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Abstract
This paper is dedicated to the problem of stable model reduction for partial differential equa-
tions (PDEs). We propose to use proper orthogonal decomposition (POD) method to project
the PDE model into a lower dimensional given by an ordinary differential equation (ODE)
model. We then stabilize this model, following the closure model approach, by proposing
to use reinforcement learning (RL) to learn an optimal closure model term. We analyze the
stability of the proposed RL closure model and show its performance on the coupled Burgers
equation.
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Abstract: This paper is dedicated to the problem of stable model reduction for partial
differential equations (PDEs). We propose to use proper orthogonal decomposition (POD)
method to project the PDE model into a lower dimensional given by an ordinary differential
equation (ODE) model. We then stabilize this model, following the closure model approach,
by proposing to use reinforcement learning (RL) to learn an optimal closure model term. We
analyze the stability of the proposed RL closure model and show its performance on the coupled
Burgers equation.

1. INTRODUCTION

Partial differential equations (PDEs) are important math-
ematical models, which are used to model complex dy-
namic systems in applied sciences. However, PDEs are
infinite dimensional systems, which makes them hard to
solve in closed-form, and computationally demanding to
solve numerically. For instance, when using finite element
method (FEM) discretization, one may end-up with a very
large discretization space, which implies large computation
time. Because of this complexity, it is often hard to use
PDEs to analyze, predict or control these systems in real-
time. Instead, one approach that is often used in real
applications, is to first reduce the PDE model to an ordi-
nary differential equation (ODE) model, which has a finite
dimension and then use this ODE for system identification,
estimation and control. This step of converting a PDE to
a reduced order model (ROM) ODE, while maintaining a
small error between the solutions of both models, is known
as stable model reduction.

We address the stable model reduction problem by fol-
lowing the classical closure modeling approach, e.g., [9].
Indeed, closure models are added to the ROM equations
to ensure the stability and accuracy of solutions. Closure
models have classically been introduced based on physi-
cal intuition. Thus, their applicability is limited to those
applications where significant research in closure models
have been performed. In this work, we propose the use
of reinforcement learning (RL) control to constructively
design a new stabilizing closure model that is robust to
model uncertainties. There are several closure models mo-
tivated from physical modeling of fluids, e.g., constant
eddy viscosity model, or time and space varying terms,
such as Smagorinsky or dynamic subgrid-scale models e.g.,

[9, 8, 4, 6, 3, 2]. However, there are some conceptual
differences with the closure model that we are proposing
here. First of all, we propose a closure model that explicitly
accounts for model uncertainties in the system. Indeed, we
formulate the problem of ROM stabilization at the design
step, by considering uncertainties in the ROM model, then
using tools borrowed from RL control, we design a closure
model which stabilizes the ROM. To our knowledge,this is
the first class of closure model that is designed based on
RL control.

Furthermore, in this work we propose to learn some coef-
ficients of the closure model using a data-driven optimiza-
tion algorithm. This learning can be used in simulations to
find the best closure model by tracking the true behavior of
the system. However, an important observation is that this
learning algorithm can be incorporated in real-time simula-
tions, by feeding realtime measurements from the system
into the closure model, and adapting its coefficients. In
this way, we always ensure that the ROM is functioning
at its optimal performance, regardless of changes or drifts
that the system may experience over time. In other words,
most closure models typically use static parameters, either
chosen by intuition and experience, or are optimally tuned
off-line. However, they are unable to auto-tune themselves
on-line while the model is being evolved. In this work,
the obtained closure model has free parameters that are
auto-tuned with a data-driven extremum seeking (ES)
algorithm to optimally match the predictions (or measure-
ments) from the PDE model. The idea of using extremum-
seeking to auto-tune closure models has been introduced
by the authors in [7]. However, the difference with this
work lies in the new RL-based stabilizing closure model
design, which is then tuned using ES to optimize tracking
perfromance.



This paper is organized as follows: Some basic notation
and definitions are recalled first. The main idea of this
work, namely, the RL-based closure model estimation is
then introduced in Section 2, and its auto-tuning using
extremum-seeking algorithms is explained in Section 3,
finally the performance of the proposed concept of RL-
based closure models is demonstrated using the 1D coupled
Burgers equation in Section 4.

