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A Reference Governor for Wheel-Slip Prevention in Railway Vehicles
with Pneumatic Brakes

Claus Danielson† and Stefano Di Cairano†

Abstract— This paper applies reference governor (RG) design to the
problem of preventing excessive wheel-slip in railway vehicles with
pneumatic brakes. The RG minimizes the difference between the desired
and implemented deceleration set-point such that the system state
remains inside a constraint admissible positive invariant set where
wheel-slip is maintained below a prescribed level. This problem is
complicated by the non-linear slip-dynamics and hysteresis in the
pneumatic brake which results in a non-convex invariant set. The RG is
evaluated in numerical simulations where we observe that the governor
produces non-linear integral-action that has the beneficial properties
of fast transient response and offset-free tracking while being robust
to delays from hysteresis and uncertainty on the slip dynamics.

I. INTRODUCTION

Regulating wheel-slip is a classic application of non-linear
control theory. Traction control and anti-lock braking are two
quintessential examples from automotive engineering in which the
respective control objectives are to maximize the acceleration or
deceleration according to the current environmental conditions [1],
[2]. In other applications [3], [4], the control objective is to
track a desired acceleration or deceleration set-point. For instance,
automatic stopping of passenger trains requires precise tracking of
the deceleration reference in order to stop the train at a specific
location so that queued passengers can easily board the train.

Railway vehicles have different dynamics than automobiles and
therefore have their own unique control challenges [5]. For instance,
the friction between a steel wheel and rail is lower and has
different characteristics than the friction between a rubber tire
and asphalt [6]. Furthermore, the pneumatic brakes used on many
trains have unique control design challenges due to their slow
dynamics and non-linear hysteresis [7], [8]. To manage wheel-slip,
many railway vehicles with pneumatic brakes employ a wheel-slip
protection (WSP) system; when excessive wheel-slip is detected,
the WSP vents gas from the brake cylinder to rapidly reduce
braking torque, restoring the wheel-slip to the stable-slip region [9].
However, switching between the tracking controller and WSP can
produce a limit cycle that causes excessive jerk, negatively effecting
ride comfort for the passengers and increasing wear on the brake
mechanism. Furthermore, overriding the brake tracking controller
is undesirable for applications where precision stopping is desired
since the slow dynamics and hysteresis mean that the brake requires
a significant amount of time to recover after the WSP vents.

The main contribution of this paper is the application of reference
governor (RG) theory for preventing excessive wheel-slip. The
RG preemptively adjusts the deceleration reference to the brake
controller to prevent excessive wheel-slip rather than reacting to
incipient slip instability as is the case for the WSP system. Since
the RG augments, rather than replaces, the existing controller, the
extensive testing and carefully tuning of the existing controller is not
wasted. Instead, the RG retains the performance of an existing linear
controller, but adds the nonlinear feature of enforcing constraints on
the wheel-slip. Another contribution of this paper is as a tutorial on
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the application of theoretical non-convex RG design to the practical
problem of stopping trains with pneumatic brakes.

The RG chooses the deceleration set-point closest to the desired
reference from a state-dependent set of admissible references that
are guaranteed to prevent excessive wheel-slip. Computing such an
admissible set is challenging due to the non-linear slip dynamics
and brake hysteresis. We model the nonlinearity and uncertainty of
the slip dynamics using a polytopic differential inclusion and the
brake hysteresis is modeled as a piecewise affine (PWA) system [10],
[11]. This allows us to compute a non-convex constraint admissible
positive invariant (PI) set which is represented by a union of convex
polytopes.

This paper makes extensive use of RG [12] and invariant set
theory [10], [13], [14]. In continuous-time, PI sets are called
viable sets and the maximal PI is called the viability kernel [15].
Viability theory studies the existence of initial conditions for which
constraint satisfaction is possible. However, it is non-constructive
and therefore requires a controller to realize constraint enforcement
e.g. a reference governor.

This paper is organized as follows. In Section II we describe
the closed-loop dynamics of a railway vehicle pneumatic brake
controller and formally define the wheel-slip prevention problem.
In Section III we present our RG for wheel-slip prevention and
discuss its efficient implementation. In Section IV we demonstrate
the performance of our RG through numerical simulations.

