policy is learned, the
agent is quite likely to explore actions that lead to violation
of the task-specific constraints as it aims to optimize the
cumulative reward for the task. This shortcoming significantly
limits such methods to be applicable to industrial applications,
since this could lead to irreparable hardware damage or harm
human operators due to unexpected dynamics. Consequently,
safe learning focuses on learning while enforcing safety con-
straints. There are primarily two types of approaches to safe
RL and approximate/adaptive dynamic programming (ADP).
These include: modification of the optimization criterion with
a safety component such as barrier functions by transforming
the operational constraints into soft constraints [14], [15]; and,
modifying the exploration process through the incorporation of
external system knowledge or historical data [16]. Our method
is amongst the latter class of methods, because our operational
constraints are hard constraints and softening them could lead
to intermittent failure modes.

High performance model-based control requires precise
model knowledge for controller design. However, it is well
known that for most applications, accurate model knowl-
edge is practically elusive due to the presence of unmodeled
dynamical interactions (e.g., friction, contacts, etc.). Recent
efforts tackle this issue by learning control policies from
operational (on-line) or archival data (off-line). Since the
exact structure of the nonlinearity may be unknown or not
amenable for analysis, researchers have proposed ‘indirect’
data-driven controllers that employ non-parametric learning
methods such as Gaussian processes to construct models from
operational data [17], [18] to improve control policies on-
line [19]. Conversely, ‘direct’ methods, such as those proposed
in [20]–[23], directly compute policies using a combination
of archival/legacy and operational input-output data without
constructing an intermediate model. For example, in [24], a
human expert was introduced into the control loop to conduct
initial experiments to ensure safety while generating archival
data. A common assumption in many of these approaches is
the availability of an initial control policy that is stabilizing
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and robust to uncertain dynamics. Designing such safe initial
control policies in a computationally tractable manner remains
an open challenge.

In this work, we present a formalism for synthesizing safe
initial policies for uncertain non-linear systems. We assume
the presence of historical/archival/legacy system-related data,
with which we estimate Lipschitz constants for the unmodeled
system dynamics. The estimation of the Lipschitz constant
is done via kernel density estimation (KDE). The estimated
Lipschitz constant is used to design control policies using
semidefinite programming methods that incorporate stability
and constraint satisfaction while searching for policies. We
show that the proposed approach is able to design feasible
policies for different constrained tasks for several systems
while respecting all active constraints.

Our key insight is that information regarding the structure
of classes of unmodeled nonlinearities can be encapsulated
using only a few parameters, without knowing the exact form
of the nonlinearity. These classes include, for example, sector-
bounded nonlinearities [25], Lipschitz and one-sided Lipschitz
nonlinearities [26], and monotone nonlinearities [27], to name
a few; see [25]–[28] and the references therein. It is well
known that these nonlinearities can be represented by using
multiplier matrices for linear matrix inequality (LMI)-based
analysis and design [29]. Learning these multiplier matrices
from data is an open problem, but if possible, would eliminate
the need to model the unknown component perfectly in order
to compute a safe control policy. For example, the class
of Lipschitz nonlinearities (which constitute a large class of
nonlinearities observed in applications) can be described using
only a few parameters: the Lipschitz constants of the nonlinear
components. This paper is a first attempt at learning multiplier
matrices for a class of Lipschitz nonlinearities in a data-driven
manner.

Recent work has investigated the utility of Lipschitz proper-
ties in constructing controllers when an oracle is available [30],
[31] or in designing models for prediction [32] with on-line
data used for controller refinement [33]. In this paper, we
construct control policies that respect constraints and certify
stability (with high probability) for applications where only
off-line data is available, and no oracle is present. We do so
through the systematic use of multiplier matrices that enable
the representation of nonlinear dynamics through quadratic
constraints [29], [34] without requiring knowledge of the un-
derlying nonlinearity. The control policies can then be obtained
by solving semidefinite programs. However, construction of
multiplier matrices for Lipschitz systems requires knowledge
of the Lipschitz constants, which are not always available, and
therefore, must be estimated. We refer to the estimation of Lip-
schitz constants from data as Lipschitz learning. Historically,
methods that estimate the Lipschitz constant [35]–[37] do not
provide certificates on the quality of the estimate. Herein, we
provide conditions that, if satisfied, enable us to estimate the
Lipschitz constant of an unknown locally Lipschitz nonlinear-
ity with high probability. To this end, we employ kernel density
estimation (KDE), a non-parametric data-driven method that
employs kernels to approximate smooth probability density
functions to arbitrarily high accuracy. We refer to our proposed

KDE-based Lipschitz constant estimation algorithm as kernel-
ized Lipschitz learning.

Contributions: Compared to the existing literature on safe
learning, the contributions of the present paper are threefold.
First, we formulate an algorithm to construct stabilizing and
constraint satisfying policies for nonlinear systems without
knowing the exact form of the nonlinearity. Then we leverage a
kernelized Lipschitz learning mechanism to estimate Lipschitz
constants of the uncertain dynamics with high probability;
and, finally we use a multiplier-matrix based controller design
based on Lipschitz learning from legacy data that forces
exponential stability on the closed-loop dynamics (with the
same probability as the kernelized Lipschitz learner).

Structure: The rest of the paper is structured as follows.
We present the formal motivation of our work in Section II.
Our kernelized Lipschitz learning algorithm is described in
Section III, and benchmarking of the proposed learner on
benchmark Lipschitz functions is performed. The utility of
Lipschitz learning in policy design via multiplier matrices is
elucidated in Section IV, and a numerical example demon-
strating the potential of our overall formalism is provided in
Section V. We provide concluding remarks and discuss future
directions in Section VI.

Notation: We denote by R the set of real numbers, R`
as the set of positive reals, N as the set of natural numbers,
and N` :“ NYt0u. The measure-based distance between two
measurable subsets A and B of a metric space Rn equipped
with the metric ρµ is given by ρµpA,Bq “ µpA4Bq, where
µ is a measure on Rn and A4B is the symmetric difference
pAzBq Y pBzAq. We define a ball Bεpxq :“ ty : ρpx, yq ď εu
and the sum A ‘ ε :“

Ť

xPA Bεpxq. The complement of a
set A is denoted by Ac. The indicator function of the set
A is denoted by 1A. A block diagonal matrix is denoted by
blkdiag

`

¨
˘

. For every v P Rn, we denote }v} “
?
vJv,

where vJ is the transpose of v. The sup-norm or 8-norm is
defined as }v}8 fi suptPR }vptq}. We denote by λminpP q and
λmaxpP q as the smallest and largest eigenvalue of a square,
symmetric matrix P . The symbol ą păq indicates positive
(negative) definiteness and A ą B implies A´B ą 0 for A,B
of appropriate dimensions. Similarly, ľ pĺq implies positive
(negative) semi-definiteness. The operator norm is denoted
}P } and is defined as the maximum singular value of P . For a
symmetric matrix, we use the ‹ notation to imply symmetric
terms, that is,

“

a b
bJ c

‰

” r a b‹ c s. The symbol Pr denotes the
probability measure.

II. PROBLEM FORMULATION

Consider the following discrete-time nonlinear system,

xt`1 “ F pxt, utq, t P N
qt “ Cqxt,

where xt P Rnx , u “ ut P Rnu denote the state and the
control input of the system respectively.

For simplicity of exposition, we consider input-affine sys-
tems of the form

xt`1 “ Axt `But `Gφpqtq, t P N (1a)
qt “ Cqxt, (1b)
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where the system matrices A, B, G and Cq have appropriate
dimensions. Denote by φ P Rnφ the system’s uncertainty, or
unmodeled nonlinearity, whose argument q “ qt P Rnq is
represented by a linear combination of the state. The origin is
an equilibrium state for (1); that is, φp0q “ 0.

We use the following assumptions.

Assumption 1. The matrices B and G are known, and G has
full column rank. The matrix Cq and function φ are unknown.
The matrix A is unknown. l

Remark 1. The assumption on knowledge of B and G is
mild. Indeed, the input matrix B is known classically in many
ADP frameworks [3], [38] and G can be assumed to be the
identity if the vector field through which the nonlinearity acts
is unknown. l

We require the following definition to describe the class of
nonlinearities considered in this paper.

