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Abstract
Revenue management (RM), a management science method, employs demand predictions
to maximize revenue. Since its introduction in the airline industry in the 1980s, it is now
widely used in various industries such as hotel, retail, and railway, among others. Compared
to the airline industry, penetration has been slow in the railway industry. In recent years,
RM has seen increased adoption in the railway industry. Existing approaches to RM in
trains have mostly considered the determination of price and capacity separately. In this
paper, we consider the problem of maximizing revenue by optimizing over price and capacity
simultaneously. We make three important contributions to this problem. For the first time,
we consider the problem of train sizing, i.e. number of coaches in each fare class. Second,
instead of logit-based models estimated from price-demand data, we consider data-driven
models that alleviate the problem of modelling errors. Finally, we formulate the optimization
as an Integer Linear Program as opposed to the nonlinear formulations that result from
logit-based models. Thus, we present data-driven revenue maximization to jointly determine
pricing, seat allocation, train sizing for a single fare class over multiple legs and train lines.
Our simulation results targeting Nozomi on the Tokaido-Sanyo Shinkansen in Japan show
that it is possible to formulate a railway operation plan to maximize the operation profit by
applying our proposed method. In our numerical experiments, the proposed approach can
identify solutions that increase profit per day by 50%, with a computation time of less than
1 second.
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ABSTRACT 

Revenue management (RM), a management science method, employs demand predictions to maximize 

revenue. Since its introduction in the airline industry in the 1980s, it is now widely used in various 

industries such as hotel, retail, and railway, among others. Compared to the airline industry, penetration 

has been slow in the railway industry.  In recent years, RM has seen increased adoption in the railway 

industry. Existing approaches to RM in trains have mostly considered the determination of price and 

capacity separately. In this paper, we consider the problem of maximizing revenue by optimizing over 

price and capacity simultaneously. We make three important contributions to this problem. For the first 

time, we consider the problem of train sizing, i.e. number of coaches in each fare class.  Second, instead 

of logit-based models estimated from price-demand data, we consider data-driven models that alleviate 

the problem of modelling errors.   Finally, we formulate the optimization as an Integer Linear Program 

as opposed to the nonlinear formulations that result from logit-based models. Thus, we present data-

driven revenue maximization to jointly determine pricing, seat allocation, train sizing for a single fare 

class over multiple legs and train lines. Our simulation results targeting Nozomi on the Tokaido-Sanyo 

Shinkansen in Japan show that it is possible to formulate a railway operation plan to maximize the 

operation profit by applying our proposed method. In our numerical experiments, the proposed 

approach can identify solutions that increase profit per day by 50%, with a computation time of less 

than 1 second. 

Keywords:   data-driven, optimization, pricing, capacity allocation, train sizing, revenue management, 

railways, Integer Linear Program 

1  INTRODUCTION 

Revenue Management (RM) (or Yield Management) is a fundamental problem in service 

operations such as airlines, bus companies, hotel industry, manufacturing companies, and 

railways among others. RM studies the problem of allocating a firm's resources at different 

rates to maximize revenues. Seat inventory control, a key concept in RM, is concerned with 

the problem of determining whether to accept a request at a certain fare under the condition 

that its value is lost after the sales season. The fares vary based on the class (first class or 

economy class) and the date of purchase. For example, the fare is more expensive when 

purchased closer to the date of travel. 

     RM has been widely employed in the context of airline operations. Seat inventory control 

has been investigated in Glover at al [5], Belobaba [2], Davis [4], Weatherford and Bodily 

[11], McGill and van Ryzin [7] and Talluri and van Ryzin [9]. In the airlines industry, a leg 

refers to a single take-off and landing. Hence, seat booking for passengers with one or more 

stops from origin to destination it is necessary to consider the seat allocation by considering 

the airline's entire network operations. In the context of airlines, the single leg and multi-leg 

inventory control have been considered. 

     Train line refers to a train running between terminal stations that stops at multiple 

intervening stations. A leg (or a segment) in rail operations refers to journey between 

successive stations at which the train makes a stop. Train lines are inherently multi-leg 

operations. Hence, the seat allocation for all possible origin-destinations (stations on the train 



line) has to be considered simultaneously. The application of RM in freight railways can be 

traced to the work of Strasser [8]. To the best of our knowledge, Ciancimino et al [3] was the 

first work on RM for passenger railways. Ciancimino et al [3] considered the problem of 

determining seat allocations on a single fare class, multiple legs of the train line to maximize 

the revenue. A deterministic linear programming formulation was proposed for the case of 

deterministic demand and a nonlinear programming formulation was proposed to handle 

demand uncertainty. The authors ignored the integrality of the seat allocation decisions. You 

[12] formulated the seat allocation among two fare-classes, multiple legs on a train line as a 

mixed integer nonlinear program and proposed a heuristic solution approach. Armstrong and 

Meissner [1] present an overview of RM approaches and models in the context of railways. 

