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Abstract

To monitor the power grid over a wide-area, the wide-area monitoring system (WAMS) has been

developed. At each substation, the Global Positioning System (GPS) receiving system resides to provide

a trusted timing. Thus, it is critical for the WAMS to maintain an authentic GPS timing over a wide-

area. However, the GPS timing is susceptible to spoofing due to the unencrypted signal structure and its

low signal power. Thus, to obtain the trusted GPS timing from spoofing, a new wide-area monitoring

algorithm, which is comprised of distributed belief propagation (BP) and a bi-directional recurrent neural

network (RNN), is developed under the frame of Artificial Intelligence (AI). This joint BP-RNN algorithm

authenticates each power substation by evaluating the estimated GPS timing error by its distributed

processing capability. Especially, the bi-directional RNN provides a fast timing error estimation under

the frame of AI. Simulation results validate the fast detection time over the Kullback–Leibler divergence-

based approach, and timing error estimation accuracy over the limit provided by the IEEE C37.118.1-2011

standard.

I. INTRODUCTION

In the recent past, Artificial Intelligence (AI) has been playing a pivotal role in modernizing different

safety-critical applications, such as, banking, autonomous driving and electrical power grids. In power

substations, AI techniques are already being utilized to provide robust solutions for increasing the

production, optimizing the energy consumption, detecting the anomalies and localizing the disruptions.

Google’s DeepMind is collaborating with the UK’s National Grid to develop AI solutions [1] that balance

the supply and demand of electricity.

Sriramya Bhamidipati is with the University of Illinois at Urbana-Champaign. Kyeong Jin Kim (corresponding author), Hongbo

Sun, and Philip V. Orlik are with Mitsubishi Electric Research Laboratories (MERL). This work was done when S. Bhamidipati
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To perform high-resolution grid monitoring and early-stage detection of grid destabilizing conditions,

Wide-Area Monitoring Systems (WAMS) are developed that analyze the information obtained from a

wide-area network of power substations. In this context, WAMS relies on advanced devices, known as

Phasor Measurement Units (PMUs) to monitor the voltage and current phasor measurements, which are

indicative of the grid stability conditions. PMUs utilize precise time sources, such as, Global Positioning

System (GPS), to time-tag the phasor measurements and to obtain global time synchronization. However,

due to the unencrypted signal structure and a very low signal power, the civilian GPS signals are

susceptible to external spoofing attacks. In 2017, a mass GPS spoofing incident that was reported near

the Russian port of Novorossiysk has demonstrated the real-world threats to critical infrastructure due

to GPS spoofing [2]. In [3], the authors validated the vulnerability of GPS timing provided to PMUs

during the presence of spoofing. Based on the IEEE C37.118.1-2011 standard for synchrophasors [4],

we consider 1% total vector error equivalent to a timing error of 26.5 µs, as a benchmark in our power

grid stability analysis.

A. Technical Literature Review

In [5], the authors computed the Wavelet transformation coefficients of both spoofing and authentic

signals that are later given to the support vector machines and probabilistic neural networks for the

detection of spoofing attacks. In [6], a particle filter based anti-spoofing algorithm was developed utilizing

variations in decoded pseudorange measurements. In [7], a geographically distributed multiple directional

antennas (DMDA) setup was proposed to isolate the spoofing attacks, with each antenna receiving satellite

signals from only a subsection of the sky. A belief propagation (BP)-based Extended Kalman filter (EKF)

algorithm that utilizes the proposed DMDA setup for a single power substation was designed by [7] and

for a wide-area network of power substations was designed by [8]. In [9], a wide-area AI-based BP-EKF

algorithm that authenticates all the power substations in the wide-area network and reduces the sensitivity

due to the prior distribution of timing error was proposed. However, the authors of [9] investigated only

one power substation attacked by a simple spoofing attack.

