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Abstract—The deep learning trend has recently impacted a
variety of fields, including communication systems, where various
approaches have explored the application of neural networks
in place of traditional designs. Neural networks flexibly allow
for data-driven optimization, but are often employed as black
boxes detached from direct application of domain knowledge.
Our work considers learning-based approaches to end-to-end
design of modulation and signal detection for the non-coherent
multi-input multi-output (MIMO) channels. We demonstrate
that simulation-driven optimization can outperform traditional
Grassmann designs. Additionally, we show the feasibility of non-
coherent MIMO communications over extremely short channel
coherence time, with as few as two time slots, which have never
been explored in existing literature due to design hardness.

Index Terms—non-coherent MIMO, deep learning, neural
networks, space-time coding

I. INTRODUCTION

The application of machine learning techniques to com-
munication systems has recently received increased atten-
tion [1]–[12]. Common to these approaches is the data-driven
optimization of artificial neural networks (NN) to serve as
various communication system components, instead of tra-
ditional approaches that are systematically driven by models
and theory. The promise of such approaches is that learning
could potentially overcome situations where limited models
are inaccurate and complex theory is intractable. This can
be viewed as part of a “deep learning” trend, where the
enthusiastic application of modern deep neural networks have
widely impacted a variety of fields [13].

We consider an end-to-end, learning-based approach to
optimize the modulation and signal detection for non-coherent,
multiple-input multiple-output (MIMO) systems, i.e., commu-
nication with multiple transmit and receive antennas, where the
channel coefficients are unknown. The end-to-end aspect refers
to the joint optimization of both the signal constellation and
decoder as they interact through simulated transmission over a
MIMO channel. As noted in the literature [1], [2], this general
concept is analogous to training an autoencoder, but with
a noisy channel inserted between the encoder and decoder,
which has led several works [1]–[10] to use deep neural
networks to realize both the encoder and decoder mappings.
Related work [3] and [4] also consider the MIMO channel,
although with channel state information (CSI) available, and
the latter also examines a multi-user interference channel. We
focus on the non-coherent MIMO system as a countermeasure
for pilot contamination issues [19]

One aim of our paper is to reconsider the benefits of
employing NNs and demonstrate an effective learning-based

approach that eschews them altogether. Although most related
papers used deep layers to encode data, mapping from a finite
message space to channel symbols does not require any NN
encoder but lookup table (or single linear layer with one-hot
encoder) since any arbitrary constellation can be represented
with a single layer in principle. Non-coherent MIMO decoding
theory [14] guides us to a simplified decoder architecture
that avoids employing NNs, while still retaining the ability
to perform simulation-driven optimization. We evaluate and
compare this network-less approach versus employing an NN
decoder, and find that they perform comparably.

With our learning-based approach, we also demonstrate that
non-coherent MIMO communication is feasible even at ex-
tremely short coherence time, i.e., with the channel coefficients
stable for as few as two time slots. Unlike various conventional
approaches [14]–[19] to MIMO modulation design such as
Grassmann space-time codes, which have limitations on time
slots versus antennas, the learning-based approach is not lim-
ited by analytical design constraints. Relaxing these constraints
is also supported by the recent extension by [20] of MIMO
capacity theory [21], [22], which shows that the conventional
unitary, isotropically distributed inputs are no longer capacity
achieving when antennas exceed time slots.

The key contributions of the paper are summarized below:
• We apply machine learning to optimize space-time con-

stellations in non-coherent MIMO systems.
• We optimize encoder lookup tables without relying on

deep network architectures.
• We compare NNs and model-based detectors to demod-

ulate the space-time constellations.
• Our learned modulation and detection schemes outper-

form traditional designs in some SNR regimes.
• We demonstrate that non-coherent MIMO is feasible even

for extremely short coherence time.
Notations: We use uppercase/lowercase bold letters, e.g., X
and m, to denote matrices/vectors. A circularly-symmetric
Gaussian distribution with zero mean and σ2 variance is
denoted by CN (0, σ2). We write X† to denote the conjugate
transpose of X, and Im to denote the m×m identity matrix.
We use E[·], ‖ · ‖, R and C to denote expectation, Frobenius
norm, set of real numbers, and set of complex numbers,
respectively.

