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Optimal Measurement Projections with Adaptive Mixture Kalman
Filtering for GNSS Positioning

Marcus Greiff1, Karl Berntorp1

Abstract— Accurate carrier-phase integer ambiguity resolu-
tion is fundamental for high precision global navigation satellite
systems (GNSSs). In this paper we extend a recently proposed
mixture Kalman filter solution to integer ambiguity resolution.
We utilize the Fisher information matrix to project the acquired
measurements into a lower-dimensional subspace, formulating
an optimization program to find the projected measurement
that minimally degrades filter performance with respect to the
mean squared error (MSE) of the estimate. Using the projected
measurements, our method achieves a significant computational
speedup while retaining the performance of the original filter.
Theoretical results are presented regarding the optimal projec-
tion computation, and the claims are subsequently illustrated
by simulation examples in a Monte Carlo study.

I. INTRODUCTION

Global navigation satellite systems (GNSS), such as GPS,
Galileo, and, in the future, QZSS, are used in many posi-
tioning and navigation applications. A GNSS receiver deter-
mines its position using two types of range measurements
from several satellites orbiting the Earth: pseudorange (or
code) measurements and carrier-phase measurements. The
code measurement is determined by multiplying the signal
travel time from the satellite to the receiver with the speed
of light, but becomes prone to several sources of errors.
The carrier-phase measurement is obtained by integrating a
reconstructed carrier of the signal as it arrives at the receiver.
The carrier-signal observations are more precise than the
code measurements and can be tracked within a percent or
less of the carrier wavelength, λ ≈ 0.2 [m], assuming all
error sources have been corrected for. However, due to the
unknown number of wave periods in transit between the
satellite and the receiver, when the receiver starts tracking
the carrier phase, there is an integer ambiguity in the carrier-
phase measurement. Furthermore, a sudden loss of lock of
the carrier signal, a so-called cycle slip, causes a jump in the
carrier-phase measurements and is a common error source.

1) Prior work: An overview of traditional approaches
for ambiguity resolution can be found in [1], and a sum-
mary of integer estimation theory is presented in [2]. Many
GNSS ambiguity resolution methods are based on two-stage
approaches. First an estimation of a real-valued ambiguity
by an augmentation of the receiver state vector with the
ambiguities, using the extended Kalman filter (EKF) [3]
or least squares [2], forming the basis for an integer least
squares (ILS) solution based on the real-valued estimates.
An example of this is the LAMBDA method [4–6].
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In contrast to these approaches, particle filters (PFs) have
seen a lesser degree of success in GNSS positioning appli-
cations due to their computational complexity. In [7], [8]
the integer estimates are formed using the position samples
generated in the PF by manipulations of the likelihood. The
work in [9] applies particle filtering for estimating the joint
GNSS receiver state and ambiguities. However, estimating
the joint state and ambiguities in a PF leads to a high-
dimensional estimation problem, requiring a large amount of
particles and computational resources. The approach in [10],
[11], which this paper extends, differs from previous work
in that the ambiguities are marginalized.

2) Contribution: In this paper, we propose to leverage
the Fisher information matrix (FIM) [12] to reduce the com-
putational complexity of the recursive measurement updates
in [10], [11], while retaining the theoretical benefits of using
a PF for the integer ambiguity resolution problem. In a
typical GNSS application, the metric to be minimized is
the mean squared error (MSE) of the positional estimate,
and the fundamental performance bound of the filter is
given by the corresponding Cramér Rao bound (CRB) [13].
Consequently, our approach expresses an objective function
in terms of a change in the CRB of the positional MSE when
using a set of linearly projected measurements, as a function
of the projection operator used. If (i) the estimator yields
performance approaching the CRB, and (ii) the projection
is such that CRB of the positional MSE changes minimally
when using the projected measurements, then we should ex-
pect almost identical performance in minimum MSE-filtering
approaches with the full and the projected measurements.
Our introduction of the projected measurements in this paper
does not seek to improve the MSE performance of the filter
in [11], but rather to reduce its computational complexity.