Definition 1. A function f : XÑ Rnx is Lipschitz continuous
in the domain X Ă Rnf if

}fpx1q ´ fpx2q} ď Lf }x1 ´ x2} (2)

for some Lf ą 0 and all x1, x2 P X. We define the scalar

L˚f “ inf
R`
tLf : condition (2) holdsu (3)

as the Lipschitz constant of f in X. A function is globally
Lipschitz if (2) holds for X ” Rnf . l

Assumption 2. The nonlinearity φ is globally Lipschitz con-
tinuous. That is,

}φpq1q ´ φpq2q} ď L˚φ}q1 ´ q2} (4)

for any q1, q2 P Rnq , and the global Lipschitz constant L˚φ is
unknown. l

Remark 2. While the matrix A is typically known in practice,
or can easily be estimated from data by using standard system
identification methods, we do not require that A is known. In-
stead, one can choose any matrix A0 of appropriate dimensions
such that pA0, Bq is a stabilizable pair, and use our proposed
method on the effective nonlinearity Gφpqq`pA´A0qx, which
is Lipschitz, since Gφ and pA´A0qx are each Lipschitz. l

Given a control policy upxq, we define an infinite horizon
cost functional given an initial state x0 P Rnx as

J px0, uq “
8
ÿ

t“0

γt Upxt, upxtqq, (5)

where U is a function with non-negative range, Up0, 0q “
0, and txku denotes the sequence of states generated by the
closed loop system

xt`1 “ Axt `Bupxtq `Gφ pCqxtq . (6)

The scalar γ P p0, 1s is a forgetting/discount factor intended
to enable the cost to be emphasized more by current state and
control actions and lend less credence to the past.

Before formally stating our objective, we need to introduce
the following standard definition [1].

Definition 2. A continuous control policy up¨q : Rnx Ñ Rnu
is admissible on X Ă Rnx if up0q “ 0 and up¨q stabilizes the
closed loop system (6) on X and J px0, uq is finite for any
x0 P X . l

We want to design an optimal control policy that achieves
the optimal cost

J8px0q “ inf
uPU

J
`

x0, u
˘

, (7)

for any x0 P Rnx . Here, U denotes the set of all admissible
control policies. In other words, we wish to compute an
optimal control policy

u8 “ arg inf
uPU

J
`

x0, u
˘

. (8)

Directly constructing such an optimal controller is very chal-
lenging for general nonlinear systems; this is further compli-
cated because the system (1) contains unmodeled/uncertain
dynamics. Therefore, we shall use adaptive/approximate dy-
namic programming (ADP): a class of iterative, data-driven
algorithms that generate a convergent sequence of control
policies whose limit is provably the optimal control policy
u8pxq.

Recall from [38], [39] that a necessary condition for con-
vergence of policy iteration methods (a sub-class of ADP)
is the availability of an initial admissible control policy
u0pxq, which is non-trivial to derive for systems with some
uncertain dynamics. Therefore, our objective in this work is
to systematically derive an initial admissible control policy
using only partial model information via kernelized Lipschitz
learning and semidefinite programming. We also extend this
idea to handle the case when the control input is constrained.
In such cases, along with an admissible controller, we also
derive a domain of attraction of the controller within which the
control policy is guaranteed to satisfy input constraints and the
closed-loop system remains stable. We refer to the derivation
of admissible control policies with guaranteed stabilizability
and/or constraint enforcement as safe initialization for ADP: a
crucial property required for ADP algorithms to gain traction
in expensive industrial applications.

We invoke the assumption in [21], [22] regarding the
availability of legacy/archival/historical data generated by the
system during prior experiments. That is, at design time,
we have a dataset D consisting of unique triples: state-
input pairs along with corresponding state update information.
Concretely, we have access to D “ txj , uj , x`j uNj“1. For each
txj , uj , x

`
j u P D, we estimate the nonlinear term using (1);

that is,
φpqjq “ G:

`

x`j ´Axj ´Buj
˘

, (9)

where G: exists by Assumption 1. Note that we also need to
estimate the matrix Cq (see (1)) so that qj can be calculated
from xj . While estimating the exact elements of these matrices
is quite challenging, we can estimate the non-zero elements
in the matrices, which is enough to design safe initial control
policies, because the exact elements of Cq will be subsumed
within the Lipschitz constant.

Remark 3. The problem of estimating the sparsity pattern
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of Cq is analogous to the problem of feature selection and
sparse learning, known as automatic relevance determination
(ARD) [40]. The basic idea in ARD is to give feature
weights some parametric prior densities; these densities are
subsequently refined by maximizing the likelihood of the
data [40], [41]. For example, one can define hyperparameters
which explicitly represent the relevance of different inputs
to a machine learning algorithm w.r.t. the desired output
(e.g., a regression problem). These relevance hyperparameters
determine the range of variation of parameters relating to a par-
ticular input. ARD can then determine these hyperparameters
during learning to discover which inputs are relevant. l

We need the following assumption on the data tqj , φpqjqu,
without which one cannot attain the global Lipschitz constant
of the nonlinearity φp¨q with high accuracy.

Assumption 3. Let Q denote the convex hull of the samples
tqju. The Lipschitz constant of φp¨q in the domain Q is
identical to the global Lipschitz constant L˚φ. l

Assumption 3 ensures that the samples obtained from the
archival data are contained in a subregion of Rnq where the
nonlinearity φp¨q’s local Lipschitz constant is the same as its
global Lipschitz constant.

Example 1. Suppose φpqq “ 1.5 sinpqq. As long as the convex
hull of the samples tqu contain zero, the Lipschitz constant of
φ on the convex hull Q and on R are identical. l

In the following section, we will leverage the dataset D to
estimate the Lipschitz constant of φp¨q using kernelized Lip-
schitz learning/estimation, and consequently design an initial
admissible linear control policy u0 “ K0x via semidefinite
programs. We will demonstrate how such an initial admissible
linear control policy fits into a neural-network based ADP for-
mulation (such as policy iteration) to asymptotically generate
the optimal control policy u8pxq.
Remark 4. The control algorithm proposed in this paper is
a direct data-driven controller because no model of φp¨q is
identified in the controller design step. l

Remark 5. Although we focus only on discrete-time systems,
our results hold for continuous-time systems with slight mod-
ifications. l

Remark 6. If nφ ą 1, our proposed Lipschitz learning
algorithm will yield nφ Lipschitz constant estimates, one for
each dimension of φp¨q. To avoid notational complications, we
proceed (without loss of generality) with nφ “ 1. For larger
nφ, our algorithm can be used component-wise. l

III. KERNELIZED LIPSCHITZ LEARNING

In this section, we provide a brief overview of kernel density
estimation (KDE) and provide a methodology for estimating
Lipschitz constants from data.

A. Empirical Density of Lipschitz Estimates
With the data tφpqjq, qjuNj“1, we obtain n P N underesti-

mates of the global Lipschitz constant L˚φ using

`jk “
|φpqjq ´ φpqkq|

}qj ´ qk}
, (10)

where k P t1, . . . , Nuzj. The sequence t`jku are empirical
samples drawn from an underlying univariate distribution L.
Note that the true distribution L has finite support: its support
is bounded below (component-wise) by zero since all the
`jk ě 0, and bounded above by the true Lipschitz constant
L˚φ. This leads us to the key idea of our approach that is to
identify the support of the distribution L to yield an estimate
of the true Lipschitz constant of φp¨q.

Remark 7. Variants of the estimator (10) such as maxk `jk
have been widely used in the literature to construct algorithms
for determining Lipschitz constants, see for example: [35],
[36], [42]. l

In the literature, common methods of tackling the support
estimation problem is by assuming prior knowledge about the
exact density of Lipschitz estimates [42] or using Strongin
overestimates of the Lipschitz constant [36]. However, we
avoid these overestimators because they are sometimes un-
reliable, even for globally Lipschitz functions [37, Theorem
3.1]. Instead, we try to fit the density directly from local
estimates and the data in a non-parametric manner using KDE
and characteristics of the estimated density.

