
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
https://www.merl.com

Autonomous Vehicle Decision-Making and Monitoring based
on Signal Temporal Logic and Mixed-Integer Programming

Sahin, Yunus Emre; Quirynen, Rien; Di Cairano, Stefano

TR2020-095 July 03, 2020

Abstract
We propose a decision-making system for automated driving with formal guarantees, synthe-
sized from Signal Temporal Logic (STL) specifications. STL formulae specifying overall and
intermediate driving goals and the traffic rules are encoded as mixed-integer inequalities and
combined with a simplified vehicle motion model, resulting in a mixed-integer optimization
problem. The specification satisfaction for the actual vehicle motion is guaranteed by impos-
ing constraints on the quantitative semantics of STL. For reducing the computational burden,
we propose an STL encoding that results in a block-sparse structure. The same STL formulae
are used for monitoring faults due to imperfect prediction on the vehicle and environment.
We demonstrate our method on an urban scenario with intersections, obstacles, and no-pass
zones.

American Control Conference (ACC) 2020

c© 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in
any current or future media, including reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of
this work in other works.

Mitsubishi Electric Research Laboratories, Inc.
201 Broadway, Cambridge, Massachusetts 02139

Autonomous Vehicle Decision-Making and Monitoring based on
Signal Temporal Logic and Mixed-Integer Programming

Yunus Emre Sahin1, Rien Quirynen2, and Stefano Di Cairano2

Abstract— We propose a decision-making system for auto-
mated driving with formal guarantees, synthesized from Signal
Temporal Logic (STL) specifications. STL formulae specifying
overall and intermediate driving goals and the traffic rules
are encoded as mixed-integer inequalities and combined with a
simplified vehicle motion model, resulting in a mixed-integer
optimization problem. The specification satisfaction for the
actual vehicle motion is guaranteed by imposing constraints
on the quantitative semantics of STL. For reducing the com-
putational burden, we propose an STL encoding that results in
a block-sparse structure. The same STL formulae are used for
monitoring faults due to imperfect prediction on the vehicle
and environment. We demonstrate our method on an urban
scenario with intersections, obstacles, and no-pass zones.

I. INTRODUCTION

The complexity of autonomous driving and its real-time
requirements in resource-limited automotive platforms [1]
often impose a decomposition of the guidance and control
systems with guarantees that the overall system still satisfies
the driving specifications [2], [3], see, e.g., Fig. 1.

The design of a decision-making module that generates
intermediate goals for the motion planner according to the
vehicle and traffic conditions is challenging since it requires
making discrete and continuous decisions for a dynamic
system, which operates in a changing environment. Some
of the recent works in this area are based on machine
learning [4] and on automata combined with set reachabil-
ity [3]. While the former suffers from the lack of guarantees,
the construction of the automaton from natural language
specifications of driving goals and traffic rules makes the
latter challenging.

In this paper, we take a similar approach to that of [3],
but rather than designing an automaton from natural language
specifications, we formulate those as Signal Temporal Logic
(STL) formulae. These formulae are then converted into a set
of mixed-integer inequalities for real-time decision-making
and fault monitoring. Solving the resulting mixed-integer
programs (MIP) provides a sequence of intermediate goals
that satisfy the specifications and are used as waypoints by
the motion planner. To reconcile the differences between
the simplified model used in decision-making, and the more
precise model used in motion planning, we exploit the quan-
titative semantics of STL and impose a robustness margin on
the formulae satisfaction. This robustness is used to ensure

1Electrical Engineering and Computer Science Department, University
of Michigan, Ann Arbor, MI, USA; ysahin@umich.edu. This work
was done while he was an intern with MERL.
2 Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA,
USA; (quirynen, dicairano)@merl.com

that the generated waypoints are feasible, and the motion
planner can compute a trajectory to achieve the sequence of
goals computed by the decision-maker.

Solving general MIPs is NP-complete, and thus, challeng-
ing to do in real-time. However, recent work [5] indicated
that, by exploiting the particular structure of mixed-integer
optimal control problems, real-time solvers might achieve
performance comparable to commercial desktop solvers,
such as Gurobi [6]. Therefore, we propose an encoding for
the STL formulation that results in a block-sparse mixed-
integer problem, for which computing times may be signifi-
cantly reduced.

Finally, the same STL formulae used for decision-making
can be used to monitor whether, due to deviations of the
vehicle and the environment from their nominal behavior,
the specifications are still met or to trigger possibly asyn-
chronous execution of fault-recovery mechanisms.