For a vector q ∈ Rn, the transpose is denoted by q∗.
The Euclidean vector norm for q ∈ Rn is denoted by
‖ · ‖ so that ‖q‖ =

√
q∗q. Ir×r denotes the r × r identity

matrix (to simplify notations, the dimension might be
omitted when clear from the context). We shall abbreviate

the time derivative by ḟ(t, x) = ∂
∂tf(t, x), and consider

the following Hilbert spaces: H = L2(Ω), Ω = (0, 1),
V = H1(Ω) ⊂ (H) for velocity and T = H1(Ω) ⊂ H for
temperature. We define the inner product 〈·, ·〉H and the
associated norm ‖ · ‖H on H as 〈f, g〉H =

∫
Ω
f(x)g(x)dx,

for f, g ∈ H, and ‖f‖2H =
∫

Ω
|f(x)|2dx. A function f(t, x)

is in L2([0, tf ];H) if for each 0 ≤ t ≤ tf , f(t, ·) ∈ H,

and
∫ tf

0
‖f(t, ·)‖2Hdt < ∞. To generalize the discussion

below, we consider the abstract Hilbert space Z, and later
specialize to Z = V ⊕ T when considering our coupled
Burgers equation example.

2. RL-BASED MODEL REDUCTION OF PDES

2.1 Reduced-order PDE Approximation

We consider a stable dynamical system modeled by a
nonlinear partial differential equation of the form

ż(t) = F(z(t)), z(0) ∈ Z, (1)

where Z is an infinite-dimensional Hilbert space. Solutions
to this PDE can be approximated in a finite dimensional
subspace Zn ⊂ Z, where Zn is an n-dimensional fi-
nite element subspace of Z, through expensive numerical
discretization, which can be impractical for multi-query
settings such as analysis and design, and even more so
for real-time applications such as prediction and control.
In many systems, including fluid flows, solutions of the
PDE may be well-approximated using only a few suitable
(optimal) basis functions [1].

This gives rise to reduced-order modeling through Galerkin
projection, which can be broken down into three main
steps: One first discretizes the PDE using a finite,
but large, number of basis functions, such as piecewise
quadratic (for finite element methods), higher-order poly-
nomials (spectral methods), or splines. In this paper we
use the well-established finite element method (FEM).
We denote the approximation of the PDE solution by
zn(t, ·) ∈ Zn.

Secondly, one determines a small set of spatial basis vec-
tors φi(·) ∈ Zn, i = 1, . . . , r, r � n, that approximates the
discretized PDE solution with respect to a pre-specified
criterion, i.e.,

Pnz(t, x) ≈ Φq(t) =

r∑
i=1

qi(t)φi(x). (2)

Here, Pn is the projection of z(t, ·) onto Zn, and Φ is
a matrix containing the basis vectors φi(·) as column
vectors. Note that the dimension n, coming from the
high-fidelity discretization of the PDE described above,
is generally very large, in contrast to the dimension r of
the optimal basis set. Thirdly, a Galerkin projection yields
a ROM for the coefficient functions q(·) of the form

q̇(t) = F (q(t)), q(0) ∈ Rr. (3)

The function F : Rr → Rr is obtained using the weak
form of the original PDE and Galerkin projection.

Here we use r POD basis functions [1] to approximate the
solution of the PDE, e.g., (1) as follows

zpodn (t, ·) =

r∑
i=1

qi(t)φi(·) ∈ Zn, (4)

where φi is the ith POD basis function, and qi, i = 1, ..., r
are the POD projection coefficients. To find the coefficients
qi(t), the (weak form of the) model (1) is projected onto the
rth-order POD subspace Zr ⊆ Zn ⊂ Z using a Galerkin
projection in H. In particular, both sides of equation (1)
are multiplied by the POD basis functions, where z(t)
is replaced by zpodn (t) ∈ Zn, and then both sides are
integrated over Ω. Using the orthonormality of the POD
basis leads to an ODE of the form (3). A projection of the
initial condition for z(0) can be used to determine q(0).
Note that the Galerkin projection preserves the structure
of the nonlinearities of the original PDE.

2.2 Closure Models for ROM Stabilization

We continue to present the problem of stable model re-
duction in its general form, without specifying a partic-
ular type of PDE. However, we now assume an explicit
dependence of the general PDE (1) on a single physical
parameter µ,

ż(t) = F(z(t), µ), z(0) = z0 ∈ Z, µ ∈ R, (5)

as well as

Assumption 1. The solutions of the original PDE model
(5) are assumed to be in L2([0,∞);Z), ∀µ ∈ R.