II. MODULATION OPTIMIZATION FOR MIMO SYSTEMS

A. Non-Coherent MIMO Channel
We consider transmission over MIMO channels with m

transmitter antennas and n receiver antennas. When transmit-
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Fig. 1: End-to-end learning for modulation and detection, with
encoder signal constellation specified by a lookup table and
decoder realized as neural network or pseudo-ML decoding.

ting a message using L channel symbols, the received signal
Y is an n×L complex-valued matrix given by Y := HX+Z,
where X is an m×L complex-valued matrix representing the
transmitted signal, H is the n×m complex, random channel
matrix, and Z is an n×L complex-valued matrix representing
additive white Gaussian noise. The elements of the channel
matrix H are i.i.d. CN (0, 1/m) and are independent of the
noise Z, which is i.i.d. CN (0, σ2). We constrain the transmis-
sion to have average power E[‖X‖2/(mL)] = 1, such that the
average signal-to-noise ratio (SNR) is given by 1/σ2.

We focus on the non-coherent scenario where the random
channel matrix H is unknown (i.e., no CSI), but fixed over the
L channel uses. Non-coherent MIMO systems are particularly
advantageous over coherent counterparts, which must rely on
pilots, for the case when the fading channel rapidly changes,
e.g., in bullet train and vehicular communications. More
recently, non-coherent techniques received much attention
as a viable counter solution to prevent pilot contamination
issues [23]–[25] in massive user communications.

B. Encoder Parameterization

The encoder maps a k-bit message to an L symbol transmis-
sion across m antennas. Any encoder mapping, f : {0, 1}k →
Cm×L, can be parameterized by a simple lookup table (LUT)
specified by a codebook matrix C ∈ C2k×mL. For power
efficiency, the mean row of C is subtracted from each row
of C to produce the centered codebook matrix C. Then, the
average power constraint is enforced by scaling C to produce
centered and normalized code matrix C̃ := C

√
2kmL/‖C‖.

To encode a message m ∈ {0, 1}k, the encoder mapping
selects the row in C̃ indexed by the integer value of m, and
reshapes it to an m×L matrix to form the transmitted signal
Xm := fC(m) ∈ Cm×L. Note that this encoder procedure
is equivalent to a single linear layer with batch normalization
without relying on deep layers.

For non-coherent MIMO systems, space-time constella-
tions based on Grassmannian manifold [14]–[19] have been
widely investigated due to capability of simplified maximum-
likelihood (ML) decoding. However, it was proven in [20] that
Grassmann constellation is not optimal to achieve capacity
and beta-variate modulation was proposed instead. Never-
theless, it is still an open problem to design such space-
time constellations which are efficiently decodable without
CSI. In this paper, we apply the end-to-end machine learning
technique to optimize constellations and blind decoders. Note
that most end-to-end learning approaches [1]–[10] use deep

neural networks to realize encoder mapping functions, while
the simple LUT approach described above is sufficient to
represent arbitrary mapping functions. This is particularly
suited to when the cardinality of 2k is moderately small.

C. Decoder Realizations

As the receiver has no CSI, we need to employ blind
detection methods for non-coherent MIMO systems. The op-
timal ML detection [26] for non-coherent channels is often
cumbersome to implement unless the space-time constellation
is in Grassmannian manifold. We consider two parametric,
soft-output decoders that approximate the unnormalized, log-
likelihoods for each possible message, and thus output a real-
valued vector of length 2k. For both decoders, the softmax
operation is applied to the output vector (by exponentiating
each element and then scaling to normalize the sum to one) to
produce a stochastic vector, denoted by P θm|Y, that approx-
imates the posterior distribution Pm|Y. Note that applying
the softmax operation to the vector of unnormalized, log-
likelihoods {logαPY|m(Y|m)}m∈{0,1}k , for some constant
α > 0, would yield the corresponding posterior distribution
{Pm|Y(m|Y)}m∈{0,1}k .