The organization of this paper is as follows. In Section II,
we introduce modeling, STL, and problem definition. In Sec-
tion III, we propose an STL encoding that results in a block-
sparse MIP. In Section IV, we discuss the implementation
of STL-based decision-making and monitoring and the test
case, for which simulation results are shown in Section V.
Our conclusions are in Section VI.

II. PRELIMINARIES AND PROBLEM DEFINITION

In this paper, we consider automated driving, where an
autonomous vehicle must reach a desired destination while
obeying the traffic rules. This task requires the vehicle to ad-
just its velocity to obey the speed limits, to avoid collisions,
to follow and to change lanes, and to cross intersections
following the appropriate right of way rules. The vehicle is
equipped with sensors to detect static and dynamic obstacles
within a given range and to locate itself in the environment.
Furthermore, the vehicle is equipped with a module that
provides conservative predictions of the future trajectory of
each dynamic obstacle, such that the actual position of the
obstacle is always contained in this prediction in the future.

According to the general principles outlined for instance
in [3], [7], the guidance and control architecture of the
autonomous driving system is divided into several modules,
which can be seen from Fig. 1. In this paper, we focus on
the following problem formulation.

Problem 1 (Decision Making): Given the navigation in-
formation, i.e., the sequence of road segments, the current
vehicle state, and the current and predicted location of the
obstacles, the decision-making module computes a coarse
trajectory, i.e., a sequence of waypoints/goals over a horizon

Fig. 1: Control architecture for autonomous driving (red: this paper focus).

of several seconds to be used by the motion planning module,
that defines what maneuver the vehicle should perform. �

The sequence of goals provided by the decision-making
module is used by the motion planning module to compute
a more accurate trajectory that achieves the next goals,
over shorter horizons of a few seconds. The trajectory of
the motion planning module is then tracked by the vehicle
controller. The architecture we envision also includes a
monitoring module that verifies at relatively high frequency
whether the executed motion is achieving the desired goals.
In case of a negative answer, appropriate measures are
taken, such as the immediate re-computing of the goals or
transitioning to a fault-recovery mode.

We model the ego vehicle motion dynamics by the
discrete-time linear (affine) system

xt+1 = Atxt +Btut + at, (1)

where xt ∈ X is the state vector, ut ∈ U is the control
input and at is the affine measured disturbance at time t,
and the matrices At, Bt are possibly time varying yet known
ahead of time. The vehicle model (1) is an approximation
of more precise models, see, e.g., [8], which are usually
nonlinear. However, since we consider only driving in normal
conditions, several of the vehicle nonlinearities, such as those
in tire force curve, are not excited, while others can be
neglected because the decision-making operates over long
horizons with a fairly coarse sampling period.

A. Signal Temporal Logic

To describe traffic rules, we use temporal logics, which
provide a powerful framework to define system requirements
and the dynamic environment in which the system lives.
Using temporal logics, natural language specifications can
be formulated precisely, without leaving room for different
interpretations. This unambiguity enables one to synthesize
controllers from high-level specifications using algorithmic
techniques. One advantage of such a formal approach is
that the solutions are correct-by-construction [9], that is,
the trajectories of the closed-loop system are guaranteed to
satisfy the temporal logics specifications.

Let Π = {πµ1 , πµ2 , . . .} be a given set of predicates,
where each µi : X → R maps system states to the reals.

An STL formula over Π is defined recursively as follows:

φ := πµ | ¬φ | φ1 ∧ φ2 | φ1 UI φ2. (2)

where symbols ¬, ∧, and U correspond to the logical
operators negation, conjunction, and the temporal operator
until, respectively. Temporal operator U (until) is equipped
with an interval I , indicating the time window in which the
STL formula is evaluated [10].

Given a trajectory ξ = {x0, x1, . . .}, where xt denotes
the state of the system at time step t, satisfaction of an STL
formula φ can be checked as in [11]. In addition to checking
if the formula is satisfied or not, a robustness function ρ is
used such that φ is satisfied by ξ at time t if and only if
ρ(φ, ξ, t) > 0. The sign of the robustness score indicates
if the specifications are satisfied or violated, whereas the
absolute value indicates how strongly did this happen.