We further assume that the parameter µ is critical for
the stability and accuracy of the model, i.e., changing
the parameter can either make the model unstable, or
lead to inaccurate predictions. Since we are interested in
fluid dynamics problems, we can consider µ as a viscosity
coefficient. The corresponding reduced-order POD model
takes the form (3) and (4):

q̇(t) = F (q(t), µ). (6)

The issue with this Galerkin POD-ROM (denoted POD-
ROM-G) is that the norm of q, and hence zpodn , might
become unbounded at a finite time, even if the solution of
(5) is bounded.

The main idea behind the closure modeling approach is
to introduce a penalty term H(·) which is added to the
original POD-ROM-G, as follows

q̇(t) = F (q(t), µ) +H(q(t)). (7)

The term H(·) is chosen depending on the structure of
F (·, ·) to stabilize the solutions of (7).

2.3 Main Result: RL-based Closure Model

Here we introduce the main result of this work, namely
using RL to compute a closure term H that is robust to
model uncertainties. We first rewrite the right-hand side
of the ROM model (6) to isolate the linear viscous term
as follows,

F (q(t), µ) = F̃ (q(t)) + µ Dq(t), (8)



whereD ∈ Rr×r represents a constant, symmetric negative

definite matrix, and the function F̃ (·) represents the rest
of the ROM model, i.e., the part without damping 1 .

To follow the framework of [10], we discretize out model
(7), (8), for example by using a simple first order Euler
approximation, as follows

q(k + 1) = (Ir×r + htµ D)q(k) + htF̃ (q(k)) + htH(q(k)),
(9)

where k = 0, 1, ..., and ht > 0 represents the integration
time-step.

Next, we assume that F̃ (·) satisfies

Assumption 2. (Lipschitz continuity of F̃ ). The nonlinear-

ity F̃ is Lipschitz continuous in the domain Dq ∈ Rr. That
is,

‖F̃ (q1)− F̃ (q2)‖ ≤ L∗φ‖q1 − q2‖ (10)

for any q1, q2 ∈ Dq. Also, F̃ (0) = 0.
Remark 1. We underline here that we do not need the
exact knowledge of the nonlinear term F̃ to design our
RL-based closure model. Indeed, we only need to know
an estimate of its Lipschitz constant L∗φ. This estimate
can be obtained for instance by using the data-driven
algorithm proposed in [10]. In that sense, the proposed
RL-based closure model stabilization is robust w.r.t. the
uncertainties of the nonlinear term F̃ .

The main idea that we are proposing here is to consider
the closure model function H(q(t)) as a virtual controller,
which we then propose to compute using RL control,
more specifically, we will use adaptive dynamic programing
(ADP) to learn the best closure model.

Let us first recall the basic formulation of ADP. Given
a control policy u(q), we define an infinite horizon cost
functional given an initial state q0 ∈ Rr as

J (q(0), u) =

∞∑
t=0

γt U(q(k), u(q(k))), (11)

where, γ ∈ (0, 1] in (11) is a forgetting/discount factor,
U is a function with non-negative range, U(0, 0) = 0, and
{q(k)} denotes the sequence of states generated by the
closed loop system

q(k + 1) = Aq(k) +Bu(q(k)) + φ (Cqq(k)) , (12)
where, in our case, we define the terms to be

A = Ir×r + htµD, B = ht Ir×r,

Cq = Ir×r, φ = htF̃ (q(t)), u(q) = H(q).
(13)

Before formally stating our objective, we need to introduce
the following definition.
Definition 1. A continuous control policy u(·) : Rr → Rr
is admissible on X ⊂ Rr if it stabilizes the closed loop
system (12) on X and J (q(0), u) is finite for any q(0) ∈ X.