3) Notation: For a discrete time signal x with sampling
period Ts, xk = x(tk) = x(kTs). For a vector-valued
discrete time signal x, xm:k = {xm, . . . ,xk} is the sequence
of values of x between sampling instants m and k, and
x̂h|k denotes the estimated value of x at time step h, based
on data up to time step k. With p(x0:k|y0:k), we mean
the posterior density function of the state trajectory x0:k

given the measurement sequence y0:k. As the filter in [11]
concurrently runs a marginalized PF and an EKF bank, the
index (·)i will refer to a particle in the marginalized PF, and
the index (·)KF,i to a particle in the EKF bank. We let R and
Z denote the sets of real and integer numbers respectively.
We let I be the identity matrix, ‖ · ‖2 denote l2-norm, and
N
(
xk;µk,Υk

)
denote a Gaussian density function with

mean µk and covariance matrix Υk. With U(I) we mean



a uniform distribution over the interval I . Furthermore, E(·)
and Cov(·) denote an expectation and covariance of a random
variable respectively. Finally, Ψ refers to a linear projection
operator, and ã denotes a projection of a by Ψ.

II. PROBLEM SETUP

We consider the code and carrier-phase measurements
from the jth satellite to the receiver r at a time tk, using
the standard measurement model [2], [9], [14–16],

P jr,k=ρjr,k+c(δtr,k−δtjk)+Ijr,k+T jr,k+ εjr,k, (1a)

Φjr,k=ρjr,k+c(δtr,k−δtjk)−Ijr,k+T jr,k+λnjr,k+ηjr,k, (1b)

where P jr,k is the code measurement, ρjr,k is the distance
between the receiver and the jth satellite, c is the speed of
light, δtr,k and δtjk are the receiver and satellite clock bias
respectively. Ijr,k is the ionospheric delay, T jr,k is the tropo-
spheric delay, εjr,k is the code observation noise, Φjr,k is the
carrier-phase observation, λ is the carrier wavelength, njr,k
is the ambiguity, and ηjr,k is the carrier observation noise.
The measurement noise is assumed Gaussian distributed
εjr,k ∼ N (0, σ2

ε ), ηjr,k ∼ N (0, σ2
η). The distance between

the receiver and the jth satellite is ρjr,k = ‖pjk − pr,k‖2,
where pjk,pr,k ∈ R3 are the coordinates of the jth satellite
and the receiver r respectively in ECEF coordinates [1].

By utilizing a base receiver (reference) b mounted at a
known location broadcasting to the target receiver r, most
of the error sources can be removed, or mitigated. Forming
single or double differences (DD) of measurments from pairs
of satellites and the receivers reduce the error source [16].
For very short distances between r and the base receiver b,
the DD operation eliminates the ionospheric and tropospheric
delays [9], [16]. For longer baselines (e.g., above 10 km)
other methods can be used [17], [18] to reduce the delays.

Denote the single-differenced observation equations be-
tween the receivers b and r with ∆P jbr,k = P jb,k − P

j
r,k and

∆Φjbr,k = Φjb,k − Φjr,k, respectively, and the DD between
a reference (pivot) satellite l and satellite j with ∇∆(·)jlbr,k.
For short baselines or using delay estimators [17], [18],

∇∆P jlbr,k ≈ ∇∆ρjlbr,k +∇∆εjlbr,k, (2a)

∇∆Φjlbr,k ≈ ∇∆ρjlbr,k + λ∇∆njlbr +∇∆ηjlbr,k. (2b)

We assume M pairs of observation equations of the form (2),
where M can vary over different time steps, and introduce

nk =
[
∇∆nl1br,k · · · ∇∆nlMbr,k

]> ∈ ZM . (3)

The observations at each time step k are formed by (2), as

yk=
[
∇∆P l1

br,k · · · ∇∆P lM
br,k ∇∆Φl1

br,k · · · ∇∆ΦlM
br,k

]>
, (4)

yielding the corresponding measurement model

yk = h(xk) + g(nk) + ek, (5a)

h(xk)=
[
∇∆ρl1br,k ... ∇∆ρlMbr,k ∇∆ρl1br,k ... ∇∆ρlMbr,k

]>
, (5b)

g(nk)=λ
[
0 · · · 0 n>k

]>
, (5c)

ek=
[
∇∆εl1br,k ... ∇∆εlMbr,k ∇∆ηl1br,k ... ∇∆ηlMbr,k

]>
. (5d)

For future reference and simplicity, we let ek ∼ N (0,Rk).
As the estimator is to be used for receivers employed in

various applications, we consider a generic motion model

xk+1 = Fkxk +Bkwx,k, (6)

where Fk is the state-transition matrix and Bk is the noise-
transition matrix. In the numerical evaluation in Section VI,
we use a constant-velocity (CV) model with state vector
xk =

[
pr,k vr,k

]> ∈ R6, where pr,k and vr,k are the
receiver position and velocity respectively, but more complex
models can be used. The CV model is then discretized using
zero-order hold sampling with sampling period Ts [12], with

xk+1 =

[
I TsI
0 I

]
xk +

[
T 2
s

2 I
TsI

]
wx,k, (7)

with wx,k ∼ N (0,Qx,k). In the next section, we address the
problem of recursively estimating p(xk,nk|y0:k), for xk ∈
R6,nk ∈ ZM given the measurements y0:k ∈ R2M in (5).