While, due to modeling errors and disturbances, perfect
tracking of a solution is not possible in real-life scenarios, it
is often possible to find bounds on such tracking errors [2].
By ensuring a minimum robustness score, one can prevent
such errors to result in a violation of the specifications.

B. Problem Definition

Next, we formally define Problem 1 based on the STL
formulae introduced in the previous sections.

Problem 2 (STL-based Decision Making): Given the cur-
rent vehicle state x(t), the vehicle dynamics (1) and an
STL specification φ according to (2), find a trajectory ξ =
{x0, x1, . . .} over a future horizon of N steps that satisfies
the vehicle dynamics and enforces φ with a robustness score
greater or equal than c, while optimizing J , a function of
performance metrics P and a robustness metric R,

min
u0,...,uN−1

J(P,R) (3a)

s.t. xt+1 = Atxt +Btut + at (3b)
ρ(φ, ξ, 0) ≥ c (3c)
x0 = x(t). (3d)

The N -step trajectory ξ∗ = {x∗0, . . . , x∗N}, obtained by
solving (3), is the sequence of goals, i.e., waypoints, provided
to the motion planning according to Fig. 1.

The obstacle predictions are embedded in the STL spec-
ification φ in (3c). The robustness margin in (3c) for the
STL formula satisfaction is particularly useful for at least
two reasons. First, it compensates for the approximations in
model (1) when the sequence of states, i.e., goals, determined
by the decision-making is provided to a motion planner that
computes a trajectory over a shorter horizon but using a more
precise motion model. Second, it introduces some robustness
to the environment, such as the behavior of moving obstacles,
which allows for the STL specification to remain satisfied
even if the environment prediction is not perfect.

Next, we show how the problem in (3) can be formulated
effectively for the numerical solution by MIP solvers.

III. BLOCK-SPARSE MIP FORMULATION OF STL
SPECIFICATIONS

In this section, we explain how to capture STL specifica-
tions as MIP constraints. This framework was first introduced
in [12] for LTL specifications and later adapted to STL
specifications in [13]. More efficient encodings exist if STL
formulae are given in negation normal form [14]. That is, the
negation connectives appear immediately before predicates,
which are defined by union of polyhedra, i.e., µj(xt) >
0 ⇐⇒ xt ∈

⋃s
i=1{x : Hj

i x ≤ K
j
i }. This assumption is not

restrictive as any STL formula can be written in this form.
However, these methods result in an optimization problem
that is generally not block-sparse,

min
Z

Z>HZ + C>Z

s.t. GiZ ≤ Ki

FbZ ∈ {0, 1},

(4)

due to the STL specifications coupling the decision variables
across many, if not all, future prediction steps.

Here, we propose a different encoding that results in a
block-sparse structure, which can be exploited by solvers,
with the objective of reducing the computational burden that
is the most limiting factor of MIPs. In fact, in [5], we have
proposed a solver that, despite being entirely custom-made
without using any special libraries, was capable of achieving
a performance similar to that of commercial high-end solvers,
by exploiting the structure of the optimal control problem

min
X,U

N−1∑
t=0

(x>t Qtxt + u>t Rtut + ctxt) + x>NQNxN

s.t. xt+1 = Atxt +Btut + at

x0 = x(t)

lct ≤ Ctxt +Dtut ≤ uct
Ftut ∈ {0, 1},

(5)

where the optimization variables are the state trajectory
X = [x>0 , . . . , x

>
N] and control inputs U = [u>0 , . . . , u

>
N].

We refer the interested reader to [5] for more details.
Besides being exploitable by custom solvers, even general-
purpose commercial solvers can typically take advantage of
a block-sparse structure, especially in the pre-solve step that
reduces the number of integer variables and their admissible
combinations, thus speeding up computations.

Without loss of generality, we further assume that STL
specifications are given in negation normal form. Given an
STL formula φ, we define decision variables uφt and xφt such
that xφt+1 = uφt . We ensure through a set of mixed-integer
linear constraints that uφt = 1 holds if STL robustness score
of φ at time t is greater than some predefined threshold, i.e.,
ρ(φ, ξ, t) > c. The auxiliary states xφt are introduced to keep
the block-sparse structure in (5).

For each predicate πµ, uµt is defined as binary, i.e., uµt ∈
{0, 1}, and satisfies the constraint µ(xt) + M(1 − uµt) >
c, where M is a sufficiently large positive number. When
uµt = 1, ρ(φ, ξ, t) > c as expected. If there is a negation

operator before a predicate µ, we define a binary variable
u¬µt ∈ {0, 1} such that µ(xt)−M(1− u¬µt) ≤ −c, so that
u¬µt = 1 implies ρ(φ, ξ, t) ≤ −c.