B. Motivation

In this article, we propose an AI-based approach that not only detects but also isolates and mitigates

different types of spoofing attacks [2], ranging from simple record-and-replay-based meaconing to

sophisticated signal-level spoofing. Signal-level spoofing is caused by generating and later broadcasting

counterfeit GPS satellite signals that causes the receiver to lock onto these high-powered malicious signals

instead of the authentic ones. Once locked, the attacker is capable of smoothly manipulating the target
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receiver to an incorrect physical location or timing or both. Given no abrupt changes in the navigation

solution, this sophisticated signal-level attack is harder to detect, more dangerous comparing other attacks

and is therefore, the focus of this article. However, our proposed algorithm is also directly applicable for

the detection and mitigation of other spoofing attacks.

C. Our Contributions

In contrast to the existing work, in this work, we utilize two powerful AI tools, namely, BP and

recurrent neural networks (RNNs) to develop a wide-area joint BP and RNN algorithm that validates the

enhanced attack-resilience of the grid during coordinated spoofing attacks, which affect multiple power

substations. In addition, we perform extensive experiments to validate the improved spoofing detection

times of the proposed AI-based joint BP-RNN as compared to the prior work [8]. We utilize the AI-based

BP framework [10] to estimate the timing errors induced at each antenna in the wide-area network. We

also utilize the AI-based RNN architecture [11] to authenticate the GPS signals received at different

power substations by learning the spatial and temporal variations in the BP estimated timing errors.

The rest of the paper is organized as follows: Section II describes the system overview and high-level

architecture; Section III describe the algorithm details of our joint BP and RNN algorithm; Section IV

validates the improvement in performance, namely timing accuracy and detection times, of the proposed

algorithm under coordinated spoofing attack; and Section V concludes the paper.

II. SYSTEM OVERVIEW

In this section, we explain the wide-area system configuration of the joint BP-RNN algorithm and later

describe its high-level system architecture. Since the GPS receiving system is installed at each substation

in WAMS, the GPS receiving system can be recognized as the power substation.

A. System configuration

The important aspects related to the system configuration includes the wide-area network of power

substations and the antenna configuration at each power substation in the network.

1) Wide-area network:

By receiving information from different locations, it is possible to conduct self-healing, fault-tolerance

and dynamic optimization [12], [13]. However, these works did not investigate the GPS timing attack

over a wide-area network.
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Given the limitations related to the physical area covered by a spoofing transmitter, we consider a wide-

area network of N geographically distributed GPS receiving systems. This spatial separation significantly

minimizes the possibility of multiple GPS receiving systems being simultaneously affected by the same

spoofer. Therefore, the wide-area network of receiving systems can communicate with each other to cross-

validate the authenticity of all the GPS receiving systems. To exchange data across power substations,

we leverage the already in-place communication network of the power systems.

All the GPS receiving systems with a valid communication link to the ath receiving system

are categorized as its neighbor set and represented by Na. At the ath GPS receiving system,

we consider a setup of multiple antennas with the number of antennas represented as Ma. All

the antennas within the system are independently triggered using a common clock. Similarly, for

any kth antenna in the ath receiving system, the set of neighboring antennas, represented by

Ba
k =

{

{1, · · · ,Ma}− k
}

⋃

b∈{1,··· ,|Na|}

{1, · · · ,Mb}, include the antennas within the ath receiving system

excluding itself as well as the antennas that belong to its neighbor set Na with its number denoted by

|Na|. The wide-area communication structure is designed, such that, each GPS receiving system has a

central processing (CP) unit, which receives/sends system data from its neighboring set of GPS receiving

systems.

2) Distributed multiple directional antennas:

We can see that the distance between target receiver and the attacker is quite small as compared to its

distance from the authentic GPS satellites. This causes spoofing to behave as a directed attack. Therefore,

we isolate the spoofing attacks by considering multiple directional antennas at each GPS receiving system.