Notation and Definition: A set O ⊆ X is PI for the autonomous
system x+ =f(x) if f(x) ∈ O for all x ∈ O.

II. WHEEL-SLIP PROTECTION AND PREVENTION

Figure 1 shows a block-diagram of the components that com-
prises a pneumatic brake for a railway vehicle. In this section, we
will describe each of these components and how their dynamics
influence wheel-slip. We will then define the wheel-slip prevent
problem.

∑
Control Brake Train

r(t) e(t) u(t) τ(t) v̇(t)

−

Fig. 1: Block diagram of a pneumatic brake for a railway vehicles,
comprised of a controller, brake system, and the vehicle.

A. Railway Vehicle and Wheel-Slip Dynamics

In this section, we describe the models of the railway vehicle
dyanmics and wheel-slip dynamics.

The pneumatic brake produces a braking-torque τ(t) that reduces
the angular speed ω(t) of the wheels, which in turn reduces the
speed v(t) of the vehicle. The dynamics of the speeds of the railway



vehicle and wheel are modeled by

Mv̇(t) = −f(s) (1a)

Jω̇(t) = rf(s) + τ(t) (1b)

where M is the mass of the vehicle, and J and r are the moment
of inertia and radius of the wheel, respectively. The friction force
f(s) =µ(s)N between the wheel and the rail can be modeled as
the product of the normal force N and the friction coefficient µ(s),
which is a nonlinear function (called the adhesion curve) of the
wheel slip-speed s(t). Here, slip-speed is defined as the difference
between the vehicle speed v(t) and the linear speed rω(t) of the
wheel

s(t)=v(t)−rω(t). (2)

The slip-speed is defined to be positive s(t)=v(t)−rω(t) ≥ 0 when
the linear speed of the wheel is less than the speed of the vehicle
rω(t)≤v(t), as occurs during braking. For railway-vehicles, wheel
slip-speed is typically used rather than of slip-ratio v(t)−rω(t)

v(t)
which

is commonly used in road-vehicle applications [5], [16].
The dynamics of the slip-speed s(t) can be derived from the

vehicle dynamics (1) and the definition of wheel slip-speed (2),
yielding

ṡ(t)=−
(

1
M

+ r2

J

)
f(s) + r

J
τ(t). (3)

where f(s) = µ(s)N is the friction between the wheel and rail,
and µ(s) is the adhesion-curve which describes how the friction
coefficient depends on the slip-speed.

Many different adhesion-curves µ(s) have been suggested in
the literature [5], [17], [18]. At low slip-speeds s(t) ≤ s, all
these adhesion-curves are monotonic. Thus, the slip-dynamics (2)
are (bound-input/bounded-output) stable i.e. the slip will increase
ṡ(t) > 0 until the friction force f(s) = Mr

J+Mr2
τ balances the

applied torque τ > 0. In addition, the peak of the adhesion-curve
µ(s) typically occurs in the low slip-speed region which means
that maintaining low slip-speed yields faster stopping. Thus, it is
desirable to keep the wheel-slip s(t) in the low slip-speed region
s(t)≤s, often called the stable-slip or adhesion region.

On the other hand, in the high slip-speed region s(t) > s the
adhesion-curves may not be monotonic. Thus, if the braking torque
τ > J+Mr2

Mr
f is too large for the maximum friction force f=µN to

balance, then the slip-speed s(t) will increase indefinitely ṡ(t)>0.
In practice, this means the wheel will be locked ω(t) = 0 causing
the slip-speed to reach its maximum value s(t)=v(t), reducing the
stopping force f(s) applied to the vehicle (1). Thus, it is undesirable
for the wheel-slip s(t) to enter the high slip-speed region s(t)>s,
often called the unstable-slip region.

B. Pneumatic Brake Dynamics

In this section, we describe the pneumatic brake system and
model its dynamics. Figure 2 shows a diagram of a pneumatic
block-brake, but similar dynamics also apply to disk- and drum-
brakes. Braking torque τ(t) is produced when the brake-block
comes into contact with the wheel. The contact force is controlled
by the pressure p(t) in the brake-cylinder.