Boolean operators are encoded similar to [14]. We define
auxiliary inputs ut ∈ [0, 1] as continuous variables and
enforce ϕ =

∧
i φi =⇒ uϕt ≤ uφi

t for all i and
ϕ =

∨
i φi =⇒ uϕt ≤

∑
i u

φi

t . For the remainder of this
paper, we write uϕt =

∧
i u

φi

t and uϕt =
∨
i u

φi

t instead of
the corresponding inequalities.

Boolean operators couple decision variables that belong to
the same time step. On the other hand, temporal operators
couple variables with the same superscript across multiple
time steps. For example, the “eventually” operator can be
encoded as ϕ = ♦Iφ =⇒ uϕt =

∨
k∈I u

φ
k as in [13], [14].

To avoid coupling variables across time steps, and to retain
the block-sparse structure, we propose a different encoding
of the temporal operators as follows. For the “eventually”
operator, first we explicitly state ρ(♦[0,0]φ, ξ, t) = ρ(φ, ξ, t).
Then, we rewrite its quantitative semantics by recursion.

ρ(♦[a,b]φ, ξ, t) = ρ(♦[a−1,b−1]φ, ξ, t+ 1), if a > 0,

ρ(♦[a,b]φ, ξ, t) = max
(
ρ(φ, ξ, t),

ρ(♦[0,b−1]φ, ξ, t+ 1)
)
, if a = 0.

(6)

Equation (6) couples decision variables only if they are at
consecutive time steps, instead of over entire time intervals.
Exploiting auxiliary states, we can further limit the coupling
to variables of the same time step. Let ϕ = ♦[a,b]φ, we set

xϕt+1 = uϕ̃t+1, ϕ̃ = ♦[a−1,b−1]φ, if a > 0,

xϕt+1 = xφt+1 ∨ u
ϕ̃
t+1, ϕ̃ = ♦[0,b−1]φ, if a = 0,

uϕt = uφt , if a = b = 0,

(7)

where continuity conditions xϕt+1 = uϕt and xφt+1 = uφt have
been used, and the resulting constraints in (7) can be written
as mixed-integer inequalities in the form of (5), allowing us
to exploit the block-sparse problem structure.

The encodings for “always” and “until” operators can be
derived in a similar way. Let ϕ = �[a,b]φ, we set

xϕt+1 = uϕ̃t+1, ϕ̃ = �[a−1,b−1]φ, if a > 0,

xϕt+1 = xφt+1 ∧ u
ϕ̃
t+1, ϕ̃ = �[0,b−1]φ, if a = 0,

uϕt = uφt , if a = b = 0.

(8)

Let ϕ = φ1U[a,b]φ2, we set

xϕt+1 = xφ1

t+1 ∧ u
ϕ̃
t+1, ϕ̃ = φ1U[a−1,b−1]φ2, if a > 0,

xϕt+1 = xφ2

t+1 ∨ (xφ1

t+1 ∧ u
ϕ̃
t+1), ϕ̃ = φ1U[0,b−1]φ2, if a = 0,

uϕt = uφ2

t , if a = b = 0.
(9)

In summary, Eqs. (7)–(9) encode the temporal operators in
a way that results in the block-sparse structure (5).

IV. STL-BASED DECISION MAKING AND MONITORING

Next, we describe our STL-based implementation of the
decision-making and monitoring systems. The navigation
module provides a route that reaches the destination, e.g.,

a sequence of roads and intersections. Based on the route
and the prediction of the obstacles, the decision-making
module solves an instance of Problem 2 in a receding horizon
manner. The decision-making module finds a sequence of
waypoints trajectory from one intersection to the next one,
while avoiding collisions and obeying traffic rules. Specifi-
cally, the decision-making module: (i) represents the driving
requirements as the STL specification φ; (ii) generates the
corresponding mixed-integer constraints based on Section III;
(iii) adds the vehicle motion model and a cost function that
maximizes the progress to the next waypoint and possibly
other soft objectives such as tracking a desired velocity and
discouraging large longitudinal accelerations; (iv) solves the
MIP problem to obtain a waypoint trajectory part of which
is provided to the motion planner.