III. THE BASELINE IMMEKF

In this section, we briefly outline the algorithm presented
in [11], here referred to as the baseline integer mixture model
Extended Kalman filter (IMMEKF), which we will augment
with the optimal measurement projections in later sections.
For additional details on the original algorithm, refer to [11].

A. Ambiguity prediction model

The estimation model consisting of (5) and (6) is nonlinear
in the position due to the observation equations, but linear in
the ambiguity vector. To reflect the uncertainty in the time
evolution of the ambiguities, we assume that

nk+1 = nk +wn,k, wn,k ∼ N (0,Qn). (8)

Using a random walk for the time evolution of the ambigu-
ities is standard (c.f. [9], [14]). However, a key difference
in [10] is that Qn is chosen large to a point where the
measurements essentially determine the range of possible nk.

B. Bounding the Range of Ambiguities

The algorithm in [11] is based on estimating the ambigu-
ities in a PF, bounding the possible range of the ambiguities
and thereby permitting fixing of set of integer ambiguity
hypotheses in (3). A bank of EKFs is then used, where the
state-distribution in each EKF is constrained to a particular
integer vector in the set of ambiguity hypotheses. To bound
the range of ambiguities, the density p(xk,n0:k|y0:k) of state
xk and ambiguity trajectory n0:k is decomposed as

p(xk,n0:k|y0:k) = p(xk|n0:k,y0:k)p(n0:k|y0:k). (9)

To resolve (9), p(n0:k|y0:k) is estimated with a PF using a
set of N weighted particles, resulting in the approximation

p(n0:k|y0:k) ≈
N∑
i=1

qikδ(n
i
0:k − n0:k). (10)

In (10), δ(·) is the Dirac delta mass and qik is the associated
weight for the ith particle given the measurements y0:k.



Given the ambiguity set {ni0:k}Ni=1, a set of constrained
EKFs are executed to determine the first term on the right-
hand side of (9), with the Gaussian approximation

p(xk|n0:k,y0:k) ≈ N (xk; x̂k|k(ni0:k),Pk|k(ni0:k)), (11)

for each particle. In (11), x̂k|k(ni0:k) is the state estimate
mean, constrained to the ambiguity trajectory n0:k, and
Pk|k(n0:k) is its associated covariance. For brevity, the
dependence on the ambiguity trajectory is made implicit
(i.e., P i

k|k := Pk|k(ni0:k)). The mean and covariance of the
distribution in (11) is computed in an EKF update [19],

x̂ik|k = x̂ik|k−1 +Kk(yk − ŷk|k−1), (12a)

P i
k|k = P i

k|k−1 −KkHkP
i
k|k−1, (12b)

ŷik|k−1 = h(x̂ik|k−1) + g(nik), (12c)

Sk = HkP
i
k|k−1H

>
k +Rk, (12d)

Kk = P i
k|k−1H

>
k S
−1
k , (12e)

Hk = (∂h(x))/(∂x)|x=x̂k|k−1
, (12f)

and the one-step prediction of the mean and covariance are

x̂k|k−1 = Fk−1x̂k−1|k−1, (13a)

Pk|k−1 = Fk−1Pk−1|k−1F
>
k−1 +Qx,k−1. (13b)

As in [11], the weight update of the PF is given by

qik =
p(yk|nk,y0:k−1)p(nk|nik−1)

π(nk|nik−1,y0:k)
qik−1, (14)

where the proposal density is chosen as,

π(nk|nik−1,y0:k) = p(nk|nik−1,y0:k), (15)

and inserting (15) into (14) leads to the recursive update

qik ∝ p(yk|nik−1,y0:k−1)qik−1. (16)

The proposal (15) is optimal in the sense that it minimizes the
effect of the sampling on the weights, that is, the weights will
be unaffected by nik, whereas other alternatives add variance
among the weights [12]. It is generally difficult to sample
from (15). However, the observation equation (5) is linear
and Gaussian in the ambiguity vector nk, which is one of
the few cases where exact sampling is possible [20], [21]. In
this case, the optimal proposal (15) for a marginalized PF is

p(nk|nik−1,y0:k) = N (nk; n̂ik,Σ
i
k), (17a)

n̂ik = n̂ik−1 +Kk(yk − ŷik|k−1), (17b)