The brake-cylinder is filled from a reservoir, kept at a fixed
pressure p. The pressure p(t) in the brake-cylinder is regulated by
an integrated controller that modulates the valve opening to achieve
a specified pressure. The specified pressure u(t) is determined by
the brake controller described in the next section. The response of

Reservior

Brake-Cylinder

Wheel
Block

Valve

Fig. 2: Diagram of pneumatic brake system.

the actual brake-cylinder pressure p(t) to the specified u(t) pressure
is modeled by a linear system

ẋp(t) = Apxp(t) +Bpu(t) (4a)

p(t) = Cpxp(t) +Dpu(t) (4b)

where the dynamics (4) have unit dc-gain Cp(I−Ap)−1Bp+Dp=1
since the cylinder pressure p(t) asymptotically tracks the reference
pressure u(t). We assume that the pressure p(t) respond monoton-
ically to the commanded pressure set-point u(t).

The brake-cylinder pressure cannot be lower than ambient pres-
sure p = 0 nor greater than the reservoir pressure. Similarly, the
control input u(t) cannot command a pressure outside the range of
admissible pressures p. Thus,

0≤p(t)≤p (5a)

0≤u(t)≤p. (5b)

Next, we consider the relationship between the brake-cylinder
pressure and the braking-torque [7]. Nominally, increasing ṗ(t)>0
the cylinder pressure p(t) increases τ̇(t)>0 the brake torque τ(t)
while decreasing the pressure ṗ(t)< 0, decreases torque τ̇(t)< 0.
However, when the brake-cylinder switches from filling ṗ(t) > 0
to venting ṗ(t) < 0, the brake torque initially does not respond
τ̇(t)=0. Likewise, τ̇(t)=0 when switching from venting ṗ(t)<0
to filling ṗ(t)> 0 as shown in Figure 3, which depicts the brake
torque τ as a function of cylinder pressure p. The brake torque
only increases τ̇(t)>0 when the cylinder pressure p(t) lies on the
squeezing surface τ(t)=αp(t)+β. Likewise, the brake torque only
decreases τ̇(t) < 0 along the releasing surface τ(t) = αp(t)+β.
Otherwise, the brake torque is constant τ̇(t)=0.

τ≤αp+ β

τ≥αp+ β

Fig. 3: Nonlinear relationship between brake-cylinder pressure p(t)
and the braking-torque τ(t)

The nonlinear behavior of the brake shown in Figure 3 is modeled
by the following hysteresis dynamics [7]

τ̇(t)=


αṗ(t) if τ(t)=αp(t) + β, ṗ(t) ≥ 0

αṗ(t) if τ(t)=αp(t) + β, ṗ(t)≤0

0 otherwise
(6)



where the gains α and α describe how changes in the brake-cylinder
pressure ṗ(t) affect the change in braking torque τ̇(t) when the
braking-cylinder is being filed ṗ(t) ≥ 0 and emptied ṗ(t) ≤ 0,
respectively. The torque remains constant τ̇(t) = 0 as the brake-
cylinder pressure moves between the squeezing τ(t) = αp(t)+β
and releasing τ(t)=αp(t)+β regions.

C. Brake Controller and Wheel-Slip Protection

The brake controller has two modes; reference tracking and slip
protection. In the tracking mode, the control objective is to follow
a deceleration command provided by an operator or higher-level
controller. This is accomplished using a linear controller described
by a linear system

ẋu(t) = Auxu(t) +Bue(t) (7a)

u(t) = Cuxu(t) +Due(t) (7b)

where the tracking error e(t) = v̇(t) − r(t) is the difference
between the actual v̇(t) and desired r(t) vehicle deceleration and
the output of the controller (7) is the cylinder pressure set-point
u(t). The generic linear controller (7) is dynamic since it often
includes integral-action for offset-free steady-state tracking e.g.
a proportional-integral controller is typically used. Alternatively,
if the controller is observer-based then (7) includes the observer
dynamics.