1) Pseudo-ML (pML) Decoder: If the codewords are or-
thonormal, that is, XmX†m = L ·Im for all m ∈ {0, 1}k, then
the ML decoding rule is simplified in [14] to be

argmax
m∈{0,1}k

∥∥YX†m
∥∥2, (1)

since the terms ‖YX†m‖2 are proportional to logαP (Y|m),
for some α > 0 that is constant with respect to m. This
decoder immediately inspires a soft-output decoder that simply
scales the objective in (1) with a parameter θ ≥ 0 to output{

θ‖YX†m‖2
}
m∈{0,1}k . (2)

The parameter θ both accounts for the fact that ‖YX†m‖2 is
only proportional to logαP (Y|m), and allows the confidence
of the decoder to be tuned, which is particularly important
since it will be employed while enforcing the orthonormal
constraint (i.e., XmX†m = LIm) in only a soft manner. Hence,
we call this the pseudo-ML (pML) decoder. Smaller/larger
θ indicates lower/higher confidence, as the corresponding
posterior estimate P θm|Y (produced by applying the softmax
operation) approaches uniform as θ → 0 and certainty as
θ → ∞. This parameter θ will be optimized by machine
learning techniques.

2) Neural Network (NN) Decoder: Alternatively, a soft-
output decoder can be realized with an NN, which serves as
a parametric approximation for the mapping

gθ : Cn×L → R2k , (3)

where θ denotes the parameters specifying the weights of the
NN layers. The network is applied to the received signal to
yield an approximation of the log-likelihoods, to which the
softmax operation is applied to produce the corresponding
posterior estimate P θm|Y := SoftMax(gθ(Y)). Note that the
above nonbinary output mapper can be readily modified to



produce bit-wise soft outputs in Rk dimension, each of real
values represents log-likelihood ratios for the case of bit-
interleaved coded-modulation (BICM) systems.

The specific network architectures used in this paper are
detailed alongside discussion of the results in Section III-A.
In order to handle a complex-valued matrix as input, Y is
simply decomposed into its real and imaginary components
and vectorized, i.e., Y is represented as a real-valued vector
of length 2nL. Fig. 1 summarizes our approach.

D. Optimization Objective

The main optimization objective is to minimize the cross-
entropy loss, which is given below, with respect to the encoder
parameter C and decoder parameter θ,

E
[
− logP θm|Y(m|Y)

]
= H(m|Y) + KL(Pm|Y‖P θm|Y), (4)

where P θm|Y is produced by applying the softmax operation
to the log-likelihoods produced by either decoder given by (2)
or (3), as described in Section II-C. Here, H(·) and KL(·‖·)
denote entropy and Kullback–Leibler divergence, respectively.
From the above equation, the ideal optimization of the decoder
should cause the estimated posterior P θm|Y to converge toward
the true posterior Pm|Y, and the overall optimization is
equivalent to maximizing the mutual information I(m;Y) =
H(m) − H(m|Y), with respect to the signal constellation,
since H(m) = k is constant.

As mentioned earlier, the pML decoder given by (2)
is formulated assuming orthonormal codewords that satisfy
XmX†m = LIm for all m ∈ {0, 1}k. We enforce or-
thonormality as a soft constraint by introducing an additional
orthonormal-loss term given by

`(C) :=
1

2km2

∑
m∈{0,1}k

∥∥XmX†m/L− Im
∥∥2.

The optimization objective that we use for the pML decoder is
formed by combining this orthonormal loss with the primary
cross-entropy loss as follows

min
C,θ

E
[
− logP θm|Y(m|Y)

](
1 + λ`(C)

)
, (5)

where λ > 0 is a weighting parameter to control the impact
of the orthonormal loss term. Note that rather simply adding
on the orthonormal loss term, i.e., using an objective of the
form E[− logP θm|Y(m|Y)]+λ`(C), the loss terms have been
multiplicatively combined in (5). We found from analyses that
this improved the reliability of convergence, possibly since
these loss terms might decay at very different rates making it
difficult to tune λ in an additive combination.