B. Plug-in Support Estimation

With a set of n underestimates t`runr“1, we generate an
estimate L̂n of the true density L using a kernel density
estimator

L̂np`q “
1

nhn

n
ÿ

r“1

K
ˆ

`´ `r
hn

˙

, (11)

where K : R Ñ R is a smooth function called the kernel
function and hn ą 0 is the kernel bandwidth. A plug-in
estimate of the support S of the true density L is

Ŝn :“ t` P Rě0|L̂np`q ě βnu, (12)

where βn is an element of a sequence tβnu that converges to
zero as nÑ8; this plug-in estimator was proposed in [43].

C. Implementation

Implementing the plug-in estimator involves first construct-
ing a KDE of L with n samples. Then, if one picks β ” βn
small enough, one can easily compute Ŝ from (12). Then

L̂φ :“ maxpŜnq. (13)

This is a very straightforward operation with the avail-
ability of tools like ksdensity (MATLAB) and the
KernelDensity tool in scikit-learn (Python). The
pseudocode is detailed herein in Algorithm 1.

Remark 8. Note that the true support S is a subset of
Rě0. Therefore, when computing the density estimate, this
information should be fed into the tool being used. For
example, in MATLAB, one has the option t’support’,
’positive’u. Essentially, this subroutine transforms the
data into the log-scale and estimates the log-density so that
upon returning to linear scale, one preserves positivity. l
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Algorithm 1 Kernelized Lipschitz Estimation
Require: Initial dataset, txk, φpCqxkquNk“1

Require: Confidence parameter, 0 ă β ! 1
1: tqk, φpqkqu Ð Estimate Cq via ARD
2: for k in 1, . . . , N do
3: for j in t1, . . . , Nuzk do
4: `Ð append `jk computed by (10)
5: L̂n Ð KDE with cross-validated K and h using t`ru
6: Ŝn Ð compute using (12)
7: L̂φ Ð maxpŜnq.

D. Theoretical Guarantees

We formally describe the density L. We consider that the
samples q P Q are drawn according to some probability
distribution µ0 with support X. For any set S, suppose that
µ0 can be written as µ0pSq “

ş

S
Ωpqqdµpqq, where µ is the

Lebesgue measure, and Ω is continuous and positive on X. Let
µX denote the product measure µ0ˆµ0 on XˆX. Since µ0 is
absolutely continuous with respect to the Lebesgue measure,
µX assigns zero mass on the diagonal tpq, qq : q P Xu. The
cumulative distribution function for L is then given by

L̃pλq “ µX

ˆ"

pq1, q2q : q1 ‰ q2,
|φpq1q ´ φpq2q|

}q1 ´ q2}
ď λ

*˙

.

Since L̃ is non-decreasing, L exists almost everywhere by
Lebesgue’s theorem for differentiability of monotone func-
tions, and L’s support is contained within r0,L˚φs because
of (10).

We investigate the worst-case sample complexity involved
in overestimating L˚φ under the following mild assumption.

Assumption 4. The nonlinearity φp¨q is twice continuously
differentiable, that is, φp¨q P C2. l

Lemma 1. Suppose that Assumptions 3 and 4 hold. Then there
exists some q˚ P Q such that }∇φpq˚q} “ L˚φ.

Proof. Suppose tpqk1 , q
k
2 qu

8
k“1 denotes a sequence of paired

samples in Q such that |φpqk1 q´φpq
k
2 q|{}q

k
1´q

k
2 } Ñ L˚φ as k Ñ

8. Since Q is the convex hull of finitely many samples, it is
compact, so we can choose a subsequence of tqk1 , q

k
2u
8
k“1 that

converges to pq81 , q
8
2 q where both limits are in Q. If q81 “ q82 ,

then a Taylor expansion estimate implies }∇φpq81 q} ě L˚φ.
Since L˚φ is an upper bound of }∇φ} at any sample in Q,
}∇φpq81 q} “ L˚φ and q˚ “ q81 . If q81 ‰ q82 , then the result
follows by applying the mean value theorem to

ϕptq “ φ pq81 ` tpq
8
2 ´ q

8
1 qq ´ φpq

8
1 q

for t P r0, 1s, for which ϕp0q “ 0 and ϕp1q “ L˚φ}q
8
1 ´ q

8
2 }.

Also, dϕ{dt “
`

∇φpq81 ` tpq82 ´ q81 qq
˘J
pq82 ´ q81 q. Since

}∇φ} ď L˚φ, this implies |dϕ{dt| ď L˚φ}q
8
2 ´q

8
1 }. Reordering

q81 and q82 if needed, we have

L˚φ}q
8
2 ´ q

8
1 } “ ϕp1q “

ż 1

0

`

dϕ{dt
˘

ds ď L˚φ}q
8
2 ´ q

8
1 }.

Hence, the rightmost inequality must be an equality, which
implies that dϕpsq{dt “ L˚φ}q

8
1 ´ q82 } for all s. That is, if

the Lipschitz constant is attained with q81 ‰ q82 , then φp¨q
restricted to the segment connecting q81 and q82 is linear with
slope L˚φ. This concludes the proof.

Lemma 1 enables the worst-case complexity result described
in the following theorem.

Theorem 1. Let ϕ1pq1, q´1q “ |φpq1q ´ φpq´1q|{}q1 ´ q´1},
and suppose that Assumptions 3 and 4 hold. There exists C0 ą

0 such that for all sufficiently small δ ą 0 and and any set
tqju

n
j“1 of n uniform random samples in X, the probability

that some pair q`, q´ P tqju gives the Lipschitz estimate

φ1pq`, q´q ě p1´ δqL˚φ ´ C0δ

is at least 1 ´ εpn, δq. Here εpn, δq ď 3 expp´nκδ2nq´1q,
where κ is a constant depending on nq .

Proof. By Lemma 1, there exists at least one q˚ such that
}∇φpq‹q} “ L˚φ. For the worst-case analysis, suppose this
occurs only at a single sample, q‹. A Taylor expansion at q‹

yields

φpq‹ ` qq “ φpq‹q `∇φpq‹qJq `Rpqq, (14)

where R is a remainder term with |Rpqq| ď CR}q}
2 when

}q} ď η, for some CR ą 0 and η ą 0. Note that

∇φpq‹qJq “ }∇φpq‹q}}q} cos θ,

where θ is the angle between ∇φpq‹q and q. To obtain a good
estimate of }∇φpq‹q}, one needs to sample two points in this
neighborhood, one point q` with cos θ « 1 and a second
point q´ with cos θ « ´1. Each of these conditions defines a
cone. Regarding one of these cones in cylindrical coordinates
0 ď ` ď η and }y} ď χ` for χ “ tan θ, we can integrate the
nq ´ 1 dimensional volume to get the volume of this cone as
C0χ

nq´1ηnq for some dimension-dependent constant C0. A
calculation shows that cos θ ě 1´ χ2{2 for small θ. With q`
and q´ as one sample from each cone, we have that q` ´ q´
is contained in the cone }y} ď χ`, and so we can use (14) to
approximate

|φpq‹ ` q`q ´ φpq
‹ ` q´q|

“ |∇φpq‹qT pq` ´ q´q `Rpq`q ´Rpq´q|

ě }∇φpq‹q}}q` ´ q´}
ˆ

1´
χ2

2

˙

´ |Rpq`q ´Rpq´q|.

Dividing by }q` ´ q´} and using the defining property of q‹

gives

φ1pq`, q´q ě

ˆ

1´
χ2

2

˙

L˚φ ´
|Rpq`q ´Rpq´q|

}q` ´ q´}
. (15)

Subsequently, one can decompose q` “ q
‖
` ` qK`, with q‖`

parallel to ∇φpq‹q and qK` perpendicular and satisfying }qK`} ď
χ|q

‖
`|. Identical arguments can be used to infer }qK´} ď χ|q

‖
´|,

and hence, }q` ´ q´} ě }q
}

` ´ q
}

´} ´ }q
K
` ´ qK´}. Since q`

and q´ are chosen from opposite cones, we have }q}`´q
}

´} “

}q
}

`} ` }q
}

´}. Using }qK} ď χ}q}} and cos θ ě 1´ χ2{2, we
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have }q` ´ q´} ě p}q`} ` }q´}qp1´ χq
`

1´ χ2{2
˘

. Hence,

|Rpq`q ´Rpq´q|

}q` ´ q´}
ď

CRp}q`}
2 ` }q´}

2q

p}q`} ` }q´}qp1´ χq p1´ χ2{2q

ď
2CR maxt}q`}, }q´}u

2

maxt}q`}, }q´}up1´ χq p1´ χ2{2q

ď
2CRηp1` χ

2q1{2

p1´ χq p1´ χ2{2q
.