If the slip-speed s(t) enters the unstable-slip region s(t) > s̄,
then the controller enters the slip protection mode where the control
objective is to return the slip-speed to the adhesion region. This is
accomplished by venting the brake-cylinder pressure p(t) which
eventually reduces braking-torque τ(t) allowing the slip-speed s(t)
to reenter the adhesion region s(t)≤ s̄. This is modeled by setting
the desired brake-cylinder pressure to zero i.e. u(t)=0.

D. Problem Statement: Wheel-Slip Prevention

The conflicting objectives of the WSP system and tracking
controller can result in a limit cycle where the brake-cylinder
pressure alternatingly is increased to produce the desired braking
torque and vented to halt excessive slip. This limit cycle causes
vibrations, reducing passenger comfort and increase wear on the
brake mechanism. Thus, this paper proposes a wheel-slip prevention
system which preemptively modifies the deceleration set-point to
prevent the system from entering the unstable-slip region. The
wheel-slip prevention problem is defined formally below.

Problem 1 (Wheel-Slip Prevention): Adjust the deceleration ref-
erence r(t) such that the closed-loop brake system shown in
Figure 1 satisfies the output constraints

Y=

{[
u
p
τ
s

]
:
0≤u, p≤p

s≤s

}
. (8)

III. REFERENCE GOVERNOR FOR SLIP PREVENTION

In this section, we describe the design of a RG for solving
Problem 1. Figure 4 shows a block diagram that illustrates how the
RG interacts with the other elements of the closed-loop pneumatic
brake system. The RG uses measurements or estimates of the
controller state xu(tk), pressure state xp(tk), brake torque τ(tk)
and slip-speed s(tk) at time tk = k∆t to adjust the deceleration
reference r(tk) to ensure that the constraints (8) are satisfied. In
particular, the obejctive of the RG prevents the slip-speed s(tk)
from leaving the stable-slip region s(tk)≤ s̄.

∑
Control Brake Train

v̇(t)

RG

r(t)

Fig. 4: Block diagram showing how the RG connects with the
closed-loop brake system shown in Figure 1.

The RG takes the form of the a state-dependent non-convex
optimization problem

r(tk)= arg min
r

∣∣r−r0(tk)
∣∣ (9a)

s.t. r ∈ R
(
x(tk)

)
(9b)

which minimizes (9a) the difference |r−r0(tk)| between the re-
quested r0(tk) and implemented r(tk)=r? deceleration set-points
subject to the implemented reference r begin contained (9b) in a
state-dependent set of admissible references R(x). The admissible
set R(x) must be designed so that, not only are the constraints (8)
satisfied at the current time tk = k∆t, but also that it remains
possible to satisfy them for all future times t>k∆t.

In the next section, Section III-A, we will describe how to model
the nonlinear dynamics (3)-(4) and (6)-(7) of the brake system
so that we can compute the state-dependent set of admissible
references R(x) in Section III-B.

A. PWA Model of the Closed-Loop Brake System

In this section, we transform the nonlinear physics-based models
from Section II into a hybrid model, specifically a discrete-time
PWA system [10], [19]. PWA systems are a relatively simple class
of hybrid systems, for which there are mature numerical tools [20]
that can help us compute a PI set O in the next section.

The cylinder pressure dynamics (4) and tracking controller dy-
namics (7) are already modeled as linear systems. Thus, we only
need to convert (4) and (7) to discrete-time since linear systems are
a special-case of PWA models. Furthermore, the constraints (5) on
the cylinder pressure and control input are already polyhedral.

The brake-hysteresis (6) is modeled in discrete-time by

τ =


αp+β if τ−≤αp+β, u ≥ p

αp+β if τ− ≥ αp+β, u≤p
τ− otherwise

(10a)

where p=p(tk) and τ−=τ(tk−1) are the current cylinder-pressure
and previous brake-torque, respectively, at the k-th sample-time
tk = k∆t. Note that (10a) only approximates the continuous-time
hysteresis (6) since a mode (squeeze, release, hold) transition will
almost surely occur between sample instances

[
k∆t, (k+ 1)∆t

]
rather than at an exact sample instance k∆t. Thus, the torque
τ(tk) should be the sum of torques for each mode weighted by
the faction of time spend in that mode. However, since the sample-
time rate is fast ∆t relative to the system dynamics and torque
varies continuously with pressure, the approximation (10a) is valid.