An extension of the two-fare class model of You [12] to the multi-fare class was presented 

in [1]. Hetrakul and Cirillo [6] developed a nonlinear programming formulation that jointly 

optimized the prices and seat allocation based on a latent choice model. A multinomial logit 

model was used to predict the passenger choices. Wang, Wang and Zhang [10] presented a 

two-stage stochastic formulation incorporating passenger choice for determining optimal seat 

allocations. The resulting policies were compared in simulations. Zhao and Zhao [14] 

considered the problem of optimal seat allocation on multiple train lines under customer 

choice model. They solved the problem using a heuristic algorithm and demonstrated their 

results on Beijing-Shanghai High Speed Rail (HSR). Zhai, Zhao and Chen [13] optimized 

seat allocation for multiple lines serving the same set of origin and destinations in order to 

maximize the passenger throughput. This study does not directly pertain to RM.  

     The survey of the literature on RM in railways reveals that: 

1. Train sizing, in terms of number of coaches in each fare class, has not been 

considered as a decision variable. This aspect is particular to railways and not 

airlines. For instance, the operator can choose to vary the number of first- and 

second-class coaches for a particular train line based on the demand.  

2. Logit-based models are primarily used for modelling price sensitivity when 

optimizing jointly for prices and seat allocations. However, such models are 

estimated from data and can introduce errors in the results of the optimization. 

Further, the use of such models introduces nonlinearity in the problem and makes 

them intractable. 

3. Heuristic algorithms such as particle swarm optimization, simulated annealing are 

the dominant solution approaches. These algorithms claim to be able to find good 

feasible solutions. The algorithms do not provide an estimate of the optimality gap 

making it difficult to assess the quality of the solution. Hence, practitioners resort 

to running these algorithms for a long time in the hope of finding better solutions. 

In this paper, we consider the data-driven joint optimization of pricing, seat allocation, sizing 

to maximize revenue for a single fare class over multiple legs and train lines. In particular, 

we: (i) consider number of coaches as a decision variable; (ii) assume that price-demand 

function is provided as pairs of price and demand which are derived from user surveys. In 

particular, we do not estimate a logit-based model from this data; (iii) present an exact 

approach to solve the problem based on an Integer Linear Programming formulation. Note 

that the data-driven approach allows us to model the problem as an integer linear optimization 

instead of a nonlinear optimization problem. Further, the formulation ensures that the 

variables modelling seat allocations and number of coaches are integer valued which has 

been ignored in prior works, especially when the formulation becomes nonlinear. 

 



2  NOTATION 

The set of integers and non-negative integers are denoted by ! and !" respectively. For a 

positive integer #, [#] and [#]$ denote respectively the sets {1, � ,#} and {0, � ,#}. Let 

% be the set of train lines, &' be the number of trains operated on the line over a day and ()*+ 
be the set of stops that are served by the train line * - %. Let ( =.'-% ()*+ be the set of all 

stops that are served by the train lines. Further we assume that the set of all stations served 

by the train lines can be ordered so ( / [|(|] i.e. if 2, 3 - ()*+ with 24 < 3 then train line * 
stops at 2  before 3  for all * - % 5 2, 34 - ()*+ . The minimum and maximum number of 

coaches that can be attached to the train line * - % are 6'  and 6'  respectively. Denote by 