By combining the aforementioned inequality with (15), one
obtains

ϕ1pq`, q´q ě
´

1´
χ

2

¯

L˚φ ´
2CRηp1` χ

2q1{2

p1´ χq p1´ χ2{2q
.

Set δ “ χ{2 and take η “ δ. Then there exists C0 ą 0 such
that for all sufficiently small δ,

ϕ1pq`, q´q ě p1´ δqL
˚
φ ´ C0δ, (16)

which implies that ϕ1 Ñ L˚φ as δ Ñ 0.
From the assumption on uniformly drawn samples, the

probability of sampling in one of the pχ, ηq cones is,
ż η

0

κpχrqnq´1 dr “
κχnq´1ηnq

nq

for some κ ą 0 that depends on nq . Using δ “ η “ χ{2 and
absorbing the factors of 2 and 1{nq into κ yields κδ2nq´1.

Let X1˘ be the event of sampling at least one point in the
pχ, ηq cone as above, and let X0˘ be the event of sampling
nothing in the pχ, ηq cone. The probability of sampling at least
one of each of the points q` and q´ just described is,

1´ P pX0` X X0´q ´ P pX0` X X1´q ´ P pX1` X X0´q

ě 1´ p1´ 2κδ2nq´1qn ´ 2p1´ κδ2nq´1qn,

where the factor 2 before κ in the second term comes from
the fact that both cones are excluded and they are disjoint, and
the 2 before the third term comes by combining the final two
terms in the first expression.

By using the fact that for any ε1 P p0, 1q and n ą 0 the
inequality p1 ´ ε1qn ď expp´nε1q holds, we can conclude
that,

1´ P pX0` X X0´q ´ P pX0` X X1´q ´ P pX1` X X0´q

ě 1´ expp´2nκδnq´1q ´ 2 expp´nκδnq´1q ě 1´ ε,

for any given ε ą 0. The latter can be ensured by choosing n
large enough. This gives a lower bound on the probability of
obtaining (16) and hence, the desired result.

E. Benchmarking the Lipschitz Estimator

Our Lipschitz estimator is tested on well-studied benchmark
examples studied previously in [32], [35]: the benchmark
functions are described in Table I along with their domains and
true local Lipschitz constants. Note that all the functions are
not globally Lipschitz (e.g. φ2), not differentiable everywhere
(e.g., φ1, φ4), and, in the special case of φ4, specifically
constructed to ensure that naive overestimation of L˚φ using
Strongin methods provably fails [37]. To evaluate the proposed
Lipschitz estimator, we vary the number of data points N and

the confidence parameter β. Over 100 runs, we report mean
˘ one standard deviation of the following quantities: the time
required by our learning algorithm, the estimated Lipschitz
constant L̂φ, and the error L̂φ´L˚φ (which should be positive
when we overestimate L˚φ).

TABLE I
KERNELIZED LIPSCHITZ LEARNING OF BENCHMARK FUNCTIONS

n log10 β Time [s] L̂φ (mean ˘ stdev) OE;?
φ1 “ | cospπxq|, L˚φ “ 3.141 on r´π, πs

100 ´2 0.596 ˘ 0.127 3.361 ˘ 0.093 X
100 ´4 0.610 ˘ 0.122 3.528 ˘ 0.177 X
500 ´2 2.463 ˘ 0.432 3.252 ˘ 0.083 X
500 ´4 2.438 ˘ 0.427 3.369 ˘ 0.158 X

φ2 “ x´ x3{3, L˚φ “ 1.000 on r´1, 1s

100 ´2 0.455 ˘ 0.123 1.018 ˘ 0.011 X
100 ´4 0.459 ˘ 0.114 1.030 ˘ 0.020 X
500 ´2 1.656 ˘ 0.218 1.005 ˘ 0.004 X
500 ´4 1.585 ˘ 0.208 1.010 ˘ 0.009 X

φ3 “ sinpxq ` sinp2x{3q, L˚φ “ 1.667 on r3.1, 20.4s

100 ´2 0.556 ˘ 0.121 1.780 ˘ 0.074 X
100 ´4 0.547 ˘ 0.124 1.923 ˘ 0.166 X
500 ´2 1.826 ˘ 0.224 1.684 ˘ 0.010 X
500 ´4 1.821 ˘ 0.221 1.720 ˘ 0.002 X

φ4 “ Hansen test function from [35], L˚φ “ 8.378 on r0, 1s
100 ´2 0.450 ˘ 0.117 8.969 ˘ 0.262 X
100 ´4 0.488 ˘ 0.123 9.401 ˘ 0.476 X
500 ´2 1.921 ˘ 0.138 8.507 ˘ 0.046 X
500 ´4 1.923 ˘ 0.130 8.707 ˘ 0.103 X
φ5 “ maxt1´ 3 sinpxq, expp´ sinpxqqu, L˚φ “ 3.0 on r´10, 10s

100 ´2 0.546 ˘ 0.061 3.139 ˘ 0.051 X
100 ´4 0.612 ˘ 0.066 3.200 ˘ 0.087 X
500 ´2 1.893 ˘ 0.245 3.043 ˘ 0.014 X
500 ´4 1.989 ˘ 0.230 3.104 ˘ 0.024 X

; OE indicates an overestimate of the true Lipschitz constant, that is,
mintL̂φu ą L˚φ .

The final column of Table I reveals an important empirical
detail: all our estimates of L˚φ are overestimates for β ď 0.01
and n ě 100. This is a critical advantage of our proposed
approach, because an overestimate will enable us to provide
stability and constraint satisfaction guarantees about the data-
driven controller, as we will discuss in subsequent sections.
Furthermore, the estimation error is small for every test run,
and as expected, the error increases as β decreases, because a
smaller value of β indicates the need for greater confidence,
which results in more conservative estimates.

IV. SAFE INITIALIZATION VIA LEARNED MULTIPLIER
MATRICES

In this section, we begin by reviewing a general ADP
procedure, and then explain how to safely initialize uncon-
strained, as well as input-constrained ADP. A key insight is
that estimating the Lipschitz constant is equivalent to learning
a multiplier matrix in a purely data-driven manner. This
enables the use of semidefinite programs to compute safe and
admissible initial control policies for ADP.

A. Unconstrained ADP

Recall the optimal value function given by (7) and the
optimal control policy (8). From the Bellman optimality princi-
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ple, we know that the discrete-time Hamilton-Jacobi-Bellman
(HJB) equations are given by

J8pxtq “ inf
u
pUpxt, upxtqq ` γJ8pxt`1qq , (17a)

u8pxtq “ arg inf
u

pUpxt, upxtqq ` γJ8pxt`1qq , (17b)

where J8pxtq is the optimal value function and u8pxtq
is the optimal control policy. The key operations in ADP
methods [38] involve setting an admissible control policy
u0pxq and then iterating the policy evaluation step

Jk`1pxtq “ U
`

xt, ukpxtq
˘

` γJk`1pxt`1q (18a)

and the policy improvement step

uk`1pxtq “ arg min
up¨q

`

U
`

xt, upxtq
˘

` γJk`1pxt`1q
˘

(18b)

until convergence.
1) Semidefinite programming for safe initial control policy:

Recall the following definition.

Definition 3. The equilibrium point x “ 0 of the closed-
loop system (6) is globally exponentially stable with a decay
rate α if there exist scalars C0 ą 0 and α P p0, 1q such that
}xt} ď C0α

pt´t0q}x0} for any x0 P Rnx . l

Conditions for global exponential stability (GES) of the
equilibrium state, adopted from [28], is provided next.

Lemma 2. Let V p¨, ¨q : r0,8qˆRnx Ñ R be a continuously
differentiable function such that

γ1}x}
2 ď V pt, xtq ď γ2}x}

2 (19a)

V pt` 1, xt`1q ´ V pt, xtq ď ´p1´ α
2qV pt, xtq, (19b)

for any t ě t0 and x P Rnx along the trajectories of the
system

x` “ ϕpxq, (20)

where γ1, γ2, and α are positive scalars, and ϕp¨q is a
nonlinear function. Then the equilibrium state x “ 0 for the
system (20) is GES with decay rate α. l

The following design theorem provides a method to con-
struct an initial linear stabilizing policy u0pxq “ K0x such
that the origin is a GES equilibrium state of the closed-loop
system (6).