Kk = QnG
>
k (GkQnG

>
k + Sik)−1, (17c)

Σi
k = (Q−1n +G>k (Sik)−1Gk)−1, (17d)

Gk = (∂g(n))/(∂n). (17e)

where Sik is obtained from (12d), conditioned on the ith

ambiguity trajectory. With the optimal proposal (17a), the
likelihood for the weight update in (16) is

p(yk|nik−1,y0:k−1) ≈ N
(
yk; ŷik|k−1,Qn + Sik

)
, (18a)

where ŷik|k−1 is obtained from (12c). Note that although the
optimal proposal (17a) and therefore also the likelihood (18a)

are linear in the ambiguities, the covariance Sik is obtained
from the EKF recursion, which is approximate.

The generated ambiguities are real-valued when using the
optimal proposal (17), and after re-sampling (10), we obtain

p(nk|y0:k) ≈ p̂(nk|y0:k) =
1

N

N∑
i=1

δ(nik − nk). (19)

To get a measure of the tails of (19) for a finite number
of particles, the discrete representation is converted to a
continuous density using a kernel density smoother [22],

p̂K(nk|y0:k) =
1

N

N∑
i=1

Kh(nik − nk), (20)

where Kh(·) is the kernel density and h is the bandwidth. We
truncate (20), resulting in the continuous truncated density
p̂K,tr(nk|y0:k). Based on p̂K,tr(nk|y0:k) we fix the ambi-
guities, which gives a finite set S of NS possible integer
vectors {niI}

NS
i=1 contained in the support of p̂K,tr, that is,

S = {nI ∈ ZM : p̂K,tr(nI|y0:k) > 0}. (21)

The weight update (16) of the PF and (19)–(21) do not
need to be performed at every time step. In practice, we
only execute (16), (18a), (19)–(21) if a significant difference
is detected between the float ambiguity hypotheses on two
consecutive time-steps, or if a cycle slip is detected, warrant-
ing a re-initialization of the ambiguity hypotheses in S.

C. Ambiguity Resolution by Mixture Kalman Filter
Provided the NS possible integer vectors in (21), NS EKFs

are executed in parallel to find the state vectors x̂KF,i
k , where

each EKF is conditioned on a unique integer ambiguity
vector niI ∈ S. The state posterior is expressed using the law
of total probability as a Gaussian mixture of NS components,

p(xKF
k |y0:k) =

NS∑
i=1

ωikN (xKF
k |x̂

KF,i
k|k ,P

i
k|k), (22)

where ωik = p(niI|y0:k) is the posterior probability of niI.
The recursions for x̂KF,i

k|k ,P
KF,i
k|k are in (12) with nik replaced

with niI. The weights ωik can be computed recursively,

ωik = p(niI|y0:k) ∝ ωik−1N (yk|ŷik|k−1,S
i
k), (23)

where the prediction mean and covariance ŷik|k−1,S
i
k are

given from the associated EKF. From (23), we use the
maximum-likelihood (ML) estimate to resolve the ambiguity,
and visualize the state estimate in terms of the first two
moments of the EKF bank at time-step k [19], as

x̂MV
k|k =

NS∑
i=1

ωikx̂
KF,i
k|k , nML

k = arg max
nI∈S

ωik, (24)

P MV
k|k =

NS∑
i=1

ωik

(
P i
k|k + (x̂KF,i

k|k − x̂
MV
k|k)(x̂KF,i

k|k − x̂
MV
k|k)>

)
,

but the underlying distribution of the bank is likely to be
multimodal. This is the baseline algorithm presented in [11],
which we will improve in terms computational tractability,
before introducing the optimal measurement projections.



D. Improving the algorithm’s numerical robustness

Considering the algorithm in [11] with the ambiguity
sampling in (17), the measurement equation in (5) yields
(G>kGk)−1 = λ−2I . Hence, we can simplify (17) signifi-
cantly. Using Sik,Qn � 0 and the Woodbury identity [23],

p(nk|nik−1,y0:k) = N (nk; n̂ik, λ
−2KkS

i
kGk), (25a)

n̂ik = n̂ik−1 +K(yk − ŷik), (25b)

Kk = QnG
>
k (GkQnG

>
k + Sik)−1. (25c)

This both improves the numerical robustness of the filter and
reduces the computational complexity by virtue of removing
two of the three matrix inversions in (17). We refer to a filter
using the recursions in previous sections, with the sampling
of ambiguities in (25) replacing that of (17), as the IMMEKF.