789: the number of seats in a coach of the train. Let ;',>  be the cost of operating ? number of 

coaches on train line * - %. A trip is denoted as a pair of stations )2, 3+ - ()*+ × ()*+ such 

that a passenger can travel from station 2 - ()*+ to station 3 - ()*+ on the train line *. The 

set  @)*+ A ()*+ × ()*+  denotes all possible trips on the train line * - %  i.e. @)*+ /
{)2, 3+4|42, 3 - ()*+, 2 < 3} . Let, B',CD)*+ , B',CD)*+  - !  denote the minimum and maximum 

number of seats for the trip )2, 3+ - @)*+ on the train line * - %. Let @ /.'-% @)*+ be the set 

of all trips that can be taken using any of the train lines. For each trip )2, 3+ - @ there exists a 

set EF)2, 3+ /{(GCD,H, ICD,H),�,(GCD,J)C,D+, ICD,J)C,D+)}, representing the price-daily demand pairs 

for the trip )2, 3+ with GCD,K L 0, ICD,K - !" for M - [N)2, 3+]. Let @)*, O+ A @)*+ for O - ()*+ 
be defined as @)*, O+ / {)2, 3+4|42 P 4O < 3, )2, 3+ - @)*+}. The set @)*, O+ defines the set of 

trips that cover the leg of the train line * from station O. By definition, @)*, O+ = Q if O is the 

last station on the train line *.  
 

3  INTEGER LINEAR PROGRAMMING FORMULATION 

We present an Integer Linear Programming (ILP) formulation for the joint optimization of 

sizing, price and seat allocation for a single fare class, multi-leg RM over multiple train 

lines.  The variables in the problem are 

· R',> - {0,1} denote the choice of ? coaches for ? = 6' , � , 6' on train line * - % 

· B',CD - !" denote the number of seats that are allocated for the trip )2, 3+ - @)*+ on 

train line * - % 

· SCDK - !"  denote the number of seats that are sold at the price GCD,K  on the trip 

)2, 3+ - @, M - [N)2, 3+]  
· TCDK - {0,1} denote the choice of price GCD,K for the segment )2, 3+ - @,4M - [N)2, 3+].    

Note that the realized demand at price GCD,K is ICD,K with (GCD,K, ICD,K) - EF)2, 3+. 

     The optimization problem for maximizing profit is  

            max444 U U GCD,KSCDKK-[VWX])C,D+-Y Z U &' \ ^_ ;',>R',>
`b
>c`b

d'-%                                     (1) 

se te44 U B',CD)C,D+-Y)',f+ P 789: \ _ ? \ R',>
`b
>c`b

                        g4O - ()*+, * - %      (2) 

        B',CD P B',CD P4B',CD                                                    g)2, 3+ - @)*+, * - %      (3) 

                      U SCDK4K4-hVWXi P U &' \ B',CD'-%j)C,D+-Y)'+ 44444444444444444444444444444444444444444g)2, 3+ - @       (4) 

                      SCDK P ICD,KTCDK                                  4444444444444444444444444g)2, 3+ - @, M4 - hkCDi       (5) 

                      U TCDKK-hJWXi = 1                                                                       g)2, 3+ - @      (6) 

                     _ R',>
`b
>c`b

= 1                                                                               g4* - %      (7) 



                      R',> - {0,1}                                                                  g? = 6,� , 6, * - %     (8) 

                      SCDK - !"                                                                  g)2, 3+ - @, M4 - hkCDi     (9) 

                      B',CD - !"                                                                    g)2, 3+ - @)*+, * - %  (10) 

                      TCDK  - {0,1}                                                               g)2, 3+ 4 - @, k - [kCD]  (11) 

The first term in the objective function models the revenue that is obtained on each segment 

as the product of the price GCD,K and the number of seats that are sold SCDK . The second term 

in the objective models the cost incurred in operating a certain number of coaches and 

introduces a trade-off between revenue and operating costs. Note that the formulation does 

not impose any assumptions on the functional form of ;>. Constraint in eqn. (2) ensures that 

the total number of seats allocated to all of the trips in @)*, O+ that include the segment 

starting from O - ()*+ of the train line * - % does not exceed the total capacity of the train. 

Constraint in eqn. (3) requires the number of seats allocated for trip )2, 3+ - @)*+ on train 

line * - % to be between the specified lower (B',CD) and upper (B',CD) limits.  Constraint in 

eqn. (4) limits the number of seats sold U SCDKK-hJWXi  for trip )2, 3+ - @ to be upper bounded 

by the total seat allocation over all train lines serving that trip.  Constraint in eqn. (5) limits 

the number of seats sold SCDK  for trip )2, 3+ - @ at price GCD,K by the demand ICD,K. The 

equality in eqn. (6) enforces that only one of the available price alternatives is chosen for 

each of the trips )2, 3+ - @. Eqn. (7) ensures that only of the binary variables R',> takes a 

value of 1.  The remaining constraints enforce the appropriate integrality of the variables. 