Theorem 2. Suppose that Assumptions 1–2 hold, and that
there exist matrices P “ PJ ą 0 P Rnxˆnx , K0 P Rnuˆnx ,
and scalars α P p0, 1q, ν ą 0 such that

Ψ` ΓJMΓ ĺ 0, (21)

where

Ψ “

„

pA`BK0q
JP pA`BK0q ´ α

2P ‹

GJP pA`BK0q GJPG



,

Γ “

„

Cq 0
0 I



, and M “

„

ν´1pL˚φq
2I 0

0 ´ν´1I



.

Then the equilibrium x “ 0 of the closed-loop system (6) is
GES with decay rate α.

Proof. Let V “ xJPx. Then (19a) in Lemma 2 is satisfied

with γ1 “ λminpP q and γ2 “ λmaxpP q. Let ∆V “ V ` ´ V .
Note that

V ` “ px`qJPx`

“ ppA`BK0qx`Gφq
J
P ppA`BK0qx`Gφq

“ xJpA`BK0q
JP pA`BK0qx

` 2xJpA`BK0q
JPGφ` φJGJPGφ.

Therefore,
„

x
φ

J

Ψ

„

x
φ



“ xJpA`BK0q
JP pA`BK0qx´ α

2xJPx

` 2xJpA`BK0q
JPGφ` φJGJPGφ

“ V ` ´ α2V “ ∆V ` p1´ α2qV,

and
„

x
φ

J

ΓJMΓ

„

x
φ



“

„

q
φ

J

M
„

q
φ



“ ν
`

pL˚φq
2qJq ´ φJφ

˘

.

Thus, pre- and post-multiplying (21) with
“

x φ
‰J

and its
transpose, respectively, we get

∆V ` p1´ α2qV ` ν
`

pL˚φq
2qJq ´ φJφ

˘

ď 0.

By inequality (4) in Assumption 2 and recalling that φp0q “
0, we get pL˚φq

2qJq ´ φJφ ě 0. Since ν ą 0, this implies
∆V ` p1´ α2qV ď 0, which is identical to (19b).

Note that we do not need to know φp¨q to satisfy con-
ditions (21). Instead, Theorem 2 provides conditions that
leverage matrix multipliers similar to those described in [29].
Note that the estimation of the Lipschitz constant is the key
step in learning a multiplier matrix M, since this matrix is
parameterized solely by L˚φ and ν is an optimization variable.

We shall now provide LMI-based conditions for computing
the initial control policy K0, the initial domain of attraction
P and ν via convex programming.

Theorem 3. Fix α P p0, 1q and let L̂φ be obtained via (13).
If there exist matrices S “ SJ ą 0, Y , and a scalar ν ą 0
such that the LMI conditions

»

—

—

–

´α2S ‹ ‹ ‹

0 ´νI ‹ ‹

AS `BY GS ´S ‹

L̂φCqS 0 0 ´νI

fi

ffi

ffi

fl

ĺ 0 (24)

are satisfied, then the matrices K0 “ Y S´1, P “ S´1 and
scalar ν satisfy the conditions (21) with the same α and L˚φ
replaced by L̂φ.

Proof. A congruence transformation of (24) with the matrix
blkdiag

`“

P ν´1 I P I
‰˘

and substituting S with P´1

and Y with K0P
´1 yields

»

—

—

–

´α2P ‹ ‹ ‹

0 ´ν´1I ‹ ‹

A`BK0 G ´P ‹

L̂φCq 0 0 ´νI

fi

ffi

ffi

fl

ĺ 0.

Taking the Schur complement with the submatrices shown by
the guidelines in the above inequality, we get (22). Since ν ą
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„

´α2P 0
0 ´ν´1I



`

„

pA`BK0q
J CJq

GJ 0

 „

P 0

0 L̂2
φν
´1I

 „

pA`BK0q
J CJq

GJ 0

J

ĺ 0 (22)
„

pA`BK0q
JP pA`BK0q ´ α

2P pA`BK0q
JPG

GJP pA`BK0q ´ν´1I `GJPG



`

„

Cq
0



pL̂φq
2ν´1I

„

Cq
0

J

ĺ 0 (23)

0, taking the Schur complement again yields (23) which can
be rewritten as

Ψ´

„

0
I



ν´1I

„

0
I

J

`

„

Cq
0



pL̂φq
2ν´1I

„

Cq
0

J

ĺ 0

which is exactly (21) if L̂φ “ L˚φ. Thus, the conditions (21)
and (24) are equivalent when L̂φ “ L˚φ.

Based on Theorem 1, we will get a perfect estimate of the
Lipschitz constant only with infinite data, which is impractical.
However, a much more practical result is provided next. This
is based on the observation that our proposed kernelized
Lipschitz learner typically provides overestimates of L˚φ. In
such cases, that is, when L̂φ ě L˚φ, an advantage of our method
is that any feasible solution of the LMI (24) is guaranteed to
be an admissible control policy. This is demonstrated by the
following result.

Theorem 4. Let pP,K0, ν, αq be a feasible solution to the
conditions (21) with an overestimate of the Lipschitz constant
L̂φ ą L˚φ. Then pP,K0, ν, αq is also a feasible solution to the
conditions (21).

Proof. Let δL “ L̂φ ´ L˚φ. Since L̂φ is an overestimator of
L˚φ, δL ą 0. Since pP,K, ν, αq is a feasible solution to (21)
with L̂φ, it satisfies

Ψ` ΓJ
„

´ν´1pL˚φ ` δLq
2I 0

0 I



Γ ĺ 0,

which can be written as

Ψ` ΓJMΓ` ΓJ
„

´ν´1p2L˚φδL` δL
2qI 0

0 0



l jh n

:“δM

Γ ĺ 0.

As ν ą 0, we infer that δM ĺ 0, hence ΓJδMΓ ĺ 0.
Therefore, Ψ`ΓJMΓ ĺ 0. Since the other conditions in (21)
are independent of L˚φ, the other conditions are automatically
satisfied. This concludes the proof.

Theorem 4 indicates that if our learned L̂φ is an overesti-
mate of L˚φ, and we use L̂φ to obtain a safe stabilizing control
policy, then this is also a safe stabilizing control policy for
the true system (1). Having a feasible solution to (21) with an
underestimator of L˚φ is not sufficient to guarantee a feasible
solution for the true Lipschitz constant, because δM may not
be negative semi-definite in that case. Of course, extremely
conservative overestimates of L̂φ will result in conservative
control policies or result in infeasibility. In our proposed
approach, we have observed that the confidence parameter β
dictates the conservativeness of the overestimate; that is β Ñ 1
makes the estimate L̂φ more conservative.

2) Safely initialized PI: We begin by proving the following
critical result.

Theorem 5. Let Upx, uq be defined as in (5). If K0 is obtained
by solving (24) for L̂φ ě L˚φ, then the initial control policy
u0 “ K0x is an admissible control policy on Rnx .

Proof. Clearly, u0 is continuous, and (by Theorems 2 and 3) is
a stabilizing control policy for (1). It remains to show that the
cost induced by u0 is finite. Since u0 is stabilizing and L̂φ ě
L˚φ, we know that }xt} Ñ 0 as tÑ8, which implies u0 Ñ 0
and, by therefore, Upxt, utq Ñ 0 as t Ñ 8. Since Upxt, utq
converges to a finite limit, Upxt, utq is bounded for all t ě
0. Therefore, any partial sum

řt1

t“0 Upxt, utq is bounded and
monotonic; that is, J converges to a finite limit.

Admissibility of u0 for the specific linear quadratic regulator
(LQR) cost function follows directly from Theorem 5.

