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Abstract
In this work, we introduce a scalable, decentralized deep reinforcement learning (DRL) scheme
for controlling traffic signalization. The work builds on previous results using multi-agent
DRL, with a new state representation and reward definitions. The state representation is a
coarse image of traffic and the definitions of reward functions are tested based on the simulated
Monaco SUMO Traffic (MoST) scenario. Based on extensive numerical experimentation, we
have found the most appropriate choice of the reward function is related to minimizing the
average amount of time vehicles spent in the network, but with various modifications that
improve the learning process. The resulting algorithm performs better than the previous one
on which it is based and markedly better than a non-learning based, greedy policy
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1. INTRODUCTION

The impact of vehicular traffic congestion is a societal
and environmental concern throughout the world [Reed
and Kidd, 2019] and it is recognized that alleviation of
these concerns can be achieved by controlling traffic. The
passive control of traffic is done using traffic signalization,
i.e., using traffic signals, lights. Adaptive traffic signal
control (ATSC) is the dynamic control of traffic signals
with the aim of reducing congestion and improving traffic
throughput. State-of-the-art ATSC systems applied to city
traffic include the broadly deployed SCOOT and SCATS
[Wei et al., 2020], which were developed long before the
advent of current machine-learning-based techniques. It
is therefore clear that such techniques could provide an
improvement to their functions, at the very least modi-
fying them if not replacing them outright. Application of
learning-based control to traffic signalization has received
attention in research for a few reasons, a main one being
that, unlike traditional methods, learning does not neces-
sarily rely on mathematical modelling, which is beneficial
in application to complex systems lacking a physics-based
model.

In this work we consider the application of multi-agent
deep reinforcement learning (deep RL or DRL) to ATSC,
the unique aspect of which is the state description, which
uses an image of traffic or traffic flow. For representing the
state, we use an image of traffic in the incoming lanes of
a traffic signal; the image consists of a coarse grid, where
each grid point represents the fraction of area in that grid
element that is occupied by a vehicle. This image-like state

? This work was supported by Mitsubishi Electric Research Labo-
ratories.

representation is able to provide rich traffic information,
and it can be obtained through multiple means, such as
GPS data or directly from cameras. Each agent controls
one traffic signal and is able to receive data from neigh-
boring agents to compute its reward function. Another
practical challenge of RL is to define an appropriate reward
function in training to improve the robustness and stability
of RL models. In this work, the reward function is designed
to minimize delay, with refinements to avoid undesirable
behaviors.

In this work, we consider four different reward function
definitions, each one being a modification of the previous.
The final reward function has a few modifications to the
baseline reward function, which is a sum of all vehicles’
delays. The first modification is that we take a sum of
weighted exponentials of delays, to avoid the situation
where a few drivers are greatly penalized for the benefit of
the average. The weights are inversely proportional to the
distance from the intersection and the second modification
we make is to bound the weights from below so that the
delay of distant vehicles is taken into account. The final
modification we make is to bound the reward so that the
controller avoids attempting to resolve hopeless, highly
congested situations. Our design choices are supported in
simulation of the Monaco SUMO traffic (MoST) simula-
tion environment of Codecá and Härri [2018], the results
of which we present in this paper.

To compare our work to the literature, we being by noting
that DRL-based approaches to ATSC typically build on
the work of Mnih et al. [2016], which uses DNNs for both
policy and value approximation. One of the first works
has been that of Li et al. [2016], which considered a
simplified, isolated traffic intersection where the vehicles



are not allowed to make turns and the reward is defined
using the queue lengths in the incoming lanes. Other works
include that of Chu et al. [2016] and Casas [2017], which
verified the superior approximation capabilities of deep
Q-learning and deep deterministic policy gradient in a
simplified traffic environment, respectively. Furthermore,
the work of van der Pol [2016] applied deep independent
Q-learning, addressing issues of partial observability using
transfer planning, but the states therein were infeasible
and the simulated traffic environments were oversimplified.
For reward definition, the authors used a weighted function
of factors such as waiting time, delay, emergency stops
and frequency of traffic light switches and experimentally
determined that delay and waiting time should be highly
weighted in the reward function. Genders and Razavi
[2018] sought to answer key questions about data and sen-
sor requirements with the goal of bringing reinforcement
learning to real-world ATSC application in the near future.
Their work considered three different definitions of state,
varying resolution of information from low to high, where
the highest resolution corresponded to the discretization of
each incoming lane into cells of fixed length; the difference
from our work is that these cells were binary-encoded, rep-
resenting presence or absence of a vehicle. Traffic-grid state
representations have also been considered elsewhere in the
literature under alternative nomenclature. For example,
Genders and Razavi [2018] term it discrete cell encoding,
van der Pol [2016] as a position matrix, and Thorpe and
Anderson [1996] as a fixed-distance representation.