The vehicle motion is modeled in curvilinear coordinates

px(t+ 1) = px(t) + vx(t)∆t (10a)
py(t+ 1) = py(t) + vy(t)∆t (10b)
vx(t+ 1) = vx(t) + ax(t)∆t (10c)

vy(t) ≤ α |vx(t)|, (10d)

where px is the longitudinal distance from the reference
point, py is the lateral deviation from the rightmost lane,
vx is the longitudinal velocity, and the control inputs are
the lateral velocity vy and the longitudinal acceleration ax.
Constraint (10d) is imposed to restrict the range of the
vehicle motion, i.e., avoid side movements, so that (10) more
closely approximate the real vehicle motion.

We consider the urban driving scenario shown in Fig. 2,
where the blue cross is the initial position and the blue
rectangle is the destination. The speed of the other vehicles is
considerably lower than the ego vehicle to induce overtaking
and protracted queuing, the ego vehicle sensor range for
detecting position and velocity of other vehicles is 150m.

The traffic rules for the scenario are: 1) The other vehicles
drive according to traffic rules with varying speed, and
collisions must be avoided. 2) The speed limit is 30m/s,
reduced to 15m/s in the curved segment. 3) Lane changing is
not allowed within 40m from an intersection and in the upper
right curved segment. 4) The intersections are regulated by
a first-in-first-out rule. Thus, their STL formulation is

φ =
∧
i

�(¬Oit) ∧ (11a)∧
i

�
(
Si =⇒ (vx ∈ [vmini , vmaxi])

)
∧ (11b)∨

i

�(¬Lci) ∧ (11c)

(¬Sint U IntersectionClear), (11d)

where Oit represents a region occupied by the ith obstacle
at time t so that Eq (11a) enforces collision avoidance.
Eq (11b) enforces speed limits, where the road is partitioned
into regions {Si}, and the vehicle speed must be in the
range {[vmini , vmaxi]} in each of those. Eq. (11c) forbids
lane changes in certain regions, i.e., if lane changes are not

-600 -500 -400 -300 -200 -100 0 100 200
-200

-100

0

100

200

300

400

500

600

Fig. 2: Setting for the urban driving scenario.

allowed in a region L =
⋃
i Li, where each Li represents

a different lane, the vehicle must choose one of the lanes
and never visit the others. Eq. (11d) ensures that the vehicle
comes to a full stop before each intersection and follows the
right-of-way rules, where the variable IntersectionClear
becomes true only after the vehicle stops and has the right
to enter the intersection, and is false otherwise.

For solving the MIP problems, we use both the com-
mercial desktop solver Gurobi and our structure exploiting
branch-and-bound method for mixed-integer model predic-
tive control [5], called BB-PRESAS, where the convex
relaxations are solved by the method in [15]. While commer-
cial desktop solvers often achieve higher performance, BB-
PRESAS is a self-contained compact solver tailored to execu-
tion on embedded platforms such as those for on automotive-
grade applications, that have considerably less computational
resources and memory than desktop computers. BB-PRESAS
can achieve a fast solution by a thoughtful selection of
pre-solve techniques, such as bound strengthening and dual
fixings, branching strategies, such as reliability branching
with pseudo-costs, and tailored warm-starting strategy, such
as tree propagation, and structure exploitation.

While our approach guarantees safety by design when the
assumptions in the motion models are met, the specifications
may be violated due to unexpected conditions leading to
wrong predictions of the vehicle or traffic motion. Thus, the
architecture in Fig. 1 includes a run-time monitoring based
on the same STL encodings that analyzes the trajectory up to
the current time, and verifies the satisfaction/violation of the
specifications and whether the next waypoint is reachable.
Once the trajectory is fixed, for the encodings in Section III,
this only requires checking linear inequalities, which is
computationally light. Thus, monitoring can operate at high
frequency to immediately recognize potential problems.

V. SIMULATION RESULTS

We simulated the decision-making system in the scenario
in Fig. 2, where the path planning is perfectly following the
waypoints to better highlight the decision-making behavior.
Key frames from the simulated scenario are shown in Fig. 3,
where the sampling period for the decision-making is ∆t =
2, the ego vehicle is shown in blue and all the other vehicles
are shown in red,. The time histories with respect to the
sampling instant t of relevant signals are shown in Fig. 5.

Fig. 3: Important time frames from the simulation results for the decision-making module in the urban driving scenario.