Corollary 1. Let

Upxt, utq “ xJt Qxt ` u
J
t Rut (25)

for some matrices Q “ QJ ľ 0 and R “ RJ ą 0. Then, the
initial control policy u0 “ K0x obtained by solving (24) is
an admissible control policy on Rnx . l

Now that we know u0 “ K0x is an admissible control
policy, we are ready to proceed with the policy iteration
steps (18). Typically, an analytical form of Jk is not known a
priori, so we resort to a shallow neural approximator/truncated
basis expansion for fitting this function, assuming Jk is
smooth for every k P N Y t8u. Concretely, we represent the
value function and cost functions as:

Jkpxq :“ ωJk ψpxq (26)

where ψ0p¨q : Rnx Ñ Rn0 denotes the set of differentiable
basis functions (equivalently, hidden layer neuron activations)
and ω : Rn0 is the corresponding column vector of basis
coefficients (equivalently, neural weights).

It is not always clear how to initialize the weights of the
neural approximators (26). Commonly, small random numbers
drawn from a uniform distribution are used [44], but there is
no safety guarantee associated with random initialization. An
alternative initialization method used in the literature employs
proportional-integral-derivative (PID) controllers [45]. While
PID can be tuned to stabilize systems without a model, it
is considerably harder to enforce constraints while ensuring
stability and regions of constraint satisfaction are not consid-
ered during initialization. Additionally, many PID initialization
frameworks in the literature are used for data generation and
collection: this data is then used to generate neural weights
by least-squares fitting the neural approximator. While these
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neural weights are indeed the optimal weights based on
the collected data, the induced control policy is is rarely
guaranteed to be constraint-satisfying or even stable.

To address these issues, we propose initializing the weights
as follows. Since our initial Lyapunov function is quadratic, we
include the quadratic terms of the components of x to be in the
basis ψpxq. Then we can express the initial Lyapunov function
xJPx obtained by solving (24) with appropriate weights in the
ψpxq, respectively, setting all other weights to be zero. With
the approximator initialized as above, the policy evaluation
step (18a) is replaced by

ωJk`1

`

ψpxtq ´ γψpxt`1q
˘

“ U pxt, ukpxtqq , (27a)

from which one can solve for ωk`1 recursively via

ωk`1 “ ωk ´ ηkϕk
`

ωJk ϕk ´ U pxt, ukpxtqq
˘

,

where ηk is a learning rate parameter that is usually selected
to be an element from the sequence tηku Ñ 0 as k Ñ8, and
ϕk “ ψpxtq ´ γψpxt`1q. Subsequently, the policy improve-
ment step (18b) is replaced by

uk`1 “ arg min
up¨q

`

U pxt, upxtqq ` γωJk`1ψpxt`1q
˘

.

This minimization problem is typically non-convex and there-
fore, challenging to solve to optimality. In some specific cases,
one of which is that the cost function is quadratic as described
in (25), the policy improvement step becomes considerably
simpler to execute, namely

uk`1pxq “ ´
γ

2
R´1BJ∇ψpxqJωk`1. (27b)

This can be evaluated as R and B are known, and ψ is
differentiable and chosen by the user, so ∇ψ is computable.
A pseudocode for ease of implementation is provided in
Algorithm 2.

Algorithm 2 Safely Initialized PI for discrete-time systems
Require: Termination condition constant εac
Require: Historical data D

1: Estimate Lipschitz constant L̂φ using Algorithm 1
Require: Compute stabilizing control gain K0 via SDP (24)

2: Fix admissible control policy u0pxq “ K0x
3: while }Jk ´ Jk´1} ě εac do
4: Solve for the value Jkpxq using

Jk`1pxtq “ Upxt, ukpxtqq ` γJk`1pxt`1q.

5: Update the control policy upk`1qpxq using

uk`1pxtq “ arg min
up¨q

`

Upxt, ukpxtqq ` γJk`1pxt`1q
˘

.

6: k :“ k ` 1

Since we prove that u0 is an admissible control policy,
we can use arguments identical to [44] to claim that if
the optimal value function and the optimal control policy
are dense in the space of functions induced by the basis
function expansions (26), then the weights of the neural
approximator employed in the PI steps (27) converges to the
optimal weights; that is, the optimal value function J8 and the
optimal control policy u8 are achieved asymptotically. This
is encapsulated in the following theorem.

Theorem 6. Let Jk and uk be obtained by the updates (27).
If K0 is obtained by solving (24) for L̂φ ě L˚φ, then we have
that the value function Jkpxq Ñ J8pxq and the control policy
ukpxq Ñ u8pxq as k Ñ 8, where J8 and u8 are optimal
solutions of the discrete-time HJB equations described in (17).

Proof. This follows from Theorem 5 and [44, Theorem
3.2].

B. Input-Constrained ADP with Safety Enhancements

Herein, we tackle the case when the control input is to be
constrained, which is very common in practical applications.
We make the following assumption on the constraints.

Assumption 5. The control input u P U, where

U “
 

u P Rnu : ξJi u ď 1
(

, (28)

for i “ 1, . . . , nc, where nc is the number of input constraints,
and ξi P Rnu for every i. l

Remark 9. The matrix inequality (28) defines a polytopic input
constraint set. Clearly, constraints of the form |u| ď ū can be
written as

„

ξi
ξi`1



u “

„

0 ¨ ¨ ¨ 1{ū ¨ ¨ ¨ 0
0 ¨ ¨ ¨ ´1{ū ¨ ¨ ¨ 0



u ď

„

1
1



,

which is of the form (28). l

Note that with any control policy u0 “ K0x, the constraint
set described in (28) is equivalent to the set

X “
 

x P Rnx : ξJi K0x ď 1
(

, (29)

for i “ 1, . . . , nc. Before we state the main design theorem,
we require the following result from [46, pp. 69].

Lemma 3. The ellipsoid

EP “ tx P Rnx : xJPx ď 1u (30a)

is a subset of X if and only if

ξiK
J
0 P

´1K0 ξ
J
i ď 1 (30b)

for i “ 1, . . . , nc. l

1) Constrained admissible initial control policy and invari-
ant set estimation: Since the control input is constrained,
we need to characterize an invariant set of the form EP
within which all control actions satisfy (28) and the following
stability certificate holds.

Definition 4. The equilibrium point x “ 0 of the closed-
loop system (6) is locally exponentially stable with a decay
rate α and a domain of attraction EP if there exist scalars
C0 ą 0 and α P p0, 1q such that }xt} ď C0α

pt´t0q}x0} for
any x0 P EP . l

A standard result for testing local exponential stability of
the equilibrium point adopted from [47] is provided next.

Lemma 4. Let V : r0,8q ˆ EP Ñ R be a continuously
differentiable function such that the inequalities (19) hold for
any t ě t0 and x P EP along the trajectories of the system (6)
where γ1, γ2, and α are positive scalars. Then the equilibrium
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x “ 0 for the system (6) is locally exponentially stable with a
decay rate α and a domain of attraction EP . l

The following design theorem provides a method to con-
struct a stabilizing policy such that the origin is a locally
exponentially stable equilibrium of the closed-loop system
and constraint satisfaction is guaranteed within a prescribed
ellipsoid EP Ă X without knowing the nonlinearity φp¨q.

Theorem 7. Fix α P p0, 1q and L̂φ. Suppose that L̂φ ě L˚φ,
and there exist matrices S “ SJ ą 0, Y , and a scalar ν ą 0
such that the LMI conditions (24) and

„

1 ξJi Y
‹ S



ľ 0 (31)

for every i “ 1, . . . , nc. Then, the equilibrium x “ 0 of the
closed-loop system (6) is locally exponentially stable with a
decay rate α and a domain of attraction EP defined in (30a).
Furthermore, given that the initial state x0 P EP , then the
control actions ut satisfy the constraints (28) for all t ě 0.

Proof. From Theorem 2, we know that (19) holds. Taking
Schur complements of (31) yields (30b) which, by Lemma 3,
implies that EP Ă X and hence, the input constraints are
satisfied for all t ě 0 by the closed-loop system with policy
u “ K0x, because x0 P EP . Thus, all the conditions of
Lemma 4 are satisfied, which concludes the proof.

Remark 10. Note that the conditions (24) and (31) are LMIs
in S, Y , and ν for a fixed L̂φ. Therefore one can maximize
the volume of EP by solving a constrained convex program
with cost function ´ log |S| (the log-determinant of S) subject
to the constraints (24) and (31) while line searching for
α. This will reduce the conservativeness of the domain of
attraction. l

2) Safely initialized input-constrained PI: By adopting
the work of [48]–[52] for input-constrained/actuator saturated
ADP we choose a cost function of the form

Upx, uq “ Qpxq ` 2

ż u

0

`

ū tanh´1
pυ{ūq

˘J
R dυ, (32)

where Qpxq : Rnx Ñ R is a positive definite function
satisfying Qp0q “ 0 and R ą 0.