In the literature cited above, it is not clear how to scale
DRL algorithms to large-scale application to traffic; most
studies conduct experiments in either isolated intersec-
tions or small traffic networks. Furthermore, there is no
agreement in the literature on an appropriate definition
of reward function. The scalability issue of applying DRL
to ATSC has only been considered recently, in the work
of Chu et al. [2019], which used a multi-agent and, im-
portantly, decentralized DRL approach to optimize traffic
delay in the same Monaco environment that we consider.
However, that work utilized road sensor collected states,
which provide limited information regarding the traffic
state thereby increasing learning difficulty. In this paper,
we explore a more generic state and reward representation
while achieving similar or better performance.

The rest of the paper is structured as follows. Section 2
presents the DRL algorithm design. Section 3 presents
numerical results in the MoST environment. Section 4 is
the conclusion.

2. DRL DESIGN

The scheme used in this work is based on the work of
Chu et al. [2019], which developed a multi-agent approach
using the advantage-actor-critic (A2C) algorithm for deep
reinforcement learning. In this multi-agent A2C (MA2C)
approach, each RL agent controls a single traffic light
and shares its policies and discounted local states to
neighboring agents. In our work, we have modified the
state input as an image-like representation of traffic in a
neighborhood for which the agent is responsible. We refer
to this method as regional-grid A2C (RGA2C).

In the following, we describe the representation of the
state, description of actions, and definition of the reward
function.

2.1 State representation

Every agent is responsible for a region of traffic and, for
this reason, we define the state to consist of images of
traffic. The images are represented by a coarse grid of
pixels, with each pixel representing the percentage of the
grid area occupied by a vehicle. This representation was
introduced in our previous work [Maske et al., 2019], where
we argued that states representing images are natural for
use as states in a machine-learning framework. In this
work, the width of the pixels was chosen to equal the width
of the lane and their length was fixed at 2m.

Each agent observes the images of the incoming lanes
to the traffic signal it controls as well as the images of
incoming lanes of neighboring agents’ signals. The images
are represented by a stacked vector Xt, whose elements
are pixel values. The state is then set to be,

st =

Xt−2
Xt−1
Xt

ft

 , (1)

which consists of the three most recently received images,
combined with ft, which is a “fingerprint” of the policy
of the neighboring agents, consisting of parameters that
identify neighboring agents’ policies. Note that a finger-
print carries important information in decentralized RL
that reduces the nonstationarity of system transition from
the viewpoint of each local agent.

This state description is a significant deviation from the
state descriptions found in the literature dealing with
control of traffic, but similar to that used by RL algorithms
designed to play video games such as, for example, by
Vinyals et al. [2017]. The use of st as a state representation
is a generalization of ordinarily-used state representations
since they are typically defined using position and veloc-
ity, and position can be reconstructed from the current
snapshot Xt and velocity can be reconstructed, albeit
indirectly, from the approximation of a velocity snapshot
(Xt − Xt−1)/2. We assume the reconstruction would be
performed through training of the deep neural network
used in the DRL scheme. Note that the use of the the third-
most recent snapshot gives us approximate information
about the second derivative of the system.

2.2 Action description

The action of each agent corresponds to a light phase
for each intersection. Since phases vary from intersection
to intersection, the list of available choices of action are
defined according to the phases available at the particular
intersection controlled by the agent.

To enable more flexible and direct control by RL agents,
we use the phase definition from Prashanth and Bhatnagar
[2010], according to which each action is a possible phase
given by red-green combinations of traffic lights at that in-
tersection. Specifically, the agent chooses an action from a
set of all feasible phases, where each action is implemented



for a duration of ∆t = 5s. In the case of a change between
phases, the period ∆t begins with a necessary transitional,
yellow-light phase, which is a duration of 2s.

2.3 Reward function definition

A fair aim of traffic control is to minimize the cumulative
time spent in traffic by participants in the system [Nilsson,
2019]. To do this, we consider rewarding reduced trip time
for every vehicle in the traffic network. The definition we
use is related to that which we considered previously, in
which a speed below the free-flow speed was penalized
[Maske et al., 2019]. This is done by defining a delay
function,

di = max{0, 1− vi/vf,i}, (2)
where vi is the speed of a vehicle i and vf,i is the free-flow
speed of the lane occupied by the same vehicle. The delay
is a ratio varying between 0 and 1, with 0 corresponding
to the situation where free-flow velocity has been reached
and 1 corresponding to the situation where the vehicle is
stopped.