III. PERFORMANCE ANALYSIS

We evaluate communicating k ∈ {2, 4, 6, 8} bits over
L ∈ {2, 4} channel uses. For L = 2 time slots, we
vary the number of receiver antennas n ∈ {2, 3, 4}, while
keeping the number of transmit antennas fixed at m = 2,
since theory [21], [22] teaches that unilaterally increasing
transmit antennas m > L does not increase capacity. We
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Fig. 2: BLER performance comparison for L = 4 and
(m,n) = (2, 2), between our learned codes (with NN and
pML decoders) and the baseline scheme of [16].

also tested increasing m > L and found that it resulted
in performance nearly identical to m = L. For L = 4
time slots, we vary both the number of transmit and receive
antennas (m,n) ∈ {(2, 2), (3, 3), (4, 4)}. For each operating
point (combination of parameters k, L,m, n), we evaluated
both the pML and NN decoders, by optimizing each across a
variety of hyperparameters, and selecting the best performing
codes. Further details about the network architectures and
training procedures are given in Sections III-A and III-B.

In Fig. 2, we compare the block-error rate (BLER) per-
formance of our learned schemes against the analytical code
constructions of [16], which are limited to L ≥ 4 and m = 2.
Note that our learned schemes can outperform (by several
dB) the baseline, particularly at lower SNR regimes, at which
the encoder was optimized. Our BLER results across more
parameters are shown in Figs. 3 and 4 for L = 2 and Figs. 5
and 6 for L = 4. Since existing Grassmann code designs
require L > m, our demonstration of feasibility for learning-
based code design at L = m = 2 is novel to the best of
author’s knowledge. Note that for several operating points (six
for L = 2 and two for L = 4), the pML results exhibit
large error floors, while the NN results generally do not. At
other operating points, the results between NN and pML are
similar (although sometimes slightly better or worse). Figs. 7
through 10 depict the achievable throughput performance
estimated from the cross-entropy loss given by (4), via

k − E
[
− logP θm|Y(m|Y)

]
L

/
I(m;Y)

L
.

The theoretical capacity lower-bounds derived in [20], which
are tight only in the high SNR regimes, are also shown in
Figs. 7 through 10 for comparison.

We searched over fewer hyperparameters (optimization in-
stances) for the pML decoder cases, which may have played
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Fig. 3: BLER performance for NN decoder at L = 2.
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Fig. 4: BLER performance for pML decoder at L = 2.

a role in the optimization failing in some cases. Interestingly,
despite the orthonormal loss-term, only one operating point
(k = 2, L = 4, m = n = 2) resulted in the codebook for the
pML decoder converging to orthonormal codewords. However,
we did find that the presence of the orthonormal loss-term
improved the optimization success rate. From throughput
performance, we can confirm that NN decoder outperforms
pML decoder, approaching close to the theoretical bounds.
Two examples of learned signal constellations are shown in
Fig. 11.

A. Neural Network (NN) Architectures

We use two well-known NN architectures, the multilayer
perceptron (MLP) and the Residual MLP (ResMLP) [27], [28],
to realize the NN-based decoders discussed in Section II-C.

In the MLP architecture, the input vector x0 is mapped to
the output vector xl+1 by applying a series of affine transfor-
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Fig. 5: BLER performance for NN decoder at L = 4.
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Fig. 6: BLER performance for pML decoder at L = 4.

mations and element-wise, nonlinear operations. The l hidden
(intermediate) layers and output layer (vector) of the network
are given by xi+1 := φi

(
Wixi + bi

)
, for i ∈ {0, . . . , l},

where {Wi,bi}li=0 are the affine transformation parameters
that define the network, and φi(·) denotes the element-wise
application of the activation function φi. For all of our MLP
networks, we used the rectified linear unit (ReLU) for the
hidden layers (i.e., φi(x) := max(x, 0), for i ∈ {0, . . . , l−1})
and the identity function for the output layer (i.e., φl(x) = x).
Note that the dimensions of the weight matrices Wi and bias
vectors bi are constrained by the desired input, output, and
hidden layer dimensions.