We want to design an optimal control policy that achieves
the optimal cost

J∞(q(0)) = inf
u∈U
J
(
q(0), u

)
, (14)

for any q(0) ∈ Rr. Here, U denotes the set of all admissible
control policies. In other words, we wish to compute an
optimal control policy

u∞ = arg inf
u∈U

J
(
q(0), u

)
. (15)

1 We can extend the results to the case with nonlinear damping
terms in F̃ , as long as, we can still impose similar (uniform w.r.t. µ)

Lipschitz condition on F̃ )

Directly constructing such an optimal controller is very
challenging for general nonlinear systems with high state
dimension. Therefore, we shall use adaptive/approximate
dynamic programming (ADP): a class of iterative, data-
driven algorithms that generate a convergent sequence
of control policies whose limit is provably the optimal
control policy u∞(q). Recall the optimal value function
given by (14) and the optimal control policy (15). From the
Bellman optimality principle, we know that the discrete-
time Hamilton-Jacobi-Bellman equations are given by

J∞(q(k)) = inf
u∈U

(U(q(k), u(q(k))) + γJ∞(q(k + 1))) ,

(16)

u∞(q(k)) = arg inf
u∈U

(U(q(k), u(q(k))) + γJ∞(q(k + 1))) ,

(17)

where J∞(q(k)) is the optimal value function and u∞(q(k))
is the optimal control policy. The key operations in ADP
methods involve setting an admissible control policy u0(x)
and then iterating the policy evaluation step

JI+1(q(k)) = U
(
q(k), uI(q(k))

)
+ γJI+1(q(k + 1)) (18a)

and the policy improvement step

uI+1(q(k)) = arg min
u(·)

(
U
(
q(k), u(q(k))

)
+ γJI+1(q(k + 1))

)
,

(18b)
I = 0, 1, ..., until convergence.

Next, we recall the following definition.

Definition 2. The equilibrium point q = 0 of the closed-
loop system (12) is globally exponentially stable with a
decay rate α if there exist scalars C0 > 0 and α ∈ (0, 1)
such that ‖q(k)‖ ≤ C0α

(k−k0)‖q(0)‖ for any q(0) ∈ Rr.

The following design theorem provides a method to con-
struct an initial linear stabilizing policy u0(x) = K0x such
that the origin is a GES equilibrium state of the closed-
loop system (12).

Theorem 1. Suppose that Assumptions 1–2 hold, and that
there exist matrices P = P> � 0 ∈ Rnx×nx , K0 ∈ Rnu×nx ,
and scalars α ∈ (0, 1), ν > 0 such that

Ψ + Γ>MΓ � 0, (19)

where

Ψ =

[
(A+BK0)>P (A+BK0)− α2P ?

P (A+BK0) P

]
,

Γ =

[
Cq 0
0 I

]
, andM =

[
ν−1(L∗φ)2I 0

0 −ν−1I

]
.

Then the equilibrium x = 0 of the closed-loop system (12)
is GES with decay rate α.

Proof 1. Refer to [10].

Note that we do not need to know φ(·) to satisfy condi-
tions (19), which makes the proposed closure model robust
to model uncertainties (see Remark 1).

We shall now provide LMI-based conditions for computing
the initial control policy K0, the initial domain of attrac-
tion P and ν via convex programming.

Theorem 2. Fix α ∈ (0, 1) and L∗φ as defined in Assump-

tion 2. If there exist matrices S = S> � 0, Y , and a scalar
ν > 0 such that the LMI conditions −α2S ? ? ?

0 −νI ? ?
AS +BY S −S ?
L∗φCqS 0 0 −νI

 � 0 (20)



are satisfied, then the matrices K0 = Y S−1, P = S−1 and
scalar ν satisfy the conditions (19) with the same α and
L∗φ.

Proof 2. Refer to [10].

We can now state the following admissibility Corollary (see
[10]).

Corollary 1. Let

U(q(k), u(k)) = q(k)>Qq(k) + u(k)>Ru(k) (21)

for some matrices Q = Q> � 0 and R = R> � 0. Then the
initial control policy u(0) = K0q obtained by solving (20)
is an admissible control policy on Rr.

Now that we know u(0) = K0q is an admissible control
policy, we are ready to proceed with the policy iteration
steps (18). Typically, an analytical form of JI is not
known a priori, so we resort to a shallow neural approxi-
mator/truncated basis expansion for fitting this function,
assuming JI is smooth for every I ∈ N∪{∞}. Concretely,
we represent the value function and cost functions as:

JI(q) := ω>I ψ(q) (22)

where ψ(·) : Rr → Rn0 denotes the vector of differentiable
basis functions (equivalently, hidden layer neuron activa-
tions) and ω ∈ Rn0 is the corresponding column vector of
basis coefficients (equivalently, neural weights).