The constraint from (6) requiring that the brake-cylinder is
not venting ṗ(t) ≥ 0 in the squeeze region was replaced with
the constraint u(tk) ≥ p(tk) in (10a). These constraints are



equivalent since we assumed that the pressure dynamics (4) respond
monotonically to pressure commands u(t). Using the constraint
u(tk) ≥ p(tk) avoids the noise issues associated with numerically
differentiating the pressure ṗ(t) ≈ p(tk)−p(tk−1)

∆t
. In addition, we do

not need an extra state pk−1 to keep track of the previously sampled
pressure. Similarly, the constraint ṗ(t)≤ 0 from (6) requiring that
the brake-cylinder is not filled in the release region was replaced
with the equivalent constraint u(tk)≤p(tk).

Next, we address the nonlinearity and uncertainty in the slip
dynamics (3) due to the nonlinear friction f(s) = µ(s)N . It is
unknown which, if any, of the nonlinear adhesion-curves µ(s)
suggested in the literature [5], [17], [18] describes physical reality.
Furthermore, the normal force N is uncertain due to aerodynamic
effects, the inclination of the track, and variations in the mass due
to the amount of cargo or number of passengers on the train.

µs

µs

Fig. 5: Cone covering possible adhesion-curves µ(s) inside the
stable-slip region s≤s

Our approach for dealing with this nonlinearity and uncertainty
is motivated by Figure 5. Instead of considering an individual
adhesion-curve, we consider a set that covers all the possible
adhesion-curves µ(s) in the stable-slip region. The extreme linear
adhesion-curves µs and µs bound the cone of possible adhesion-
curves. Thus, the friction force f(s) = µ(s)N are bounded by
the extreme linear friction-curves fs and fs where f = µN and
f=µN , and N and N are bounds on the normal force. The slip-
dynamics (3) can then be bounded by the differential inclusion

ṡ(t)∈
{
−J+Mr2

MJ
f(s(t)) + r

J
τ(t) :fs(t)≤f(s(t))≤fs(t)

}
.

In discrete-time, the above differential inclusion can be modeled by
the following scalar linear parametric differential inclusion

s(tk+1)=as(ξ)s(tk) + bs(ξ)τ(tk) (10b)

where s(tk) and τ(tk) are the slip s(t) and brake-torque τ(t)
sampled at the k-th sample-time tk = k∆t. The uncertain model
parameters as(ξ) and bs(ξ) are given by the convex combinations
as(ξ)=ξas+(1−ξ)as and bs(ξ)=ξbs+(1−ξ)bs where (as, as)
and (bs, bs) are bounds on the parameters as and bs respectively.
The unknown time-varying parameter ξ(t) ∈ [0, 1] accounts for
both uncertainty and nonlinearity of the slip dynamics (3) due to
the adhesion-curve. Since (10b) is a first-order system, only a single
parameter ξ ∈ [0, 1] is needed to cover the model uncertainty.
Replacing the nonlinear slip-dynamics (3) with the uncertain linear
dynamics (10b) does not adversely affect stability since the common
Lyapunov function V (s) = s2 is decreasing since |as(ξ)| < 1 for
all ξ ∈ [0, 1] when the slip-speed is low s≤s.

Piecewise Affine Dynamics: The discrete-time dynamics (10) can
be combined into a single PWA system with polyhedral constraints

and parametric uncertainty

x(tk+1)=


A1x(tk)+B1r(tk)+b1 if y(tk) ∈ Y1

A2x(tk)+B2r(tk)+b2 if y(tk) ∈ Y2

A3x(tk)+B3r(tk)+b3 if y(tk) ∈ Y3

(11a)

y(tk) = Cx(tk)+Dr(tk)+d (11b)

where the state x(tk) = [xu(tk), xp(tk), τ(tk−1), s(tk)]ᵀ is com-
prised of the current states of the controller xu(tk) and cylin-
der pressure xp(tk), the previous brake torque τ(tk−1), and
the current wheel-slip s(tk). The constrained outputs y(tk) =
[u(tk), p(tk), τ(tk−1), s(tk)]ᵀ are the current control input u(tk),
current brake-cylinder pressure p(tk), the previous brake torque
τ(tk−1), and the current wheel-slip s(tk). The three modes of the
hybrid system (11) are the squeeze mode i = 1, release mode i = 2,
and hold mode i = 3.