In the ResMLP architecture, the input vector x is first
mapped to an initial hidden vector h0 via an affine transforma-
tion, i.e., h0 := W0x + b0. Then, over l blocks, the hidden
vector is updated according to hi := F2i

(
F2i−1(hi−1)

)
+

hi−1, for i ∈ {1, . . . , l}, where Fi(·) denotes the sequential
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Fig. 7: Throughput comparison for NN decoder at L = 2.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
SNR (dB)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut

k=2, n,m=2,2
k=4, n,m=2,2
k=6, n,m=2,2
k=8, n,m=2,2
k=2, n,m=3,2
k=4, n,m=3,2
k=6, n,m=3,2
k=8, n,m=3,2
k=2, n,m=4,2
k=4, n,m=4,2
k=6, n,m=4,2
k=8, n,m=4,2
Theory, n=2
Theory, n=3
Theory, n=4

Fig. 8: Throughput comparison for pML decoder at L = 2.

application of batch-normalization [29], an activation function,
and affine transform, i.e., Fi(h) := Wiφi

(
BatchNorm(h)

)
+

bi. The output is computed as y := W2i+1φ2i+1(hl)+b2i+1.

B. Training Procedures

We perform the optimization of the objectives given in
Section II-D with stochastic gradient descent (SGD), specifi-
cally the popular Adam [30] variant, which adaptively adjusts
learning rates based on moment estimates. For each iteration,
the expectations are approximated by the empirical mean over
a batch of 10,000 uniformly sampled messages, randomly
drawn along with random channel matrices and noise for the
transmission of each message. Training was performed for up
to 50,000 iterations, with early stopping applied to halt training
when the objective fails to improve, while saving the best
snapshot in terms of BLER. We implemented these simulations
using the Chainer deep learning framework [31].
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Fig. 9: Throughput comparison for NN decoder at L = 4.
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Fig. 10: Throughput comparison for pML decoder at L = 4.

For the NN decoder, we tried both the MLP and ResMLP
architectures across the combination of l ∈ {1, 2, 3} lay-
ers/blocks and {256, 500, 1000} hidden layer dimensions. For
the pML decoder, the main hyperparameter is just the weight λ
in the objective function given by (5), which we varied across
λ ∈ {0.1, 0.3, 1.0, 3.0, 10.0}. For both decoders, an additional
hyperparameter is the SNR used during training simulations,
which we non-exhaustively varied from 10 dB to 30 dB in
5 dB increments, by trying a few for each operating point.

IV. DISCUSSION AND ONGOING WORK

We reevaluated the role of NNs in learning-based ap-
proaches to communications. We demonstrated that NNs can
be avoided altogether while still employing the fundamen-
tals of simulation-driven design optimization. Our learned
modulation and detection schemes outperformed traditional
designs at some SNR regimes. We also used this approach
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Fig. 11: Example signal constellation learned with pML de-
coder for k = 2, L = 4, (m,n) = (4, 4).

to show the feasibility of non-coherent MIMO for coherence
windows as short as two time slots. Our ongoing work includes
further investigation into improving optimization stability and
performance. The generalized log-likelihood ratio test (GLRT)
decoder given by [18] does not require the codewords to be
orthonormal, which would obviate the need for an orthonormal
loss term. Due to the increased implementation and compu-
tational complexity, investigating this GLRT decoder remains
ongoing work.

REFERENCES

[1] T. J. O’Shea, K. Karra, and T. C. Clancy, “Learning to communicate:
Channel auto-encoders, domain specific regularizers, and attention,” in
Signal Processing and Information Technology (ISSPIT), 2016 IEEE
International Symposium on. IEEE, 2016, pp. 223–228.

[2] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, 2017.

[3] T. J. O’Shea, T. Erpek, and T. C. Clancy, “Physical layer deep learning of
encodings for the MIMO fading channel,” in Communication, Control,
and Computing (Allerton), 2017 55th Annual Allerton Conference on.
IEEE, 2017, pp. 76–80.

[4] T. Erpek, T. J. O’Shea, and T. C. Clancy, “Learning a physical layer
scheme for the MIMO interference channel,” in 2018 IEEE International
Conference on Communications (ICC). IEEE, 2018, pp. 1–5.

[5] H. Kim, Y. Jiang, S. Kannan, S. Oh, and P. Viswanath, “Deepcode:
Feedback codes via deep learning,” in Advances in Neural Information
Processing Systems, 2018, pp. 9458–9468.

[6] B. Karanov, M. Chagnon, F. Thouin, T. A. Eriksson, H. Bülow, D. Lav-
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