It is not always clear how to initialize the weights of the
neural approximators (22). We propose initializing the
weights as follows. Since our initial Lyapunov function is
quadratic, we include the quadratic terms of the compo-
nents of x to be in the basis ψ(q). Then we can express the
initial Lyapunov function q>Pq obtained by solving (20)
with appropriate weights in the ψ(q), respectively, setting
all other weights to be zero. With the approximator initial-
ized as above, the policy evaluation step (18a) is replaced
by

ω>I+1

(
ψ(q(k))−γψ(q(k+1))

)
= U (q(k), uI(q(k))) , (23a)

from which one can solve for ωI+1 recursively via

ωI+1 = ωI − ηIϕI
(
ω>I ϕI − U (q(k), uI(q(k)))

)
,

where ηI is a learning rate parameter that is usually
selected to be an element from the sequence {ηI} → 0 as
I → ∞, and ϕI = ψ(q(k)) − γψ(q(k + 1)). Subsequently,
the policy improvement step (18b) is replaced by

uI+1 = arg min
u(·)

(
U (q(k), u(q(k)) + γω>I+1ψ(q(k + 1))

)
.

This minimization problem is typically non-convex and
therefore, challenging to solve to optimality. In some
specific cases, one of which is that the cost function is
quadratic as described in (21), the policy improvement
step becomes considerably simpler to execute, namely

uI+1(q) = −γ
2
R−1B>∇ψ(q)>ωI+1. (23b)

This can be evaluated as R and B are known, and ψ is
differentiable and chosen by the user, so∇ψ is computable.

Since we prove that u0 is an admissible control policy,
we can use arguments identical to [11] [Theorem 3.2 and
Theorem 4.1] to claim that if the optimal value function
and the optimal control policy are dense in the space of
functions induced by the basis function expansions (22),
then the weights of the neural approximator employed in
the PI steps (23) converges to the optimal weights; that
is, the optimal value function J∞ and the optimal control
policy u∞ are achieved asymptotically. We now present
our main result.

Theorem 3. (RL-based stabilizing closure model) Con-
sider the PDE (5) under Assumption 1, together with its
ROM model

q̇(t) = F̃ (q(t)) + µ Dq(t) +H(q(t)), (24)

where F̃ (·) satisfies Assumption 2, D ∈ Rr×r is symmetric
negative definite, and µ > 0 is the nominal value of the
viscosity coefficient in (5). Then, the nonlinear closure
model H(q) computed using the RL controller (23a),
(23b), where u0(q) = K0q, K0 obtained by the SDP (20),
practically stabilizes the solutions of the ROM (24) to an
ε-neighborhood of the origin.

Proof: Due to space limitation the proof has been re-
moved, but will be included in a longer version of this
work. 2

3. EXTREMUM-SEEKING BASED CLOSURE
MODEL AUTO-TUNING

ES-based closure model auto-tuning has many advantages.
First of all, the closure models can be valid for longer
time intervals when compared to standard closure models
with constant coefficients that are identified off-line over
a (fixed) finite time interval. Secondly, the optimality of
the closure model ensures that the ROM obtains the most
accuracy for a given low-dimensional basis, leading to the
smallest possible ROM for a given application.

We begin by defining a suitable learning cost function for
the ES algorithm. The goals of the learning is to ensure
that the solutions of the ROM (6) are close to those of the
approximation zn(t, ·) to the original PDE (5).

We first introduce some tuning coefficients in the ROM
model (24), as follows

q̇(t) = F̃ (q(t)) + (µ+ µe) Dq(t) + µnlH(q(t)), (25)

where µe > 0, and µnl > 0 are two positive tuning
parameters. We then define the learning cost as a positive
definite function of the norm of the error between the
numerical solutions of (5) and the ROM (25),

Q(µ̂) = H̃(ez(t, µ̂)),

ez(t, µ̂) = zpodn (t, x; µ̂)− zn(t, x;µ),
(26)

where µ̂ = [µ̂e, µ̂nl]
∗ ∈ R2 denotes the learned parameters,

and H̃(·) is a positive definite function of ez. Note that the
error ez could be computed off-line using solutions of the
ROM (4), (7) and exact (e.g., FEM-based) solutions of the
PDE (5). The error could be also computed on-line where
the zpodn (t, x; µ̂) is obtained from solving the ROM model
(4), (7) on-line, and the zn(t, x;µ) are real measurements
of the system at selected spatial locations {xi}. The latter
approach would circumvent the FEM model, and directly
operate on the system, making the reduced-order model
more consistent with respect to the operating plant.