The regions Yi ⊂ R4 that determine where each mode (squeeze,
release, hold) is active are subsets of the output-space R4 where
the output of the closed-loop system (Figure 1) includes the brake
controller input u(tk). The projections of these regions Yi onto
the pressure-torque-input space [p(tk), τ(tk−1), u(tk)] are shown
in Figure 6. The slip s(tk) was left out of Figure 6 since the regions
Yi only have simple bounds on the slip s(tk) and do not have any
constraints that couple slip with the other states or the input. In
other words, the sets Yi are prismatic in the slip s(tk) direction.

Fig. 6: Squeeze Y1, release Y2, and hold Y3 regions for the hybrid
dynamics (11).

The pressure-torque relationship for the squeeze region Y1 ⊆ Y
is the same as shown in Figure 3. The squeeze region Y1 has an
additional constraint p(tk)≤u(tk) requiring that the pressure p(tk)
is not being vented. Likewise, the release region Y2 has a constraint
that the brake-cylinder p(tk) ≥ u(tk) is not being filled. In (6) the
hold region was defined as states not in the squeeze Y1 or release
Y2 regions. From 6 it is clear that the resulting region Y\(Y1∪Y2)
would be non-convex. However, since in practice the state will only
belong to the boundaries of the squeeze Y1 and release Y2 regions,
the hold region Y3 was defined as the entire region between the
squeeze and release surfaces i.e. Y3 =

{
x : αp+ β≤τ≤αp+ β

}
.

B. Set of Admissible References

In this section, we show how to compute the set of admissible
referencesR(x) used by the RG (9) to ensure that the constraints (8)
are satisfied.

Following the design [12] of RGs, we first augment the closed-
loop dynamics (11) with a constant r(tk+1)=r(tk) reference

x̂+ = f̂ξ
(
x̂
)

=


Â1x̂+ b̂1 if x̂ ∈ X̂1

Â2x̂+ b̂2 if x̂ ∈ X̂2

Â3x̂+ b̂3 if x̂ ∈ X̂3

(12)

where the augmented state x̂(tk) = [x(tk), r(tk)]ᵀ ∈ Rnx+1

includes the closed-loop system (11) state x(tk) ∈ Rnx and the
reference r(tk) ∈ R1. The parameters are Âi(ξ)=

[
Ai(ξ) Bi

0 I

]
, b̂i=



[
bi
0

]
, and X̂i={[ xr ] : [C D ] [ xr ] + d ∈ Yi} for i=1, 2, 3. We then

compute a constraint admissible PI set using the approach from [10]
of iteratively backward propagating the system constraints (8)
through the system dynamics (12)

Ω0 = X̂ (13a)

Ωk+1 =
⋂

ξ∈{0,1}
f̂−1
ξ (Ωk) ∩ X̂ (13b)

where f̂−1
ξ is the pre-image of the augmented dynamics (12) for

ξ= 0, 1 and X̂ =
{
x̂ : Cx+Dr+d∈Y

}
is the set of augmented

states x̂ corresponding to outputs y that satisfy the constraints (8).
The maximal constraint admissible PI set O= limk→∞ Ωk is the
limit of the iteration (13).

The state-dependent set of admissible references R(x) is the set
of constant references r(tk+1) = r(tk) such that the closed-loop
system (11) satisfies constraints (8) for all future times i.e.