Each directional antenna is pointed towards a different section of the sky, so that during spoofing, not all

the antennas can be in the line-of-sight from the attacker, and hence cannot be simultaneously affected.

When multiple directional antennas are attacked, all the spoofed antennas pinpoint to the same incorrect

physical location. To utilize this characteristic to our advantage, we incorporate geographical separation

among the multiple directional antennas located within the power substation. As mentioned above, all the

antennas within the GPS receiving system are triggered by the same clock, based on which we design a

metric for distinguishing authentic condition from that of a spoofed condition. The block diagram of the

DMDA is provided in Fig. 1.

B. System architecture and key advantages

By utilizing the system configuration described in Section II-A, the architecture of the proposed wide-

area joint BP-RNN algorithm, shown in Fig. 2 is outlined as follows:
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Fig. 1: Block diagram of the DMDA setup [7]. Sector of circle represents the field-of-view of each

antenna.

1) Across different power substations, we leverage the pseudoranges measured at each stationary

antenna, predicted navigation state vector of the EKF module and the pre-determined antenna

baseline distances within the GPS receiving system to compute the pseudorange residuals, which

are exchanged across the GPS receiving systems via communication links.

2) At the CP unit of each GPS receiving system, we compute the single difference pseudorange

residual vector for each antenna, by considering one pseudorange residual corresponding to the

satellite observed by itself and the other pseudorange residual corresponding to the antenna in its

neighboring set.

3) Next, we compute the approximate marginal distribution of the antenna-specific timing error via an

AI-based BP framework [10], where we estimate the timing errors based on the single difference

pseudorange residuals.

4) Next, we correct the pseudoranges based on the BP estimates of the antenna-specific timing errors,

which are later processed via the measurement update step of the adaptive EKF module [14] in

the CP unit. The CP unit provides the estimated GPS timing to the power substation, where it is

utilized by the PMUs for time-tagging the phasor measurements.

5) In parallel, we provide the BP estimates of the antenna-specific timing errors to our trained bi-

directional Long Short-Term Memory (LSTM)-based RNN [11] framework, so as to compute the

authenticity of the estimated GPS timing at each GPS receiving system.
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The AI-based BP framework of the proposed joint BP-RNN algorithm provides a computationally-

efficient platform to approximate the marginal distribution of the wide-area network of antenna-specific

timing errors. Instead of a centralized communication framework, which has a single critical point of

failure, we opt for a distributed communication platform that is not only robust against failure, but also

exhibits lower processing latencies and quicker spoofing detection times. The joint BP-RNN algorithm is

easily scalable to any number of GPS receiving systems and any number of directional antennas within

the GPS receiving system. With an increase in the number of widely-distributed antennas, the correlation

between the measurement errors will be lower, which would lead to lower false alarm and misdetection

rates.

Wide-area

network of

antenna

Pseudoranges and

baseline vectors

Pre-conditioning

measurements

Pseudorange residuals

Spoofing status of GPS receiving systems

Measurement

update

Time update

Corrected PVT

Adaptive EKF

Timing given to

PMUs connected

to GPS receiving

systems

Predicted navigation state vectors of

GPS receiving systems

PVT stands for position-velocity-time

BP-RNN

Wide-area Belief

Propagation

Recurrent

Neural

Network

Antenna-specific timing errors

Fig. 2: Block diagram of the wide-area joint BP-RNN.

Utilizing a wide-area network of GPS receiving systems as compared to single system, addresses the

spoofing scenario when all the antennas are affected within the same power substation and also reduces the

overall sensitivity on the prior distribution of the antenna-specific timing error. Similarly, by utilizing the

RNN framework, it is possible to adaptively analyze the antenna-specific timing errors to quickly detect

different kinds of spoofing attacks, ranging from easy-to-execute meaconing to sophisticated signal-level

spoofing attack.