To derive formal convergence results, we introduce some
classical assumptions on the learning cost function.

Assumption 3. The cost function Q(·) in (26) has a local
minimum at µ̂ = µopt.

Assumption 4. The cost function Q(·) in (26) is analytic
and its variation with respect to µ is bounded in the
neighborhood of µopt, i.e., ‖∇µQ(µ̃)‖ ≤ ξ2, ξ2 > 0,
for all µ̃ ∈ N (µopt), where N (µopt) denotes a compact
neighborhood of µopt.

Under these assumptions the following lemma holds.



Lemma 1. Consider the PDE (5) under Assumption 1,
together with its ROM model (25). Furthermore, suppose
the closure model coefficients µ̂ = [µe, µnl]

∗ are tuned
using the ES algorithm

ẏ1(t) = a1 sin
(
ω1t+

π

2

)
Q, ẏ2(t) = a2 sin

(
ω2t+

π

2

)
Q,

µ̂e(t) = y1 + a1 sin
(
ω1t−

π

2

)
, µ̂nl(t) = y2 + a2 sin

(
ω2t−

π

2

)
,

(27)
where ωmax = max(ω1, ω2) > ωopt, ωopt large enough, and
Q(·) is given by (26). Let eµ(t) := [µe

opt− µ̂e(t),µnl
opt−

µ̂nl(t)]
∗ be the error between the current tuned values, and

the optimal values µopt
e , µopt

nl . Then, under Assumptions
3, and 4, the norm of the distance to the optimal values
admits the following bound

‖eµ(t)‖ ≤ ξ1
ωmax

+
√
a2

1 + a2
2, t→∞, (28)

where a1, a2 > 0, ξ1 > 0, and the learning cost function
approaches its optimal value within the following upper-
bound

‖Q(µ̂)−Q(µopt)‖ ≤ ξ2(
ξ1
ω

+
√
a2

1 + a2
2), (29)

as t→∞, where ξ2 = maxµ∈N (µopt) ‖∇µQ(µ)‖.
Proof 3. Refer to [7].

4. THE CASE OF THE BURGERS EQUATION

As an example application of our approach, we consider
the coupled Burgers equation of the form

∂w(t, x)

∂t
+ w(t, x)

w(t, x)

∂x
= µ

∂2w(t, x)

∂x2 − κT (t, x)

∂T (t, x)

∂t
+ w(t, x)

∂T (t, x)

∂x
= c

∂2T (t, x)

∂x2 + f(t, x),

(30)
where T (·, ·) represents the temperature, w(·, ·) represents
the velocity field, κ is the coefficient of the thermal ex-
pansion, c the heat diffusion coefficient, µ the viscosity
(inverse of the Reynolds number Re), x ∈ [0, 1] is the one
dimensional space variable, t > 0, and f(·, ·) is the external
forcing term such that f ∈ L2((0,∞), X), X = L2([0, 1]).
The boundary conditions are imposed as: w(t, 0) =

wL,
∂w(t,1)
∂x = wR, T (t, 0) = TL, T (t, 1) = TR, where

wL, wR, TL, TR are positive constants, and L and R denote
left and right boundary, respectively. The initial conditions
are imposed as: w(0, x) = w0(x) ∈ L2([0, 1]), T (0, x) =
T0(x) ∈ L2([0, 1]), and are specified below. Following a
Galerkin projection onto the subspace spanned by the
POD basis functions, the coupled Burgers equation is
reduced to a POD ROM with the following structure (e.g.,
see [9])(

q̇w
q̇T

)
= B1 + µB2 + µ D q + D̃q + CqqT ,

wpodn (x, t) = wav(x) +

i=r∑
i=1

φwi(x)qwi(t),

T podn (x, t) = Tav(x) +

i=r∑
i=1

φTi(x)qTi(t),

(31)

where matrix B1 is due to the projection of the forcing
term f , matrix B2 is due to the projection of the boundary
conditions, matrix D is due to the projection of the

viscosity damping term µ∂
2w(t,x)
∂x2 , matrix D̃ is due to the

projection of the thermal coupling and the heat diffusion

terms −κT (t, x), c∂
2T (t,x)
∂x2 , and the matrix C is due to

the projection of the gradient-based terms ww(t,x)
∂x , and

w ∂T (t,x)
∂x . The notations φwi(x), qwi(t) (i = 1, ..., rw),

φTi(x), qTi(t) (i = 1, ..., rT ), stand for the space basis
functions and the time projection coordinates, for the
velocity and the temperature, respectively. The terms
wav(x), Tav(x) represent the mean values (over time) of
w and T , respectively.