Note that the formulation does not provide the number of seats that are sold on each train 

line.  However, this can be obtained by apportioning the number of seats sold (U SCDKK-hJWXi  

) to each train line such that the assignment does not exceed the available seats for the trip 

(&' \ B',CD) on the train line.  

The constraints in the formulation are all linear and the decision variables are binary or 

integer valued.  Hence, our formulation belongs to the class of ILPs.  A number of 

commercial software packages have been developed for the solution of ILPs, namely 

CPLEX Optimizer [15], Gurobi [16], and FICO Xpress Solver [17]. 

We conclude the section by noting the following.  Suppose a logit model is available 

for price-demand elasticity.  Then a set with pairs of price and demand as in EF)2, 3+ can be 

obtained by discretizing the logit-curve.  An ILP formulation, so obtained, can alleviate the 

nonlinearity that is inherent when using the logit model.  The number of price 

discretizations considered will influence the optimal solution.  We will study the effect of 

the number of discretization points in Section 4.4. 

 

4  NUMERICAL EXAMPLE 

In order to showcase the effectiveness of our research, this section introduces an application 

example targeting high-speed railways in Japan. High-speed railways in Japan are called 

Shinkansen, and is a major means of transportation in Japan. In our study, we focus on 

"Tokaido-Sanyo Shinkansen" which is the one of the most famous Shinkansen lines in Japan. 

There are five train types "Nozomi", "Hikari", "Kodama", "Sakura" and "Mizuho" in 

Tokaido-Sanyo Shinkansen. We use data from a variety of sources to estimate the demand 

data on Nozomi, which is the fastest type in Tokaido-Sanyo Shinkansen and used by a great 

deal of people. In the following section, we describe our approach to deriving the data 

required for the formulation. Section 4.1 presents our criteria for selecting the stations that 

are included in the study. This limits the set of trips that we consider in the formulation.  

Section 4.2 describes our method for estimating the number of passengers who take Nozomi 



from each station over a day. Section 4.3 provides the setting of the parameters used in the 

optimization formulation of Section 3. Section 4.4 describes the results from solving the 

optimization formulation in Section 3 under different parameter settings. 

4.1  Selection of criteria for target station  

Nozomi is a type of Shinkansen that operates between Tokyo and Hakata, and Table 1 lists 

the stations at which it stops. There are 15 Nozomi stops in total, but Himeji, Fukuyama, 

Tokuyama, and Shin-Yamaguchi are excluded from the study as they are only served by a 

few services. In this research, when there are two stations in one prefecture, only one of them 

is selected as representative in order to estimate the demand by using the prefecture’s mutual 

departure and arrival table [18].  For instance, Tokyo Station and Shinagawa Station are in 

Tokyo prefecture, while Kokura and Hakata are in Fukuoka prefecture. Therefore, Tokyo 

and Hakata Station are respectively used as a representative of Tokyo and Fukuoka 

prefectures. This is done primarily due to a lack of diaggregated ridership data by stations in 

a prefecture.  The column titled “Target station” in Table 1 shows the stations targeted in this 

study. 

4.2  Estimating Shinkansen ridership 

In this section, we describe our method for estimating the passenger traffic information. We 

describe the method for estimating the number of passengers boarding and deboarding the 

Shinkansen at each main station in a day in Section 4.2.1. Section 4.2.2 describes the 

method for estimating the flow of passengers between stations.  

 

Table 1: List of stations 

 
1Only some trains stop 
2Not representative stations in each prefecture 

4.2.1  Number of passengers at each stations per day 

 

West Japan Marketing Communications Inc. records [19] the average number of passengers 

boarding Shinkansen every day from each main station. We assume that the ratio of 

Shinkansen passengers to other railway passengers is 3:7 if some stations’ data also 

includes non-Shinkansen passengers. The second column in Table 2 shows the number of 

one way Shinkansen users of our target stations by using this data.   



4.2.2  Number of passengers on different trips 

 

In Section 4.2.1 we estimated the number of passengers riding the train from each station. 

However, we have to estimate the number of passengers moving between stations in order 

to obtain the demand for each trip. The Ministry of Land, Infrastructure and Transport [18] 

surveyed the number of passengers moving between prefectures by Shinkansen or limited 

express train. We utilize this information to estimate passengers flow. 