R(x)=
{
r : [ xr ] ∈ O

}
. (14)

The iteration (13) is complicated by the fact that the augmented
brake dynamics (12) are nonlinear. Fortunately, the PWA dynamics
and polyhedral constraints of the hybrid model (12) mean that
the non-convex backward-reachable sets Ωk can be expressed as
a union of convex polyhedrons [21]

Ωk=
⋃

j
Ωkj (15)

where Ωkj =
{
x̂ : Hj x̂ ≤ hj

}
is the j-th convex polyhedron

defining the union Ωk. The backward propagation (13) can thus be
implemented by computing the pre-image of each component Ωkj
of the set Ωk under each mode i = 1, 2, 3 of the dynamics (12).
The new component sets Ωjk+1 of Ωk+1 are polytopes given by
Ωj
′

k+1 =
(
Â−1
i Ωkj−Â−1

i bi
)
∩ Xi for j = 1, . . . , J and i = 1, 2, 3

where Ωkj =
{
x̂ : Hj x̂≤hj

}
and X̂i=

{
x̂ : Gix̂≤gi

}
.

IV. EVALUATION OF THE REFERENCE GOVERNOR

In this section, we test our RG for wheel-slip prevention through
numerical simulation. For this test case, the pressure dynamics (4)
are modeled by a simple first-order system ṗ(t)=− 1

Tp

(
p(t)−u(t)

)
with a Tp = 50 millisecond delay. The controller (7) is a simple
proportional-integral controller

u(t)=KP e(t) +KI

∫ t

0

e(σ)dσ (16)

where KP and KI are the proportional and integral gains respec-
tively, and the tracking error e(t) = r(t)− v̇(t) is the difference
between the desired r(t) and actual v̇(t) deceleration of the
vehicle. The actual deceleration v̇(t) is directly measured using
an accelerometer.

Figure 7 shows the maximal PI set O ⊂ R5 for the closed-loop
brake system. Figure 7a shows the PI set O sliced along in the
squeeze plane τ=αp+β and equilibrium brake pressure plane u=p.
Likewise, Figure 7b shows a slice of the PI set O in the subspace
τ =αp+β and u= p. The wheel-slip prevention RG (9) uses the
PI set O to determine the set of admissible constant deceleration
set-points (14). The RG (9) adjusts the deceleration set-point r(t)
to ensure that the closed-loop system satisfies constraints (8). In
particular, the RG ensures that the slip-speed s(t) remains inside the
adhesion-region s(t)≤ s̄ = 0.1. Thus, the reference r(t) is severely
limited in the squeeze mode (Figure 7a) when the slip s� 0 and
torque τ � 0 are high. The reference r(t) is less restricted in the
release mode (Figure 7b) since the brake can quickly reduce torque
τ to prevent excessive slip s>0.1.

(a) (b)

Fig. 7: PI set O for (12) with r(tk+1)=r(tk). (a) Slice of O along
squeeze plane. (b) Slice of O along release plane.

A. Prevention of Wheel-Slip

In this section, we show that the wheel-slip prevention RG

prevents the controller from entering the WSP mode, described in
Section II-C.

We consider a scenario in which the peak wheel-rail friction
fmax = 0.2Mg is too low to achieve the desired deceleration set-
point r0(t) = 0.25g. Without the RG, the wheel-slip s(t) exceeds
the stable-slip threshold s(t)> 0.1 causing the brake controller to
enter the WSP mode which produces the undesirable oscillatory
behavior shown in Figure 8a. In WSP mode, the brake-cylinder
pressure p(t) is quickly vented to reduce braking torque τ(t)
and restore the slip s(t) to the stable-slip region s(t) ≤ 0.1.
Unfortunately, this severely disrupts the tracking controller causing
the deceleration tracking error r0(t)− v̇(t) to increase. Even after
the WSP mode is disengaged and the tracking controller is re-
engaged, the undesirable behavior persists; the tracking controller
requires approximately 100 milliseconds to overcome the brake
hysteresis and then another approximately 400 milliseconds to
achieve the previous deceleration peak, at which point the wheel-
slip s(t) again exceeds the threshold s(t)>0.1 and the WSP mode
is again engaged. The resulting limit cycle has a relatively large
average deceleration tracking error limT→∞