III. JOINT BP AND RNN ALGORITHM

In this section, we describe the proposed AI-based joint BP and RNN algorithm, which utilizes a

wide-area network of the DMDA setup, to compute the spoofing-resilient GPS timing. The steps of the
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BP-RNN algorithm, which is used to compute the attack-resilient GPS timing, is outlined as follows:

A. GPS measurement likelihood

At the ath receiving system, among the Ma directional antennas, the kth antenna obtains measurements

from the Lk set of satellites visible to it. We assign one antenna of the DMDA setup at each GPS receiving

system as the master antenna, whose navigation state vector βa
t is propagated using the EKF module.

The navigation state vector βa
t

△
=[x1, cδt,v1, cδṫ]

T
t consists of the 3D position, common clock bias, 3D

velocity and common clock drift of the master antenna.

Based on the predicted navigation state vector β̂a
t of the master antenna obtained from the EKF

module and the pre-determined antenna baseline distances at the ath receiving system, we compute the

measurement residuals of the ith satellite tracked by the kth antenna. During a spoofing attack targeted

to manipulate the GPS timing, the measurements have an additional unknown bias, which is termed as

antenna-specific timing error, denoted by αa
k, and is common across the satellites observed at the same

antenna.

In this work, we consider the pseudoranges to compute the measurement residuals, denoted by ∆ρik

for k ∈ {1, · · · ,Ma} and i ∈ Lk,t, that serves as a metric to indicate the corresponding antenna-specific

timing error. We also formulate a common measurement model at each ath GPS receiving system that

takes in the navigation state vector of the master antenna and the pre-determined baseline distances

between the master and other antennas to compute the expected pseudoranges from all the visible satellites

La, such that La = L1 + · · · + LMa
. Alternatively, one can use the other available measurements, such

as, pseudorange rates, Doppler, carrier phase and so on.

Next, at each ath GPS receiving system and at time instant t, we perform pre-conditioning on the

measurement residuals by calculating the single difference residuals γ
ij
kn,t across all possible pairs of

satellites, where the first measurement residual corresponds to the ith satellite observed by one antenna,

say kth ∀k ∈ {1, · · · ,Ma}, and the second residual corresponds to the jth satellite at another antenna,

say nth ∀n ∈ {1, · · · ,Ba
k}, that belongs to the neighboring set of the first antenna.

During authentic conditions, the single difference measurement residuals across any two antennas, say

kth and nth, that belong to the same GPS receiving system, should be close to zero, i.e., γijkn ≈ 0 for

∀i ∈ Lk and ∀j ∈ Ln as the timing errors are negligible when triggered using a common clock. However,

across two antennas that belong to different GPS receiving systems, the single difference measurement

residuals are a non-zero value, due to the difference in the clock bias.

Across a pair of antennas, say kth and nth, stacking the single different measurement residuals, we

have γkn,t
△
={γijkn,t, i ∈ Lk,t, j ∈ Ln,t}. Then, the corresponding measurement likelihood probability is
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calculated as

p(γkn,t|α
a
k, α

b
n) = C1exp

{

C2

(

1
Tγkn,t

Lk,tLn,t

+ (αa
k − αb

n)
)

2
}

∀ n ∈ Ba
k, (1)

where C1
△
=1/

√

(2πν2kn)
Lk,tLn,t , C2

△
= − Lk,tLn,t/2ν

2

kn, and ν2kn denotes the measurement variance of

the summation of single difference residual components which comprises of errors observed due to

pseudoranges, errors in satellite ephemeris, and predicted position and velocity of the antenna.