     As shown in Table 1, we consider the stations Tokyo, Shin-Yokohama, Nagoya, Kyoto, 

Shin-Osaka, Shin-Kobe, Okayama, Hiroshima and Hakata. In addition, the prefectures in 

which these stations belong to are Tokyo, Kanagawa, Aichi, Kyoto, Osaka, Hyogo, 

Okayama, Hiroshima, and Fukuoka in that order. These prefectures are also our target 

prefectures in this study. We used "One-way / round-trip inter-prefecture inter-arrival table" 

made available by the Ministry of Land, Infrastructure and Transport [18] to obtain the 

percentage flows of passengers listed in fourth column of Table 2. The fifth column is the 

result multiplying the number of Shinkansen passengers form each station (column 2) with 

flow percentages (fourth column).  Fifth column provides the number daily Shinkansen 

passengers between different stations. 

      

Table 2: Information on number of passengers on different trips 

 
32 decimal places display 
4Integer display 

4.2.3  Estimation for Nozomi passengers 

 

In this section, we estimate the number of passengers using the Nozomi train (sixth column 

in Table 2) from the total number of Shinkansen passengers (fifth column). There are three 

types of Shinkansen, Nozomi, Hikari and Kodama from Tokyo. In addition, there are five 

types of Shinkansen, Nozomi, Hikari, Kodama, Sakura and Mizuho from Shin-Osaka. In 



order to estimate the number of Nozomi passengers, we consider the proportion of Nozomi 

departing from Tokyo to Hakata and from Shin-Osaka to Hakata. According to the JR 

Outing Net [20], about 62 percent of the Shinkansen from Tokyo is of Nozomi type, and 

about 50 percent of the Shinkansen from Shin-Osaka is of Nozomi type. Assuming that the 

number of passengers in Nozomi follows this ratio, we can estimate Nozomi passengers in 

sixth column of Table 2.  The Nozomi consists of three different fare classes – business, 

reserved and non-reserved.  We only focus on one fare class, reserved seat class. Assuming 

that 66% of Nozomi's passengers is reserved seat passengers, we can estimate reserved seat 

passengers in seventh column of Table 2. 

 

4.3  Problem Parameters 

In this section we describe the values for the different parameters in the formulation 

provided in Section 3.   

· Train lines: We consider 7 trains lines (% = {1,� ,l}) as specified in Table 3.  The 

number of trains that run on each of the train lines (&') is provided in the fourth 

column of Table 3.  The cost for operating a coach on each of the train lines is 

provided in the fifth column of Table 3.  The cost of operating ? coaches on line * 
(;',>) is assumed to be ? times the cost listed in the fifth column of Table 3. The 

cost for operating a coach consists of: (i) Electric cost (18.75 YEN/kilometer), (ii) 

Maintenance cost (YEN 10,000 per day), and (iii) Cleaning fee as Nozomi's 

operating expenses (YEN 1000 per train). Thus, the operating cost per coach 

varies by the train line. The coach capacity (789:) is assumed to be 87. 

· Set of stations: The set of stations under consideration are provided in the third 

column of Table 1. The ordering of the stations is the sequence in which the 

stations are visited.  Table 3 specifies the origin and destination terminals for each 

train line.  The train line is assumed to stop at all the intermediate stations.  For 

instance, the Tokyo-Shin-Osaka train line (Route no 1 in Table 3) stops at Tokyo, 

Shin-Yokohama, Nagoya, Kyoto, Shin-Osaka, i.e. stops at all intermediate stations 

mentioned in the third column of Table 2.  Using this sets ()*+, @)*+, @)*, O+ can all 

be inferred. 

· Price-demand function: We use the demand data inferred in the seventh column of 

Table 2 and the current fares for these trips (provided in Table 4) to estimate a 

price-demand logit function.  logit price-response curve for all )2, 3+ - @ 
ICDnGCDo = 47CDpq)9WX"rWXuWX+ 1 v pq)9WX"rWXuWX+w .                                    (9) 

The parameter yCD  is set to 0.001 for all )2, 3+ - @.  The demand )IzCD+ in the seventh 

column of Table 2 is observed at the price )G~CD+ stated in Table 4.  We choose �CD =
ZyCDG~CD  and hence, 7CD = �IzCD.  We will discretize this logit curve at a set of prices 

to obtain our price-demand pairs.  The price is discretized at intervals of �GCD  as 

{G~CD v M \ �GCD} for M = Z&�C�� , � , &�C��  to obtain NCD = )�&�C�� v 1+ prices.  The 

demand function in eq. (9) is evaluated at the discretized prices to yield )�&�C�� v
1+ price-demand pairs. We employ this approach since we do not have access to the 

raw data.  But this suffices to illustrate the computational efficiency of our approach. 