In Fig. 3a, the ego vehicle is behind another vehicle,
approaching an intersection, and it keeps a safe distance
with the lead vehicle and comes to a full stop before the
intersection (Fig. 3b). The ego vehicle reaches to a full
stop (0 velocity at t = 10), and remains stationary until
IntersectionClear signal is false, and, once it becomes
true (at t = 12), it accelerates to cross the intersection,
Fig. 5. In Fig. 3c, the ego vehicle is in an area where lane
changing is allowed (see, NoPass signal in Fig. 5, around
step t = 20) and it overtakes the leading traffic vehicle,
as shown by its lateral position on the road in Fig. 5. The
ego vehicle enters the curvy road on the left lane (Fig. 3d)
and slows down to meet the 15m/s speed limit (Fig. 5 at
around t = 22). Around t = 25, the ego vehicle approaches
a slow lead vehicle (Fig. 3e-3f) and keeps a safe minimum
distance by reducing velocity (Fig. 5, where the velocity of
the slow lead vehicle is also shown), as lane changing is not
allowed in this segment. Once back passing is allowed, the
ego vehicle first waits for another vehicle occupying the right
lane, before overtaking the leading vehicle (Fig. 3g-3h). The
ego vehicle comes to a full stop on the left lane before the
intersection (Fig. 3i) and then clears the intersection with a
left turn, before reaching the goal (Fig. 3j). As the simulation
shows, fairly complex rules can be satisfied by an appropriate
formulation as STL specifications, and the MIP approach is
effective for synthesizing the decision-making.

As for the computational aspects, Fig. 4 reports solve
times for BB-PRESAS and Gurobi for the dense MIQP
formulation in (4), i.e., the Regular encoding, in a laptop with
2.5 GHz Intel Core i7 and 16 GB RAM where MATLAB
is used to interface with the MIP solver. For N = 5, the
computation time is always well below the decision-making
module sampling period of 2s. For N = 7, the solver can
still compute in less than 2s, but N > 7 the computation
time increases to above 2s for some steps, especially when
the vehicle is near obstacles. Fig. 4 also shows the number

0 10 20 30 40 50 60 70 80

Time step

10
-4

10
-2

10
0

S
o
lu

ti
o
n
 t
im

e
 [
s
]

GUROBI

BB-PRESAS

0 10 20 30 40 50 60 70 80

Time step

0

50

100

150

200

250

#
 b

in
a
ry

 v
a
ri
a
b
le

s

before presolve

after presolve

Fig. 4: Top: solve times of BB-PRESAS and Gurobi for the dense MIQP
formulation with N = 5. Bottom: number of binary variables at each time
step before and after the pre-solve procedure for BB-PRESAS.

of binary decision variables before and after BB-PRESAS
pre-solve, where the latter number gives a more correct
assessment of the actual problem size. Gurobi seems to be
less affected by the increase in problem size, possibly due to
its more extensive pre-solve heuristics for generating cutting
planes. However, there is still a large room for improving the
BB-PRESAS for the STL-based decision-making problems,
as previously done for optimal control problems [5].

Next, we compare a Regular encoding from [14] that
solves (4) with our proposed Block-Sparse encoding from
Section III, which results in solving (5). Solution times using
Gurobi as MIQP solver for both formulations and varying
horizon N are reported in Fig. 6. For all three values of the
horizon N , the Block-Sparse encodings have faster solution
times, sometimes by more than 1 order of magnitude. As
the horizon increases, the solution time increases, but such
an increase appears to be larger for the Regular encoding.
Thus, the Block-Sparse encoding seems to be faster and to
scale better with the horizon. This is due to the structure
of the problem leading to a better reduction of the integer

Fig. 5: Time history of relevant signals during the simulation of the urban
driving scenario. Top: ego vehicle (EV) velocity, and lead vehicle (OV)
velocity (set to -1 when out of range). Mid-high: EV lateral position with
respect to the rightmost lane. Mid-low: IntersectionClear signal, true
if EV can cross. Bottom: NoPass signal, inhibiting EV lane changing.

Fig. 6: Timing results for different horizon lengths (N = 10, 15 and 20),
using Gurobi for the Regular and Block-Sparse STL encoding formulations.

variables. In fact, Gurobi’s pre-solve information show that
many more variables are eliminated in the Block-Sparse STL
encoding of Section III, than in the Regular STL encoding.