B. Timing errors via AI-based BP framework

We design a wide-area BP algorithm to compute the marginal distribution of the antenna-specific timing

errors αa
k,t over a wide area. BP [10] is a sum-product message passing algorithm for distributed systems

to make inferences on the unobserved variables in the graphical models. With an increase in the number

of GPS receiving systems in the wide-area network and the number of antennas in each GPS receiving

system, computing the exact marginal distribution of the spoofing-induced timing errors becomes quite

computationally expensive. In this regard, AI-based BP approximates the marginal distribution, termed as

belief bt(α
a
k), in a computationally-efficient manner. Given that an attacker broadcasts counterfeit look-

alike GPS signals, it is justified to consider that the associated timing errors induced by the spoofer follow

a Gaussian distribution. Therefore, we model the belief of antenna-specific timing errors as Gaussian

distribution with mean µa
k,t and variance (σa

k,t)
2

bt(α
a
k) = mfa

k→αa
k

∏

n∈Ba
k

mfa
kn→αa

k
(αa

k),

= N
(

αa
k : µa

k,t, (σ
a
k,t)

2

)

, (2)

where the factor node, fa
kn, connects two variable nodes, αa

k and αb
n, based on the likelihood probability

p(γkn|α
a
k, α

b
n), and the other factor node, fa

k , connects to its corresponding variable node, αa
k, and indicates

the prior distribution of αa
k.

We update the belief bt(α
a
k) at the kth antenna of the ath receiving system, by computing the product of

its prior distribution, which is indicated by the prior-related message and all the incoming messages from

all the neighboring antennas Ba
k , which is indicated by the measurement-related messages. We evaluate

the two kinds of messages, namely, measurement-related messages, mfa
kn→αa

k
, and prior-related message,

mfa
k→αa

k
, as follows:

mfa
kn→αa

k
(αa

k) =

∫

n∈Ba
k

p(γkn|α
a
k, α

b
n) bt−1(α

b
n) dα

b
n,

= N
(

αa
k : µa

kn,t, (σ
a
kn,t)

2

)

and
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mfa
k→αa

k
= N

(

αa
k : µa

pk,t, (σ
a
pk,t)

2

)

, (3)

where mfa
kn→αa

k
takes into account the belief of the nth neighboring antenna, n ∈ Ba

k with µa
kn,t =

µb
n,t−1

−
1
Tγkn,t

Lk,tLn,t

and (σa
kn,t)

2 =
ν2kn

2Lk,tLn,t

+ (σa
n,t−1

)2. In addition, mfa
k→αa

k
, represents the prior

distribution formulated as a Gaussian, with mean µa
pk,t and variance (σa

pk,t)
2. Note that interested authors

can find detailed derivations of (2) and (3) in [7]. Details regarding the calculation of prior distribution

for different antennas is given in the Section IV-B.

For the kth antenna, we update the belief, as described in (2), by computing the product of measurement-

related messages from its neighboring set of antennas and the prior-related message from itself. The

belief bt(α
a
k) represents the estimated antenna-specific timing error at time instant t.

C. Spoofing status via bi-directional RNNs

During signal-level spoofing, as explained in Section I, the rate of change of the timing errors may be

constant, might have sudden jumps or may even gradually change with time. Given these requirements,

the designed neural network needs to be able to retain information learnt from long multivariate time

sequences, which are obtained from different antennas. Therefore, we authenticate each GPS receiving

system by utilizing all the estimated spoofing-induced timing errors at its antennas, via another AI-based

approach known as RNN that meets these requirements. Note that, existing literature showed evidences

of an increased performance by considering a combination of RNN and Convolutional Neural Network.

However, this involves a longer reaction time to the GPS timing attack. Considering both the reaction

time and detection performance, we employ bi-directional LSTMs for estimating the spoofing status.

We train our neural network to estimate the authenticity of the GPS receiving system based on the

temporal variation of the timing errors at each antenna and the spatial variation indicated by the similarity

in the estimated timing errors across the antennas. Therefore, in the joint BP-RNN, we compute the BP-

estimated timing errors at each time instant, but we estimate the RNN-based spoofing status at periodic

time intervals. In particular, we analyze a time series of the past and future BP-estimated timing errors

to compute the corresponding spoofing status. Therefore, we opt for bi-directional LSTM as compared

to a uni-directional LSTM. This is justified because bi-directional LSTMs preserve the information from

both the past and future, thereby efficiently capturing the big picture trend of the slow-varying timing

errors associated with the sophisticated signal-level spoofing.