IV. OPTIMAL MEASUREMENT PROJECTIONS

The main computational bottleneck of the IMMEKF stems
from the large number of hypotheses that need to be
entertained at the moment of reinitializing the KF bank.
To illustrate this, assume that we have M = 10, with
approximately five unique integers in the support of the
kernel density estimate. This would amount to a total of
NS = 5M ≈ 107 EKFs, which need to be run in parallel at
the moment of re-initialization. The number of hypotheses
quickly decrease by virtue of the measurement updates and
re-sampling, but the need for performing NS such updates
with yk ∈ R2M and inverting Sk ∈ R2M×2M is responsible
for the bulk of the computational time of the IMMEKF. In
this section, we address this problem by first projecting yk
before evaluating the EKF measurement update in (12).

A. Formulating the optimization program

We seek a projected measurement vector ỹk = Ψk(yk),
where Ψk : R2M → RM̃ for a some M̃ ≤ 2M , such that a
maximal amount of information is retained in the projected
measurements. Since the measurement equation (5) only
depends on the positional states, we will instead refer to it by
a function hp : R3 → R2M , such that hp(pr,k) = h(xr,k).
For clarity, we will temporarily drop the time-indexation
in the developments below. To quantify the quality of a
projection, we consider the local positional MSE CRB. Take
the position to be the parameter vector θ, let R = Cov(e)
in (5), and consider the density function of the measurement

p(y;θ) = N (y;hp(θ),R). (26)

For any unbiased estimate θ̂ of θ given samples of (26) [13],

E[‖θ−θ̂‖22] = Tr(E[(θ−θ̂)(θ−θ̂)>)]>Tr(I(θ;y)−1), (27)

with I(θ;y) denoting the FIM of any unbiased estimate θ̂
of θ given a sample from p(y;θ). Since the measurement
noise in (5) is zero-mean and Gaussian, and with a covariance
R � 0 independent of θ, the FIM for a specific θ = p∗ is

I(θ;y)=H>p R
−1Hp, Hp=(∂hp(θ))/(∂θ)|θ=p∗ (28)

Now, if we were to project the measurements into an M̃ -
dimensional subspace ỹ = Ψy, and constrain Ψ to be a
linear map, we get the pdf of the projected measurements as

p(ỹ;θ) = N (ỹ; Ψhp(θ),ΨRΨ>). (29)

With the projected measurements, the FIM is

I(θ; ỹ) = (ΨHp)>(ΨRΨ>)−1ΨHp. (30)

Consequently, the problem of finding the optimal projection
operator that minimizes CRB of the positional MSE at a
specific receiver position θ = p∗ for a desired projected
measurement dimension M̃ ≤ 2M , can be formulated as

minJ(Ψ) over Ψ ∈ RM̃×M (31)

with a matrix-valued objective function J : RM̃×M → R,

J(Ψ) = Tr([(ΨHp)>(ΨRΨ>)−1ΨHp]−1). (32)

Note that the cost in (32) is scale invariant in the sense that
J(αΨ) = J(Ψ) for all α > 0, meaning that we are free to
normalize the projection operator. The program (31) is non-
convex and can only be solved to a local optimum, but the
quality of a solution can easily be determined.

Remark 1: If J(Ψ)→ J(I), then we will have the same
positional MSE CRB when using the projected and original
measurements in estimating θ. Furthermore, if we find an
estimator with MSE-performance close to the CRB, the ratio
J(Ψ)/J(I) ≥ 1 is the relative decrease in MSE performance
when filtering with ỹ = Ψy as compared to using y.

Remark 2: In evaluating the cost in (32), Hp is evalu-
ated using a first-order Taylor expansion about θ = p∗.
The numerically evaluated CRBs are then approximate, but
motivated by the fact that hp is approximately linear in p
given the large distances between satellites and receivers.
To illustrate this, take a perturbation δ ∈ R3, with ‖δ‖2 ≤ D.
Since the satellites orbit the Earth at ρj ≈ 3 · 107 [m], it is
clear that ‖pj + δ‖2 ≈ ‖pj‖2 = ρj . Taking a single element
of the function hp involving satellites i and j as hijp (θ),

∂hijp (θ + δ)

∂θ
≈
∂hijp (θ)

∂θ
+

(ρir − ρjr)
ρirρ

j
r

o(‖δ‖). (33)

Since the maximum possible difference (ρir−ρjr) is the Earth
diameter at 12 · 106, the perturbation δ will not change any
element of the positional Jacobian more than by a value of
approximately (4D/3) ·10−8, motivating the use of the first-
order Taylor expansions for evaluating the CRB in Remark 2.