We begin by demonstrating that the constrained policy is an
admissible policy on its domain of attraction.

Theorem 8. Let U be defined as in (32). Then the initial
control policy u0 “ K0x obtained by solving (24) and (31) is
an admissible control policy on EP .

Proof. By definition Qp0q “ 0. Also, the integrand in (32) is
zero when the upper limit is zero. Therefore, Up0, 0q “ 0. For
any x0 P EP , u0 is a stabilizing constrained control policy,
therefore, }xt} Ñ 0 and }ut} Ñ 0 as t Ñ 8. Hence, U Ñ 0
as t Ñ 8. The rest of the proof follows identically as in the
proof of Theorem 5.

Since the control policy is constrained, we can initialize
ADP safely using the neural approximator (26) as discussed

in the previous subsection. The policy evaluation step is given
by

ωJk`1

`

ψpxtq ´ γψpxt`1q
˘

“ Qpxtq ` 2

ż ukpxtq

0

`

ū tanh´1
pυ{ūq

˘J
R dυ. (33a)

Some algebraic manipulation yields

ωJk`1

`

ψpxtq ´ γψpxt`1q
˘

“ Qpxtq ` 2ūuJR tanh´1
pu{ūq

` ū2 diagpRqJ

»

—

—

—

–

lnp1´ u21{ū
2q

lnp1´ u22{ū
2q

...
lnp1´ u2nu{ū

2q

fi

ffi

ffi

ffi

fl

, (33b)

where u1, u2, u3, ¨ ¨ ¨ , unu are the individual components
of the vector u. Subsequently, the policy improvement step is
given by

uk`1 “ ´ū tanh
´ γ

2ū
R´1BJ∇ψpxt`1q

Jωk`1

¯

. (33c)

Since the initial control policy is constrained and admissible,
one can use [49] to prove convergence of the value function
and the control policy to the optimal using the constrained
policy iteration steps (33b) and (33c). This is summarized in
the following theorem.

Theorem 9. Let Jk and uk be obtained by the updates (33). If
K0 is obtained by solving (24) and (31) for L̂φ ě L˚φ, then we
have that the value function Jkpxq Ñ J̄8pxq and the control
policy ukpxq Ñ ū8pxq as k Ñ 8, where J̄8 and ū8 is the
optimal value function and optimal constrained control policy,
respectively. Furthermore uk P U for every k P N`.

Proof. This follows directly from Theorem 8 and [49, Theo-
rem 2]. The constraint admissibility of u0 is a direct conse-
quence of (31), and all subsequent policies uk P U because of
the update (33c), since } tanhp¨q}8 ď 1.

C. Discussion

The value iteration algorithm (see Algorithm 3) does not
generally require an admissible control policy in order to
converge optimally using data. Although this is true in off-
policy implementations (that is, when the updated control
policy is not used on-line), in on-policy implementations,
a lack of stabilizing initial policies could result in unsafe
transient behavior unless the underlying system is open-
loop stable, leading to unsafe exploration during the initial
data collection phase. Of course, if the underlying system is
stable or bounded, then the VI algorithm does not require an
admissible initial control policy.

Q-learning is a provably convergent direct optimal adaptive
control algorithm and model-free reinforcement learning tech-
nique [53]–[56]. Q-learning can be used to find an optimal
action-selection policy based on measurements of previous
state and action observations controlled using a sub-optimal
policy. In most of the existing work the reward/cost function
is manipulated to guarantee correction of the unsafe actions
in the learning phase. Our proposed method does not require
a corrective modification of the reward/cost function on-line
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for safety. Instead, historical data and solving SDPs based on
Lipschitz estimation is used to generate safe control policies
that enables safe data collection during on-policy Q-learning
implementation, because the states are guaranteed not to
diverge with the initial policy (conversely, this divergence
could occur if the initial policy was unsafe).

Algorithm 3 Safely Initialized VI for discrete-time systems
Require: Termination condition constant εac
Require: Historical data D

1: Estimate Lipschitz constant L̂φ using Algorithm 1
Require: Compute stabilizing control gain K0 via SDP (24)

2: Fix safe initial control policy u0pxq “ K0x
3: while }Jk ´ Jk´1} ě εac do
4: Solve for the value Jkpxq using

Jk`1pxtq “ Upxt, ukpxtqq ` γJkpxt`1q.

5: Update the control policy upk`1qpxq using

uk`1pxtq “ arg min
up¨q

`

Upxt, ukpxtqq ` γJk`1pxt`1q
˘

.

6: k :“ k ` 1

V. NUMERICAL EXAMPLES

Example 1: Nonlinear Torsional Pendulum

We demonstrate our proposed approach using the torsional
pendulum which is modeled by discretizing the system

9θ “ ω, (34a)
J 9ω “ u´Mgl sin θ ´ fdω, (34b)

with mass M “ 0.333 Kg, length l “ 0.667 m, acceleration
due to gravity g “ 0.981 m/s2, friction factor fd “ 0.2,
and moment of inertia J “ 0.1975 Kg-m2. With Euler
discretization and a sampling time of τ “ 0.01 s, we get
a discrete-time model of the form (1) with

x “

„

θ
ω



, A “ I ` τ

„

0 1
0 ´fd



, B “ τ

„

0
1



, G “ τ

„

0
´1



.

We assume that the nonlinearity φ “ Mgl sin θ{J is com-
pletely unknown; clearly φp¨q has a Lipschitz constant L˚φ “
Mgl{J “ 11.038, which is also unknown to us.

In the data collection phase, we initialize the system (34)
from ten different initial conditions in the space r´π, πs ˆ
r´2, 2s and collect data each 0.1 s, leading to a total dataset of
N “ 50 samples. Note that the initialization procedure of [49]
requires 400 data points, which is considerably more than ours,
and in that procedure, the original policy in the pre-training
phase is not guaranteed to be admissible. Automatic relevance
determination reveals that the nonlinearity only acts through
the second state, and the argument of the nonlinearity is q “ θ.
Proceeding as in Algorithm 1, we perform cross-validation
using an Epanechnikov kernel with bandwidth hn “ 0.05 and
choose β “ 0.01. This yields the overestimate L̂φ “ 11.511 ą
L˚φ. Using this Lipschitz estimate, we solve (24) with α “ 0.95

and ν “ 1 for an initial value function xJPx and control
policy estimate K0x.

Fig. 1. Comparison of states xt, inputs ut, and cost function values
for unconstrained ADP with safe initialization for Lipschitz estimates with
increasing confidence L̂φpβ “ 0.1q “ 11.14 and L̂φpβ “ 0.001q “ 12.29.
We also compare our work to an LQR controller that is known to work for
linear systems.

We construct a 2 ´ 11 ´ 1 (input layer-hidden layer-
output layer) value function neural approximator with a set
of polynomial basis functions

ψpx1, x2q “

"

x21
2
,
x22
2
, x1x2,

x21x2
2

,
x1x

2
2

2
,
x41
4
,
x42
4
,

x31
3
,
x32
3
,
x21x

2
2

2
,
x41x

4
2

4

*

, (35)

where x1, x2 denote the first and second components of x,
respectively. Our initial weight vector is set to

ω0 “
“

2P11 2P22 P12 ` P21 0 ¨ ¨ ¨ 0
‰J
,

where Pij is the pi, jqth element of P . We fix the learning
rate at η “ 10´4 and the forgetting factor γ “ 0.95.