As seen in Fig. 3, the employed bi-directional-LSTM architecture consists of an input layer, forward

layer, backward layer, activation layer, and an output layer. In the input layer, we consider W a time instants

of input nodes, denoted by θat−W a:t, such that, θat
△
=[αa

1
, · · · , αa

Ma
]Tt . The outputs from the forward and
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Output layer
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Backward layer

Input layer

Activation layer

LSTM LSTM LSTM LSTM
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t+1 r
a

t+2 r
a

t+3

θ
a

t
θ
a

t+1 θ
a

t+2 θ
a

t+3

Fig. 3: Overall architecture of our bi-directional-LSTM, which takes the antenna-specific timing errors

of all antennas within the ath GPS receiving system, denoted by θat and estimates the spoofing status,

denoted by rat .

backward layers are combined in a Softmax function-based activation layer. This is later provided as

input to the final output layer. The output layer consists of one output node, that is, either 0-authentic or

1-spoofed, thereby indicating the spoofing status rat of the ath receiving system.

The forward and backward layers consist of components called LSTM units, each of which is composed

of a cell, an input gate, an output gate and a forget gate. The cell keeps track of the dependencies among

the input sequence via regulators called gates, which in-turn control the information passed through the

LSTM unit. The input gate decides the extent to which new information flows into the cell, forget gate

controls the extent to which the information is retained, and finally, the output gate controls the extent to

which the information is used to compute the output activation of the LSTM unit. Each gate is paired with

a logistic activation function and also associated with unknown weights and biases, which are estimated

during the training stage. Detailed explanation regarding the working of LSTM is explained in [11].

D. GPS timing via Adaptive EKF

By utilizing the BP estimates of the antenna-specific timing errors, the adaptive EKF module is executed

independently at each GPS receiving system. As explained in [7], we summarize the adaptive EKF in

three stages, namely, adaptive covariance estimation, measurement update and time update. To compute

the adaptive covariance estimation, we first calculate the corrected pseudoranges, which are obtained

by computing the difference between the measured pseudorange and the BP-estimated timing error. By

utilizing the previous estimate of covariance and the Kalman measurement residual, we calculate the

covariance at the current time instant based on an associated value of the forgetting factor [14]. Next, we
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perform measurement update using Kalman filter equations that estimate the navigation state vector of

the master antenna and its associated covariance, by computing the optimal Kalman gain that minimizes

the residual error. The clock bias obtained as output from the adaptive EKF module is used to calculate

the attack-resilient GPS timing that is later given to the PMUs. Next, we propagate the adaptive EKF

module to estimate the predicted navigation state vector for the next time instant using a constant velocity

linear transition matrix.

IV. EXPERIMENTS

In this section, we demonstrate the performance of the proposed wide-area BP-RNN algorithm to not

only detect but also successfully isolate and mitigate the coordinated spoofing attack affecting multiple

power substations.

A. Experimental setup

As seen in Fig. 4, we consider a simulated network of four GPS receiving systems located at Austin,

Boston, Chicago and Kansas City, which are denoted by A, B, C, and D, respectively. At each GPS

receiving system, the installed DMDA setup comprises of three stationary antennas, whose fixed baseline

distances are pre-computed and later used for the calculation of pseudorange residuals, as explained

in Section III-A. The geographical separation between the antennas within the GPS receiving system

are considered such that, they mimic the infrastructure of an actual power substation. Using a publicly

available ephemeris file, we simulated the GPS signals received at each antenna and at each GPS receiving

system via a C++ simulator known as GPS-SIM-SDR [15]. We collected the simulated GPS signals at a

sampling rate of 2.5 MHz. The antennas at each DMDA setup are provided with the selective visibility

of the sky, such that, the field of view are 150−270◦, 270−30◦, and 30−150◦, respectively, in reference

to geographic north.