The monitoring module is evaluated for the scenario in
Fig. 2h, where an obstacle behaves unexpectedly. The ego
vehicle changes lane assuming the lead vehicle in the target
lane to travel at a constant speed. However, from t = 46 the
lead vehicle suddenly and aggressively brakes, see Fig. 7,
which results in the violation of the minimum distance
specification. Such fault is detected immediately by the
monitoring module which operates at higher frequency than
decision-making due to the low computational burden, and
emergency braking is initiated timely, avoiding a collision.

VI. CONCLUSIONS

We developed decision-making and monitoring for auto-
mated driving based on STL specifications, providing way-
points to motion planning and verifying correct execution, re-
spectively. STL specifications, with robustness constraints to
reconcile the different models used for decision-making and

Fig. 7: Simulation of monitoring module detecting minimum distance
violation between t = 46 and t = 47: time history of relevant signals
during the simulation of the urban driving scenario.

motion planning, are encoded via mixed-integer constraints.
The optimal control problem structure can be retained by
a block-sparse STL, which reduces computing time. We
demonstrated our approach for both desktop-oriented and
embedded platform-oriented MIP solvers.

REFERENCES

[1] S. Di Cairano and I. V. Kolmanovsky, “Real-time optimization and
model predictive control for aerospace and automotive applications,”
in American Control Conf., pp. 2392–2409, 2018.

[2] S. Di Cairano, U. Kalabić, and K. Berntorp, “Vehicle tracking control
on piecewise-clothoidal trajectories by mpc with guaranteed error
bounds,” in 55th IEEE Conf. Decision and Control, pp. 709–714, 2016.

[3] H. Ahn, K. Berntorp, and S. Di Cairano, “Reachability-based decision
making for city driving,” in Amer. Control Conf., pp. 3203–3208, 2018.

[4] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-
making for autonomous vehicles,” Annual Review of Control, Robotics,
and Autonomous Systems, 2018.

[5] P. Hespanhol, R. Quirynen, and S. Di Cairano, “A structure exploiting
branch-and-bound algorithm for mixed-integer model predictive con-
trol,” in European Control Conference (ECC), pp. 2763–2768, 2019.

[6] L. Gurobi Optimization, “Gurobi optimizer reference manual,” 2018.
[7] K. Berntorp, T. Hoang, R. Quirynen, and S. Di Cairano, “Control

architecture design for autonomous vehicles,” in IEEE Conf. Control
Technology and Applications, pp. 404–411, 2018.

[8] R. Quirynen, K. Berntorp, and S. Di Cairano, “Embedded optimization
algorithms for steering in autonomous vehicles based on nonlinear
model predictive control,” in Amer. Control Conf., pp. 3251–3256,
2018.

[9] T. Wongpiromsarn, U. Topcu, and R. M. Murray, “Receding horizon
temporal logic planning,” IEEE Trans. Automatic Control, vol. 57,
no. 11, pp. 2817–2830, 2012.

[10] O. Maler and D. Nickovic, “Monitoring temporal properties of contin-
uous signals,” in Formal Techniques, Modelling and Analysis of Timed
and Fault-Tolerant Systems, pp. 152–166, Springer, 2004.

[11] A. Donzé and O. Maler, “Robust satisfaction of temporal logic over
real-valued signals,” in International Conference on Formal Modeling
and Analysis of Timed Systems, pp. 92–106, Springer, 2010.

[12] S. Karaman, R. G. Sanfelice, and E. Frazzoli, “Optimal control of
mixed logical dynamical systems with linear temporal logic specifica-
tions,” in 47th IEEE Conf. Dec. and Control, pp. 2117–2122, 2008.

[13] V. Raman, A. Donzé, M. Maasoumy, R. M. Murray, A. Sangiovanni-
Vincentelli, and S. A. Seshia, “Model predictive control with signal
temporal logic specifications,” in 53rd IEEE Conf. Dec. and Control,
pp. 81–87, 2014.

[14] C. Belta and S. Sadraddini, “Formal methods for control synthesis:
An optimization perspective,” Annual Review of Control, Robotics,
and Autonomous Systems, vol. 2, pp. 115–140, 2019.

[15] R. Quirynen and S. D. Cairano, “PRESAS: Block-structured precon-
ditioning of iterative solvers within a primal active-set method for fast
MPC,” arXiv preprint arXiv:1912.02122, 2019.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-095.pdf
	page 2
	page 3
	page 4
	page 5
	page 6