Unconstrained scenario: We first test the unconstrained
scenario, where the cost function is

ř

}Qx}1 ` uJRu, with
Q “ I2 and R “ 0.5, and compare four initial policies
and value functions obtained via: (i) kernelized Lipschitz
learning with β “ 0.1; (ii) kernelized Lipschitz learning with
β “ 0.001; (iii) solving an algebraic Riccati equation and
ignoring the nonlinearity; and (iv) randomly initializing with
small weights from a normal distribution with small variance
and zero mean as in [44], which is the most common initializer.
The comparison study results are shown in Figure 1. We
observe that all of the methods (i)–(iv) listed above work, and
result in stabilizing control policies that result in the state of
the torsional pendulum to converge to its equilibrium. Inter-
estingly, both the Lipschitz constant estimates result in similar
trajectories implying that the SDPs (24) are not extremely
sensitive to the Lipschitz estimate. However, based on the
J subplot which shows the variation of

ř

xJQx ` uJRu
with time, there is a slight improvement of performance in
the β “ 0.1 (continuous red line) case compared to the
β “ 10´3 (dashed blue line) case since the Lipschitz estimate
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Fig. 2. Illustration of constrained-input value-iteration based ADP with safe
initialization. The top plot shows the variation of }x} over time. The middle
plot demonstrates that input constraints are satisfied for all t, and the bottom
plot demonstrates that the initial control policy was close to the optimal, but
learning was necessary to change the weights to the optimal values.

in the former is closer to the true Lipschitz constant. As
expected, the cost incurred by the control policy ignoring the
nonlinearity (dotted black line) is by far the worst, since the
control actions required early on are of larger magnitude and
the tracking performance is severely compromised. Randomly
selecting weights also results in worse performance than our
proposed method, as the cost incurred is increased due to
oscillatory behaviour in the states and poor tracking in the
initial time frame. Summarily, this experiment demonstrates
the effectiveness of the proposed approach and its robustness
to Lipschitz estimate conservatism.

In Fig. 2, we demonstrate the on-policy value iteration algo-
rithm with safe initialization. All initial conditions converge to
the origin using our proposed approach. In constrast, randomly
initializing a policy and value as is typical in on-policy value
iteration results in the states initially diverging (not shown in
the plot) and poor performance before the rank condition is
reached for determining a least-squares solution to update the
neural weights.

Constrained scenario: We also test the scenario where the
control actions are constrained by |u| ď 1. In this case, we
use the cost functional defined in (32) with ū “ 1, Q “ I2
and R “ 0.5. We begin by solving (24) and (31) with
ν “ 1 and α “ 0.95 to get P and K0, as in the previous
subsection. We also select the same basis functions (35). We
randomly initialize (using 20 random initial conditions) the
system (34) from within the domain of attraction of the initial
control policy, that is, from within the set txJPx ď 1u. We
know from Theorem 7 that this ensures that the initial control
policy will satisfy input constraints. Consequently, because the
policy improvement step is also guaranteeed to satisfy input
constraints and the initial policy is stabilizing, there are no
constraint violations, and the initialization is deemed safe.
The performance of the proposed algorithm is provided in

Fig. 3. Illustration of constrained-input policy-iteration based ADP with safe
initialization. The top plot shows the variation of }x} over time. The middle
plot demonstrates that input constraints are satisfied for all t, and the bottom
plot demonstrates that the initial control policy was close to the optimal, but
learning was necessary to change the weights to the optimal values.

Figure 3. The convergence of }xt} to zero and the satisfaction
of input bounds are illustrated. Finally, we demonstrate the
convergence of the neural weights ωt, noting that learning
did occur, that is, the weights were not static throughout the
simulation (which would indicate that the initial policy was
optimal).

Example 2: Excitation Control of Hydrogenerator

Developing excitation control systems without complete
model information is an important open challenge in smart
grids and multimachine power systems [57]. To this end,
we demonstrate the potential of our proposed framework
on a practical system: a 300 MW hydrogenerator in the
Northeastern China power grid. A complete description of the
power grid topology and its components is provided in [57].
A state-space model of the hydrogenerator dynamics is given
by

9δ “ ω ´ ω0

H

ω0
9ω “ Pm ´

Vs
η1
Eq sin δ ´

D

ω0
pω ´ ω0q ´ Vs0 sin 2δ

Td0 9Eq “ Ef ´

ˆ

1`
xd ´ x

1
d

η1

˙

Eq `
xd ´ x

1
d

η1
Vs cos δ

where Vs0 “ V 2
s pxq ´ x1dq{2η1η2, η1 “ x1d ` xT ` xL and

η2 “ xq ` xT ` xL. The equilibrium state of this model
is given by x8 :“

“

δ0, ω0, Eq0
‰J

with the corresponding
equilibrium control u8 :“ Ef0. All model parameter values
and equilibrium values are provided in Table II; physical
meanings of the parameters are discussed in [57].

Our objective is to design a constrained control action
u “ Ef where |u ´ u8| ď 10, such that the state of the
system is driven to the equilibrium state x8 while minimizing
a quadratic cost function given by px ´ x8q

JQpx ´ x8q `
Rpu ´ u8q

2, with Q “ diag
“

100, 10000, 100
‰

and R “ 1.
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TABLE II
MODEL PARAMETERS AND NOMINAL VALUES

Param Value Param Value Param Value
δ0 0.2351 ω0 100π Eq0 1.7827
H 8.74 xd 1.0354 x1d 0.36
xq 0.7194 Vs 1.00 xT 0.041
xL 0.0485 Pm 0.7 Ef0 3.00
η1 0.4495 η2 0.8089 Vs0 0.4942

With Euler discretization and a sampling time of τ “ 1 ms,
we get a discrete time model of the form (1). We choose

x “

»

–

δ
ω
Eq

fi

fl , A “

»

–

0 1 1
0 ´0.0034 2
0 0 ´0.2402

fi

fl , B “

»

–

0
0

0.0960

fi

fl

by fitting a linear model to N “ 1000 data points generated
from the true system with small random control actions near
the equilibrium control; pA,Bq is ensured to be a stabilizable
pair. Note that even though the residual model is not globally
Lipschitz, we can leverage the sampled data to compute a
local Lipschitz constant (in a neighborhood of x8) of L̂φ “
0.9910 with 99% confidence using the KDE method. Using
this Lipschitz estimate, we solve (24) with α “ 1 and ν “ 1
for an initial value function xJPx and control policy estimate
K0x. The initial admissible control is computed to be

K0 “
“

´997.43 488.01 ´4999.97
‰

.

We randomly initialize the system from within 5% of the
equilibrium state; this is a considerably more difficult scenario
than that studied in [57] because we allow our initial angular
frequency to be different from ω0, which causes strong oscilla-
tory initial behavior and instability if the initial control policy
is constructed using small random neural network weights
instead of our proposed method. Furthermore, in our cases,
different to those studied before, the initial control policy is
constrained, making it even more challenging to stabilize the
power system.

We run the constrained policy iteration using a neural
approximator with basis functions involving polynomials of x
up to degree 4, with higher-order polynomials having smaller
coefficient weights to ensure stable numerical conditioning.
A learning rate of 10´4 is chosen, and the simulation is
run for 50 s. We observe from Fig. 4, the proposed ADP
method works well, and the states converge to the equilibrium
state without control constraint violation in spite of severely
oscillatory dynamics until |ω ´ ω0| becomes small.

VI. CONCLUSION AND FUTURE WORK

This work provides a methodology for constructing admis-
sible initial control policies for ADP methods using multiplier
matrix learning by using kernel density estimation and semi-
definite programming for a class of nonlinear systems with
uncertain Lipschitz dynamics. Such admissible controllers
enable safe initialization, that is, with constraint satisfaction
using only historical data, which is necessary not only in policy
iteration methods, but also in value iteration and Q-learning
for safely obtaining initial data on-line for on-policy learning

Fig. 4. Temporal variation of states pδ, ω,Eqq and control input p∆Ef q for
Example 2.

when the underlying system is not open-loop stable. Simula-
tions on a discretized torsional pendulum model and a high-
dimensional linear system are provided to show the efficiency
of our approach. Future research efforts will focus on more
general costs and uncertain nonlinear safety constraints while
ensuring feasibility with a high probability in terms of regret.

Additionally, while we have not explicitly considered ro-
bustness in the paper, the robustness properties of optimal
controllers and ADP for nonlinear systems has been well-
studied in the literature, see for example: [6], [58], [59] and the
references therein. In addition, a robust initial control policy
and a corresponding robust constraint-admissible set can be
constructed with multiplier matrix learning as discussed in this
paper via semidefinite programming; we consign to find the
optimal policy with respect to a worst case disturbance (H8
control or zero-sum game) of this method to future work.
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