We test the stabilization performance of our RL-based
closure model. by considering the coupled Burgers equa-
tion (30), with the parameters Re = 1000, κ = 5 ×
10−4, c = 1 × 10−2, the trivial boundary conditions
wL = wR = 0, TL = TR = 0, a simulation time-length
tf = 1s and zero forcing, f = 0. We use 10 POD modes for
both variables (temperature and velocity). For the choice
of the initial conditions, we follow [9], where the simplified
Burgers’ equation has been used in the context of POD
ROM stabilization. Indeed, in [9] the authors propose two
types of initial conditions for the velocity variable, which
led to instability of the nominal POD ROM, i.e., the
basic Galerkin POD ROM (POD ROM-G) without any
closure model. Accordingly, we choose the following initial
conditions:

w(x, 0) =

{
1, if x ∈ [0, 0.5]
0, if x ∈ ]0.5, 1], T (x, 0) =

{
1, if x ∈ [0, 0.5]
0, if x ∈ ]0.5, 1],

(32)
We report in Figure 1 the solutions 2 of the POD ROM-G
(without closure model). We can see clearly in this figure
that the POD ROM-G solution is unstable, with a clear
blowup of the velocity profile. We compute the RL-based
closure model from (23a), and (23b). We then run the
ROM-CL which is the ROM with the closure model H
computed from (23a), (23b), and report the corresponding
solutions in Figure 2. We can see clearly that the closure
model stabilizes the ROM as expected. However, although
we recover the stability of the original PDE, after adding
the RL-based closure term, the performance of the ROM-
CL model is rather average, as one can observe from
the error profiles in Figure 3. To improve the ROM-CL
model performance in reproducing the true temperature
and velocity distributions, we add an auto-tuning layer to
the ROM-CL model, by using an auto-tuning extremum
seeking algorithm, as explained in Section 3.

We implement the ROM-CL (25), where here again the
closure term is given by the RL-controller (23a), (23b).
The coefficients of the closure model are tuned using the
first Euler discretization of (27), where the learning cost
is defined as

Q(µ) =

∫ tf

0

〈eT , eT 〉Hdt+

∫ tf

0

〈ev, ev〉Hdt. (33)

eT = PrTn − T podn , ev = Prvn − vpodn define the errors
between the projection of the true model solution onto
the POD space Zr and the POD-ROM solution for tem-
perature and velocity, respectively. We select the following
ES coefficients: a1 = 8.10−5 [−], ω1 = 10 [ rad

sec ], a2 =

8.10−5 [−], ω2 = 12 [ rad
sec ].

We report in Figure 3 the ES learning cost over the learn-
ing iterations, where we see an improvement of the overall
tracking cost function. The associated tuning coefficients
estimation is shown in Figure 3. Finally, the performance
of the ROM-CL after tuning is shown in Figures 4 , and
4, where we see a large decrease of the tracking errors,

2 Due to space limitations we only report the velocity profile.



Fig. 1. Closure-model-free POD ROM solution of (30).

Fig. 2. ROM-CL error profiles of (30), with reinforcement
learning.
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Fig. 3. (Left) ROM-CL learning cost. (Mid) ROM-CL
µe coefficient tuning. (Right) ROM-CL coefficients
tuning.

comparatively to the errors obtained with the ROM-CL
without ES tuning.

Fig. 4. ROM-CL error profiles of (30) (with auto-tuning).

5. CONCLUSION

In this paper we have focused on the problem of model
reduction of infinite dimension systems modeled by partial

differential equations. We have proposed to use reinforce-
ment learning (RL) control to design stabilizing closure
models for reduced order models. The obtained stabilizing
closure models are robust to model uncertainties, which
makes them appealing for real-life applications, like for
instance fluid dynamics modeling applications. To further
improve the validity of the reduced order models, we added
a tuning layer to the proposed RL-based closure models,
by tuning (possibly online) some of their free coefficients
using an extremum seeking algorithm.
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