B. Solving the optimization program

The optimization problem posed in (32) has some ben-
eficial structure. To solve it efficiently by gradient-based
methods, we give the gradient of J(Ψ) in Proposition 1.

Proposition 1: The partial derivative of the CRB in (32)
when using projected measurements ỹ = Ψy at θ = p∗, is

∂Tr(I(θ; ỹ)−1)

∂Ψ
= −2UQΛ−2Q>V >, (34)



where
Y = H>p Ψ>(ΨRΨ>)−1ΨHp, (35a)

U = (ΨRΨ>)−1ΨHp, (35b)

V = Hp −RΨ>U , (35c)

and Y = QΛQ> and the Jacobian matrix Hp given in (28).
Remark 3: The partial derivative exists at all times pro-

vided rank(Ψ) ≥ 3, which requires M̃ ≥ 3, and can be
ensured by adding a rank constraint to the optimization
program. However, for any practical implementation, adding
a line-search to the gradient descent allows the selection of
an element of a Ψ ∈ RM̃×2M that meets this condition.

In the context of the estimation problem, we give a simple
gradient-descent algorithm that exploits Proposition 1. With
a noise covariance Rk and positional Jacobian matrix Hp,k

at a time-step k, and denote the gradient-descent iterations
by the sub-index n. Taking a random initialization Ψk,n ∈
RM̃×2M at n = −1 satisfying the rank constraint,

Ψk,n = Ψk,n−1 + 2γUnQnΛ−2n Q
>
nV

>
n , (36a)

[Λn,Qn] = eig(Yn), (36b)

Yn = H>p,kΨ
>
k,n−1Un, (36c)

Vn = Hp,k −RkΨ
>
k,n−1Un, (36d)

Un = (Ψk,n−1RkΨ
>
k,n−1)−1Ψk,n−1Hp,k, (36e)

Hp = (∂hp(θ))/(∂θ)|θ=p∗k , (36f)

ensures convergence of Ψk,n to a local optimum for large n
if γ is found by a line-search. We will refer to the locally
optimal projection at k as Ψk,∞, but have yet to define the
position θ = p∗ at which the CRB in (32) is to be evaluated.

V. DEVELOPMENT OF A PROJECTIVE IMMEKF

The particles in the IMMEKF typically reside within me-
ters of each other in terms of the positional states, compared
to the tens of thousands of kilometers between the receiver
and the satellites. Consequently, the positional JacobianHp,k

in (36) will not change significantly among the particles in
the EKF bank. This implies a small change in optimization
cost function (32), were the FIM to be re-computed for all the
unique positions in the EKF bank. Consequently, we will use
the same projection operator in all of the particles, optimized
with respect to the weighted mean position, p∗k = p̂MV

k|k , as
the positional subset of x̂MV

k|k computed in (24).

A. Consequences for the IMMEKF

If a locally optimal operator Ψk,∞ can be computed at
each time-step by (36), and if this is used to evaluate the
projected measurements, we get a measurement model

ỹk = Ψk,∞yk = Ψk,∞(h(xk) + g(nk) + ek). (37)

Utilizing (29), we can evaluate the projected measurement
and its covariance, which will be the same for all particles,

ỹk = Ψk,∞yk, R̃k = Ψk,∞RkΨ
>
k,∞, (38)

and the Kalman filter updates, now using (37), takes the form

x̂ik|k = x̂ik|k−1 +Kk(ỹk − ˆ̃yk|k−1), (39a)

P i
k|k = P i

k|k−1 − K̃kH̃kPk|k−1, (39b)
ˆ̃yk|k−1 = Ψk,∞[h(x̂ik|k−1) + g(nik)], (39c)

S̃k = H̃kPk|k−1H̃
>
k + R̃k, (39d)

K̃k = Pk|k−1H̃
>
k S̃
−1
k , (39e)

H̃k = Ψk,∞(∂h(x))/(∂x)|x=x̂k|k−1
. (39f)

We refer to a filter using the online adaption of the projection
operator in (36) with the Kalman filter update in (39) as the
P-IMMEKF. This is summarized in Algorithm 1.