Note that penalizing delay as opposed to queuing time
introduces granularity in the definition and helps the RL
algorithm to proactively avoid congestion as delay shows a
slow-down in traffic sooner than the beginning of queuing
at a traffic light. Furthermore, a delay of 1 is directly
implied when a vehicle enters a queue and, therefore,
delays can represent queuing; the reverse, however, is not
the case.

For each incoming lane, we fix the free-flow speed to
vf,i ≡ vf = 10m/s, which is a reasonable speed in a city’s
core.

For each agent j, we develop and investigate four different
reward functions based on learning performance in a
realistic traffic system. Formally,

rj = r̂
(A)
j +

∑
k∈Nj

exp(−Lk)rk, (3)

where A = L,E,W, or B. Similarly to Chu et al. [2019],
we add to the reward an exponentially discounted sum of
rewards of all neighboring agents, with Nj being the index
of neighboring agents to agent j and Lk being the distance
to the neighboring intersection k ∈ Nj .

The reward r
(L)
j is a sum of delays for all vehicles,

r
(L)
j = − 1

|V|
∑
i∈V

di, (4a)

Fig. 1. DNN architecture

where V is the set of indexes of all vehicles in incoming
lanes.

The reward r
(E)
j is an exponentially weighted sum of delays

for all vehicles,

r
(E)
j = − 1

|V|
∑
i∈V

Cwidi − 1, (4b)

where wi is the weight given to the delay of vehicle i ∈ V,
and C > 0 is a weighting constant. This reward function
corresponds to the sum of all delays in the region with the
exponentiation of C being introduced to penalize higher
delays more than low delays, i.e., avoid situations where
delays of a few are increased greatly for the small benefit
of the majority. The weights wi are determined according
to,

wi = 1−Di/Li,

where Di is the distance of the vehicle away from the
intersection and Li is equal to the length of the incoming
road on which the vehicle is traveling.

The reward r
(W )
j is equal to r

(E)
j with weights wi lower-

bounded by 0.5, i.e.,

r
(W )
j = r

(E)
j , (4c)

where,
wi = max{1−Di/Li, 0.5}.

In this way, we penalize vehicles more than half the road
length away equally and closer vehicles, i.e., vehicles more
likely to be affected by changes in traffic signal phase,
proportionally to their proximity to the intersection. This
choice has been informed by experimentation showing that
far-off vehicles do not change the reward significantly
without lower-bounding the weighting of their delay, as
these vehicles often travel at free-flow speed.

Finally, the reward r
(B)
j is equal to an upper-bounded

r
(W )
j , i.e.,

r
(B)
j = max

{
r
(W )
j ,−cmax

}
. (4d)

This is done to avoid suboptimal minima during optimiza-
tion; we lower-bound rj by −cmax = −20. In this way,
we avoid attempting to resolve highly-congested situations
where more than approximately cmax vehicles are queued
near a light.

2.4 Deep neural network architecture

Although it is possible to model traffic using various
techniques [Garavello et al., 2016], traffic flow is a complex
spatio-temporal process, implying that using only the
currently available data in RL training results in an non-
stationary Markov decision process. An alternative is to
use all historical states as an input to the RL algorithm,
but this increases the state-space dimension to the point
of prohibiting practical application. To avoid the curse of
dimensionality, we follow Chu et al. [2019] to implement a
long-short term memory (LSTM) layer as the last layer in a
deep neural network (DNN) architecture. As compared to
that work, we use a deeper network to better parametrize
the larger amount of data contained in the image. The
DNN architecture is presented in Fig. 1, with two fully-
connected layers of 400 and 300 neurons each, followed by
an LSTM layer. The output layer is a softmax layer for



the actor and a linear layer for the critic. In training, we
use the state-of-the-art orthogonal initializer of Saxe et al.
[2014] and RMSprop as the gradient optimizer.

3. SUMO SIMULATION OF MONACO TRAFFIC

In this section, we present the simulation environment in
which we evaluate the RGA2C scheme and results from
our simulations.

To achieve as realistic a simulation that is available to us,
we have implemented our scheme in the Monaco SUMO
Traffic (MoST) scenario of Codecá and Härri [2018] sub-
ject to time-varying traffic flows. In the simulation, there
are 30 signalized intersections in total: 11 are two-phase,
4 are three-phase, 10 are four-phase, 1 is five-phase, and
the remaining 4 are six-phase. A map of the simulated
environment is shown in Fig. 2, with the above 30 inter-
sections identified. To test the robustness and optimality of
algorithms, stochastic, and time-variant traffic flows that
mimic actual peak-hour flows in the city of Monaco were

Fig. 2. Map of the simulated environment with the con-
trolled intersections marked in blue [Codecá and
Härri, 2018]

Fig. 3. Learning curve (reward vs. time-steps) correspond-

ing to rj = r
(L)
j

recreated in simulation by randomizing the start positions
of the vehicles, with quantity determined according to
Codecá and Härri [2018].