The values of �GCD , &�C�� are provided in the next section.    

· Lower and upper limit on each trip: We do not impose the constraint in Eq. (3).  In 

other words, B',CD = 0 and B',CD = � for all * - %, )2, 3+ - @)*+.  This is done due to 



the lack of data on this parameter.      

 

Table 3: Nozomi's travel route 

 
 

Table 4: The fare table 

 
 

4.4  Results 

We will begin this section by first studying the effect on operating costs, revenue and 

profits from having number of coaches and price to be a decision variable in the 

optimization.  In the rest of the section the price interval parameter (�GCD) is set to )0e01 \
G~CD+, i.e. 1% of the nominal price in Table 4. With this setting the price for each trip will be 

varied within ±&�C��� of G~CD . We will vary the number of price points (&�C��) in the 

following. We consider the following four different realizations of the optimization 



formulation described in Section 3: 

· Baseline : In this realization, we fix the number of coaches on each train line to be 

10 (6' = 6' = 10).  The parameter &�C��  is set to 1.  This implies that price for 

each trip is fixed to the value listed in Table 4.  Hence, number of coaches and 

prices are not optimized. In this setting, the cost of operation is a fixed quantity 

since the number of coaches cannot be varied.  The optimization algorithm finds a 

feasible allocation of seats according to the demand on each trip as specified in 

Table 2. 

· FixedPrices: In this realization, we continue to use the parameter &�C��  is set to 1.  

We allow the number of coaches on each train line to be a decision variable.  The 

lower and upper limits for each train line is set as  6' = �, 6' = 1�.  By varying 

the number of coaches in the optimization it is possible to reduce the operating 

costs and hence, increase profits.  This realization allows to study the effect of 

variation in train sizes when prices are fixed. 

· FixedCoaches-5%: In this realization, we fix the number of coaches as specified in 

Baseline (6' = 6' = 10).  However, the price is allowed to vary on each trip.  We 

use &�C�� = � so the price for each trip is varied within ±�� of G~CD  to yield NCD =
11 price-demand pairs for each trip. 

· Optimized-5%: In this realization, the number of coaches on each train line and 

the price are decision variables in the optimization as proposed in this paper. The 

prices on each trip are allowed to vary within ±�� of G~CD as in FixedCoaches-5%. 

 

The resulting optimization problems for each of the four realizations are solved using 

Gurobi 9.0 [16].  In all instances, the solver took less than 0.1 second on a standard desktop 

to obtain the optimal solutions.  Further, the solution is obtained at the root node of the tree. 

In all cases, the number of seats that are sold on each trip is equal to the demand on that 

trip.  This is to be expected when the capacity that is available on each trip is in excess of 

the demand. An inspection of the solution for each of these cases also reveals that no seats 

are allocated to certain trips on some of the train lines. The number of coaches on each train 

line, total cost of operation, revenue, and profit is listed in Table 5.  The number of coaches 

in Table 5 are listed in the order of the train lines specified in Table 3. 

 

Table 5: Comparison of different realizations of the optimization formulation  

 

 
 

Note that in both Baseline and FixedPrices the demand for each trip is identical. Further, the 

number of seats sold is equal to the demand on the trips on all train lines. Hence, the revenue 

obtained from ticket sales is identical (see Table 5). However, using the freedom to vary the 

number of coaches on the train lines enables the optimizer to find a solution where fewer 

number of coaches are utilised and hence, lower operating costs. As a result, FixedPrices is 

able to attain a profit improvement of 0.07% over the Baseline. FixedCoaches-5%, which 

allows price variation while keeping the number of coaches fixed, is able to obtain a 27.2% 



increase in profit over the Baseline. In FixedCoaches-5% the price for all trips is reduced by 

5% in order to increase the demand. The increased number of tickets contributes to the 

increase in revenues and profits. Finally, Optimized-5% is able to further improve the profit 

margin by reducing the operating costs.  Note that the revenue in the cases of FixedCoaches-

5% and Optimized-5% are identical even though fewer coaches are allocated to the train lines 

in Optimized-5%. The optimal prices identified in FixedCoached-5% and Optimized-5% are 

identical and hence, the demand that manifests are also identical in both cases. This reinforces 

the remark made earlier that the number of seats available in Baseline exceeds the demand.   