B. Consequences for computational complexity

To get a rough idea of the computational complexity, take
the inversion of a dense rectangular M ×M -matrix to be
O(M3), the computation of its eigen-decomposition to also
be O(M3), and disregard the smaller matrix products and
additions involved in the EKF update. The computational
complexity of the filter bank re-initialization will be approx-
imately O(NS(2M)3). On the other hand, if we instead use
the projected measurements with NI iterations per epoch,
we will have O(NSM̃

3 + NIM̃
3). However, it remains to

see how small we can choose M̃ , so as not to significantly
increase the CRB ratio J(Ψk,∞)/J(I). For small M̃ , and
if NI � NS , it will clearly be computationally favorable to
use the optimal projection in the EKF measurement updates.

Algorithm 1 The P-IMMEKF with optimal projections

1: Initialize: Draw Ψ0,0 ∼ U([−1, 1]M̃×2M ), {ni
−1}Ni=1 ∼

p0(n0), {x̂i
0|−1}Ni=1 ∼ p0(x0), {P i

0|−1}Ni=1 = P0,
{x̂KF,i

0 }
NS
i=1∼p0(x0),{P KF,i

0|−1}
NS
i=1=P0,{wi

−1}Ni=1=1/N .
2: for n = 1 to N0

I do
3: Update Ψ0,n using the recursions in (36).
4: for k = 0 to T do
5: for i = 1 to N do
6: Update {x̂i

k|k−1,P
i
k|k−1} using (13).

7: Generate ni
k ∼ p(nk|ni

k−1,y0:k) from (25).
8: if reinititialize then
9: Compute ỹk and R̃k using (38).

10: for i = 1 to N do
11: Update {x̂i

k|k,P
i
k|k} from (39).

12: Update qik using (16) and (18a).
13: Compute p̂K(nk|y0:k) using (20).
14: Determine {ni

I}
NS
i=1 using (21).

15: Initialize {x̂KF,i
k|k−1,P

KF,i
k|k−1}

NS
i=1.

16: else
17: Update {x̂KF,i

k|k−1,P
KF,i
k|k−1}

NS
i=1 using (13).

18: Compute ỹk and R̃k using (38).
19: for i = 1 to NS do
20: Update {x̂KF,i

k|k ,P
KF,i
k|k } using (39).

21: Update weight ωi
k using (23).

22: Compute {nML, x̂MV
k|k,P

MV
k|k} using (24).

23: Set Ψk,0 = Ψk−1,∞
24: for n = 1 to NI do
25: Update Ψk,n using the recursions in (36).
26: for i = 1 to N do
27: Draw index J(i) with probability ω

J(i)
k .

28: Set {ni
k, x̂

i
k|k,P

i
k|k}Ni=1 = {nl

I, x̂
KF,l
k|k ,P

KF,l
k|k }

J(N)

l=J(1).



VI. NUMERICAL RESULTS

To evaluate the theory on optimal measurement projections
and its utility for the marginalized PF approaches in GNSS
positioning, we (i) show the soundness of the optimization
scheme proposed in (36); (ii) give a simulation example
showing the difference in executing the IMMEKF and the P-
IMMEKF on synthetic data; and (iii) compute and compare
the MSE of the positional estimate in a set of Monte Carlo
(MC) runs, and their mean computational times.

A. Problem Setup

Throughout the numerical examples, we generate a set of
positions uniformly p̄a ∼ U((0, 1]3), and normalize these
such that pa = ρa‖p̄a‖−12 p̄a for some radius ra. For the
satellites, we let ρj = 3·107 corresponding to GPS satellites,
for the static base station we let ρb = 6.3 · 106, and the
true initial position of the receiver is similarly initialized at
ρr = 6.3 ·106, corresponding to positions somewhere on the
Earth’s surface. The receiver is then driven by a random
walk in the velocity states, governed by the covariance
Qx,k = 0.1I . The true ambiguities used to generate the
synthetic measurements are all initialized at a random integer
in the set n0 ∈ U([−200, 200]M ), and every integer will
change to some other value on this interval exactly once
at a random time. The simulation is executed at a time-
step of h = 0.1 [s] over a total of T = 1000 time steps.
The measurement noise is zero mean and uncorrelated with
εik ∼ N (0, 0.52) and ηik ∼ N (0, 0.012) for all time steps
k, and M = 10 pairs of code and phase measurements are
used with a carrier wavelength λ = 0.2 [m], corresponding
to the L1 band. For the estimators, the process noise in the
ambiguities are Qn,k = 10I and the filters use N = 1000
particles in the mixture model, using the heuristics in [10]
to reinitialize the filters at cycle slips. For the projection
optimization, we will use the smallest possible dimension,
M̃ = 3, that the theory in Section IV permits and a single
gradient descent iteration, NI = 1, per time-step. In our
experience, the warm-started optimization scheme requires
very few iterations per time-step, but this could be increased,
to trade MSE-performance for computational time.