For comparison to the available literature of Chu et al.
[2019], the baseline algorithm was set to be a decentral-
ized greedy policy that selects the phase which has the
maximum number of vehicles approaching in the first 50m
away from the intersection.

Fig. 4. Learning curve (reward vs. time-steps) correspond-

ing to rj = r
(E)
j

Fig. 5. Learning curve (reward vs. time-steps) correspond-

ing to rj = r
(W )
j

Fig. 6. Learning curve (reward vs. time-steps) correspond-

ing to rj = r
(B)
j



Fig. 7. Traffic distribution at different time-intervals : 1800s, 1950s, 2100s, 2400s, from left to right. Traffic light governed
by: Top row: greedy policy, Mid row: MA2C policy, Bottom row: RGA2C policy.

3.1 Training

Training was performed over 1 million time-steps, equiv-
alent to about 1388 episodes, as each episode lasts one
hour, or 720 time-steps. At the end of each episode, the
simulation was reset to initial conditions and the process
continued.

In Figs. 3-6, we have plotted the results of training cor-
responding to the use of different reward functions (4).
Specifically, in those figures we show a plot of the learning
curve, i.e., a plot of average episode reward against the
duration of learning in time-steps. In Fig. 3, we show the

training progress with the purely linear reward r
(L)
j (4a).

The results do not exhibit convergence, so we modified our

choice of reward to the exponentially weighted sum r
(E)
j

(4b), with results shown in Fig. 4. The results provide
better convergence but it is slow and still unsteady. In our
data, we noticed that vehicles further from the intersection
were not adequately considered as their corresponding
weighting was low. This did not make sense as vehicles
at neighboring intersections had a significantly positive
weighting. Therefore we modified the reward function to

r
(W )
j (4c), giving the results show in Fig. 5. The results

are an improvement but again do not show steady con-
vergence. At this point, we noticed that the agents would
try to improve hopelessly difficult, congested situations.
Therefore, we capped the reward at each intersection at
a maximum sum of delay of about 10 vehicles, i.e., we

set cmax = 10C = 20 in r
(L)
j (4d). The final results are

provided in Fig. 6. Here, the curve steadily increases as
learning progresses, converging to the optimal value after
about 500 episodes. This implies adequate optimization
and the discovery of a local optimum. Furthermore, it
implies that, without warm starting, the process needs to

be trained on about 500 hours of traffic congestion before
discovering the optimum.

3.2 Results

We tested the performance of our scheme using five scenar-
ios different from those used in training. In Fig. 7, we show
a visual comparison of the greedy, MA2C, and RGA2C
policies for one particular run of the algorithm.

The performance is evaluated by various means. In Fig. 8,
we plot the average length of each incoming lane queue.
Here the results show that the RGA2C scheme shows a
marked improvement over both the baseline MA2C scheme
and the greedy control policy. Specifically, the performance
is better during peak congestion between 1700s and 3000s,
while it is a little worse before and after the peak. The
metric more relevant to our aim is average trip length for

Fig. 8. Average queue length of MA2C (blue), RGA2C
(orange), and greedy algorithm (purple) plotted with
error bounds (shaded)



Fig. 9. RGA2C improvement in trip delay compared to
greedy algorithm

each vehicle. In the table below, we show the average trip
length, i.e., the amount of time a vehicle spends in the
network, and the average wait time of vehicles, i.e., the
amount of time a vehicle is fully stopped during its trip.

Algorithm Trip duration (s) Wait time (s)

MA2C 161.6 84.6
Greedy 196.0 111.8
RGA2C 152.3 78.7

The RGA2C scheme is superior in both metrics. It achieves
about 30% improvement in the wait time when compared
to the greedy controller, and performs 7% better than the
MA2C approach.

In Figs. 9-10, we show the average distributions of delay
reduction when using our scheme. In Fig. 9, we compare
the RGA2C scheme to the greedy policy. The results
show that a small minority are delayed whereas most
have their trip times greatly improved. In Fig. 10, we
compare the RGA2C and MA2C schemes, showing a
small improvement when using the new scheme, but not
exhibiting any remarkable deterioration in trip time for
vehicles upon implementation of the newer scheme.

4. CONCLUSION

In this work, we tested our multi-agent reinforcement
learning scheme for controlling traffic signalization and
presented a study of our design of the reward function. The
main novelty of our approach is the state representation,
which represents an image of traffic, as well as the design
of an appropriate reward function in training. The results
show improvement over previous work on which this work
is based, and we attribute this improvement to the choice
of state representation and the design of the reward
function.
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