 

The number of coaches on certain train lines is set to the lower limit (6') at the optimal 

solution for Optimized-5% (refer Table 5). This seems to suggest that some train lines may 

not be necessary.  To test this hypothesis, we modified the lower bound on the number of 

coaches to 6' = 0 for all * - %. With this changed bound, we identify an optimal solution 

where the number of coaches on the lines are 13,0,0,6,0,0,0.  In other words, 13 coaches are 

assigned to Tokyo-Shin-Osaka Nozomi which runs 56 times per day and 6 coaches are 

assigned to Tokyo-Hakata Nozomi which runs 33 times per day. All other train lines are 

eliminated. Despite the fewer train lines, the revenue is identical to that reported for 

Optimized-5% in Table 5. However, the operating cost is 527,506 which amounts to a 

reduction of 50% from the operating costs for Optimized-5% in Table 5. This result provides 

further evidence that indeed the capacity in Baseline far exceeds the demand. 

 

In the next set of experiments, we study the scalability of our approach when the number of 

price-demand pairs are increased. As noted earlier, our intention is to work directly with the 

price-demand data pairs instead of the estimated logit function. The approach of discretizing 

the prices to obtain the price-demand is advocated in the absence of such raw-data. We 

simulate the case of increased price-demand pairs by increasing the number of price 

discretization points (&�C��). Table 6 present results from optimizing the number of coaches 

and prices for different number of discretization of the price &�C�� - {�,10,�0,�0}.  These 

approaches are respectively called Optimized-5%, Optimized-10%, Optimized-20% and 

Optimized-40%.  

 

Table 6: Effect of number of price discretization on the solution  

 

 
 

Table 6 shows that the profit improves as additional price discretizations are considered. 

Optimized-20% identifies an optimal solution with 50.8% improvement in profit over 

Baseline. The improvement in profit for Optimized-40% is negligible when compared with 

Optimized-20%. The size of ILPs increases as the &�C��  is increased.  Optimized-5% has 

983 variables and 869 constraints while Optimized-40% has 6023 variables and 5909 

constraints. Optimized-40% is solved in 0.2 seconds. Hence, solving ILPs with large 

number of price-demand pairs does not present a computational bottleneck for the proposed 

approach. Figure 1 plots the percentage reduction in the prices for the different trips in the 

solution obtained from Optimized-10%, Optimized-20% and Optimized-40%.  The prices 

are uniformly reduced by 10% for all trips in the solution for Optimized-10%. The solution 



to Optimized-20% exploits the difference in the price-demand elasticities for the trips to 

obtain an improved solution. The price for all trips are reduced by at least 13%.  The trips 

Nagoya-Kyoto (#16 on x-axis of Fig. 1), Nagoya-Shin-Osaka (#17 on x-axis of Fig. 1), 

Nagoya-Shin-Kobe (#18 on x-axis of Fig. 1), Kyoto-Okayama (#24 on x-axis of Fig. 1), 

Shin-Osaka-Okayama (#28 on x-axis of Fig. 1), Shin-Kobe-Okayama (#31 on x-axis of Fig. 

1), Okayama-Hiroshima (#34 on x-axis of Fig. 1) and Okayama-Hakata (#36 on x-axis of 

Fig. 1) all see a price reduction of 20% in the solution to Optimized-20%. In the solution to 

Optimized-40% the price reduction is identical to that for Optimized-20% for most trips.  

The difference occurs for those trips that reduced the price by 20% in the solution to 

Optimized-20%. These trips are further reduced by 1-2% in the solution to Optimized-40%. 

 

 

Figure 1: Plot of percentage reduction in price at the optimal solution for the different trips 

(trips on the x-axis are numbered in the order listed in Table 4)  

 

 
 

5  CONCLUSION 

We propose a data-driven approach for revenue maximization optimization by determining 

jointly the train sizes and prices for a single fare class over multiple legs and train lines. 

The resulting optimization problem belongs to the class of Integer Linear Programs (ILPs). 

The ILP is shown to be computationally tractable through a numerical example. The 

numerical experiments demonstrate that the proposed approach is scalable in the number of 

price-demand pairs and is effective in improving the revenue by selling increased number 

of tickets at lower prices. In contrast to existing approaches for joint price and seat 

allocation that are nonlinear and ignore integral nature of decision variables, our approach 

shows that joint price and seat allocations can be effectively solved using an ILP 

formulation.   
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