B. Validation of the projection optimization

To illustrate the projection optimization, we let M̃ = 3
and randomize 20 unique problem setups from Section VI-
A, along with 20 random initial projection operators from
the uniform distribution Ψk,0 ∼ U([−1, 1]M̃×2M ), and plot
the cost J(Ψk,n)/J(I) as a function of the iteration number
n, using the gradient descent iterations in (36). The result is
shown in Figure 1, and indicates that regardless of initializa-
tion, we converge to something close to J(Ψk,n)/J(I) = 1.

C. Filter performance

In the next example, we show the filter performance of the
IMMEKF and the P-IMMEKF when run on the exact same
measurement data, with the exact same state initialization.
In the IMMEKF, one gradient descent iteration is done per
tune step, and before initializing the filter, NI = 105 gradient
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Fig. 1: Top: Relative difference in positional MSE CRB
when using projected and un-nprojected measurements,
J(Ψk,n)/J(I), as a function of n for 20 random initial-
izations of Ψk,0, with γ = 0.01, M̃ = 3 and M = 10.

descent iterations are done. Figure 2 shows the difference
between J(Ψk,∞) and J(I) in time, Figure 3 and Figure 4
show the state estimates of the original IMMEKF (blue),
the P-IMMEKF (red) and the true state trajectory (black)
for the minimum variance state and the ambiguity estimates,
respectively. Due to the very small gap in the projection ratio
plot (see Figure 2), we should expect a very small difference
between the filter performance in terms of positional MSE.
The performance of the filters are extremely similar, despite
the projected version using significantly less computational
resources. To qualitatively compare their MSE performance,
we next present a MC simulation study.
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Fig. 2: Top: The locally optimal Ψk,∞, in terms of J(Ψk,∞)
(red) compared to J(I) (black) as a function of time [s] into
the simulation. Bottom: The ratio J(Ψk,∞)/J(I) in time.
D. Filter MSE-comparison

To further verify the theory and compare the two filters,
102 MC runs were executed on random problem initializa-
tions with the IMMEKF and the P-IMMEKF respectively,
with the positional RMSE of the two filters depicted in
Figure 5. As expected by the previous example of the CRB-
optimization, the IMMEKF performs marginally better than
the P-IMMEKF which uses the projected measurements, this
is most clearly visible in the RMSE of p̂3r,k. The difference
is insignificant, as one would expect since the CRBs only
differ by 1% in Figure 2, but the computational efficiency
of the projected filters is significantly better, with the mean
computational time of the P-IMMEKF being 291.97 [s],
compared to the mean computational time of 596.5 [s] of
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Fig. 3: Estimated position (top) and velocity (bottom) with
the IMMEKF (blue), the P-IMMEKF (red) and ground truth
(black), at a positional offset δp ≈ [3.6 3.5 3.6]> · 106.
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Fig. 4: Integer ambiguity estimates with the IMMEKF (blue),
the P-IMMEKF (red) and the ground truth (black) from one
sample of the 102 MC runs.

the IMMEKF. Note that this is the mean computational time
running the filters over the entire data set in an un-optimized
Matlab implementation, with many more cycle slips per time
unit than what is typically present in real data.
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Fig. 5: RMSE of the positional state estimates with the
IMMEKF (blue) and P-IMMEKF (red) from 102 MC runs.

VII. CONCLUSION
We have considered the marginalized PF approach in [10]

for GNSS positioning known as the IMMEKF, and extended
the algorithm to reduce the computational complexity of the
ambiguity sampling, which can be crucial in implementations
on consumer-grade GNSS receivers. To reduce computation
further, we developed a framework for computing measure-
ment subspaces in which the positional information of the
acquired measurements is retained. As shown in Section VI-
B, it is possible to compress a measurement vector y ∈ R2M

into a projection ỹ ∈ RM̃ with M̃ = 3, with minimal
degradation to MSE-performance. Combined with the as-
sumption that the positional Jacobian of the measurement
equation varies little among the particles in the EKF bank,
as shown in (32), we presented the P-IMMEKF. In this
filter, a single projection operator is recursively updated and
applied in all EKF updates. We noted a significant speed-up
of the algorithm, and validated the theoretical conclusions by
empirically computing the positional MSE in a MC study.
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