1
T

∫ T
0
r0(t)−v̇(t)dt ≈

0.0718g.
Figure 8b shows that the RG prevents the slip-speed from entering

the unstable-slip region, eliminating the previous undesirable behav-
ior shown Figure 8a. As the slip s(t) approaches the boundary of
the stable-slip region, the RG lowers the infeasible desired reference
r0(t)=0.25g to an achievable reference r(t) ≈ 0.2g. This results
in a non-zero steady-state tracking error limt→∞ r

0(t)− v̇(t) ≈
0.0682g which is lower than the average tracking error that results
from not using the RG. It is important to note that a small improve-
ment in deceleration tracking can lead to a large improvement in
stopping accuracy since position error is proportional to the double-
integral of deceleration error. Over a 30 seconds braking maneuver,
the RG improves the stopping accuracy by 1.62 meters, which is
very large compared with the desire stopping accuracy of O(10)
centimeters [4]. Most importantly, the smoother deceleration profile
(Figure 8b) produced by the RG causes less jerk than the WSP

(Figure 8a), resulting in a more comfortable ride for the passengers
and reduced wear on the braking mechanism.

B. Aggressive Controller

The aggressiveness of the proportional-integral controller (16) is
fundamentally limited by the brake hysteresis and adhesion-curve
nonlinearity. Aggressive integral-action can cause overshoot and
windup. Both of these issues are aggravated by plant nonlinearity.



(a) Simulations of the brake-system without the RG which produces unde-
sirable cycling due to WSP. The shaded regions show times when the WSP
system was engaged.

(b) Simulations of the brake-system with the RG showing the elimination of
cycling. The shaded regions show state-dependent bounds on the reference
calculated by RG.

Fig. 8: Simulation with an infeasible deceleration set-point.

Overshoot can cause the slip-speed to enter the unstable-slip region
even when the steady-state deceleration set-point is feasible. The
delay caused by the hysteresis shown in Figure 3 can cause the
integrator to windup which can lead to oscillatory behavior or even
instability. In terms of classical control, the hysteresis delay means
that the closed-loop system (Figure 1) must have a large phase
margin which limits the aggressiveness of the tracking controller.
In this section, we show that the wheel-slip prevention RG mitigates
both of these issues allowing the use of a more aggressive controller.
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(a) Simulations of the brake-system without the RG which resultsing in
overshooting and cycling caused by aggressive integral-action.

(b) Simulations of the brake-system with the RG showing inherent anti-windup

Fig. 9: Simulation with an aggressive controller.

Figure 9a shows the closed-loop response of the braking system
to a feasible deceleration command. The more aggressive controller
settles approximately three times faster than the previous controller

shown in Figure 8. In fact, the oscillations produced by the integral-
action prevent even faster convergence since each oscillation needs
to pass through the hold zone in Figure 3. In addition, the closed-
loop response in Figure 9a has a small overshoot which can be
a problem near the boundary of the stable-slip region. Figure 9b
shows that the RG mitigates both the issues.

Figure 9b shows the closed-loop response of the braking system
to a deceleration command on the boundary of the stable-slip
region. As the deceleration v̇(t) approaches the set-point r0(t),
the RG decreases the reference r(t). This unwinds the integrator
in the controller producing two beneficial effects. First, the slip-
speed remains in the stable region. Second, the oscillations are
greatly attenuated allowing the vehicle deceleration to converge
more quickly to the desired set-point. Essentially, the RG produces
non-linear integral-action that has the beneficial properties of fast
transient response and offset-free tracking without the disadvantage
of poor robustness to model uncertainty and delays, normally
associated with aggressive integral-action.
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[19] P. Biswas, P. Grieder, J. Löfberg, and M. Morari, “A survey on stability

analysis of discrete-time piecewise affine systems,” in IFAC World
Congress, 2005.

[20] M. Herceg, M. Kvasnica, C. Jones, and M. Morari, “Multi-Parametric
Toolbox 3.0,” in European Control Conference, 2013.

[21] A. Bemporad, K. Fukuda, and F. D. Torrisi, “Convexity recognition
of the union of polyhedra,” Computational Geometry, 2000.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2020-087.pdf
	page 2
	page 3
	page 4
	page 5
	page 6