Based on the signal-level spoofing attack explained in Section I, we introduced a malicious coordinated

spoofing attack that affects two GPS receiving systems, i.e., Austin and Chicago. We simulated two

spoofers, which independently target one GPS receiving system each, by adding high-powered and

simulated malicious samples to the generated authentic simulated GPS samples. Authentic satellite

positions extracted from external ephemeris file are given to the proposed wide-area joint BP-RNN.

B. Implementation details

In this subsection, we describe the various implementation choices related to the prior distribution

of antenna-specific timing errors, communication data protocol, and training of the bi-directional-LSTM.
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(a) System A, Austin (b) System B, Boston

(c) System C, Chicago

(d) System D, Kansas

City

(e) Wide-area network and communication links

Fig. 4: The simulated WAMS experimental setup consists of four GPS receiving systems, each of which

assumes a three antenna-based DMDA setup.

1) Prior distribution:

Utilizing a wide-area network of antennas reduces the sensitivity of the antenna-specific timing errors

on the prior distribution. Therefore, among the N widely-dispersed infrastructures, we choose the GPS

receiving system with the least spoofing risk, i.e., am = argmin
a∈{1,··· ,N}

rat , where rat was computed by RNN.

For the amth receiving system, µpk,t and σ2

pk,t are computed from the empirical distribution calculated
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on-the fly by considering the most recent W timing errors; that is, αam

k,t−W :t∀k = {1, · · · ,Mam
}. The

rest of the GPS receiving systems are assigned by uniform prior distribution, which is approximated as

Gaussian with µa
pk,t = 0 and (σa

pk,t)
2 = ∞,∀a ∈ {1, · · · , N} − am.

2) Communication data protocol:

By utilizing the wide-area communication structure of the power systems, we exchange system data

across different GPS receiving systems in a distributed manner. The system data transmitted/received

from the ath receiving system comprises of the following information: number of antennas Ma as well

as the pseudorange residuals ∆ρik,t and beliefs bt−1(α
a
k) for its kth antenna k ∈ {1, · · · ,Ma}.

3) Training of bi-directional-LSTM network:

We performed training and validation of the bi-directional-LSTM by considering 1 million samples of

input features, namely, BP-estimates of timing errors, which are obtained from different GPS receiving

systems. Out of the 1 million samples, 99% of the data was allocated for training the bi-directional-LSTM,

whereas the rest of 1% was used for validation at the end of 10 training iterations. In addition, out of the 1

million input samples considered, 65% data was generated under authentic conditions, which was obtained

from both real-world GPS signals collected using a GPS receiver and simulated GPS data obtained from

the C++-based GPS simulator. The rest of 35% input samples are generated under different attacker

configurations and different magnitudes of spoofing attacks, We setup the neural network to execute back

propagation so that the corresponding network weights are fine tuned. We consider our cost function to

be mean-squared error and also utilized an Adam optimizer.

TABLE I: Training and validation accuracy for different hyper-parameter settings

Hyper-parameters Accuracy (%)

Hidden

nodes

Batch

size
Iterations Training Validation

50 1028 300 83.4 84.1

100 1028 300 76.9 71.3

50 512 300 72.6 73.7

To train the bi-directional LSTM, we consider a multivariate time sequence as input, with three antennas

at each GPS receiving system and W a = 60, time instants of the past antenna-specific timing errors. The
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training and validation accuracy for different hyper-parameter settings are described in Table I. Based on

this, the final chosen network architecture consists of 50 hidden nodes and a batch size of 1028.

C. Under simulated spoofing attack

The entire time duration of the simulated experiment was 100 s, during which a simulated coordinated

spoofing attack was introduced for a partial duration. Between t = 25-45 s, a signal-level spoofing

attack, corresponding to the first spoofer, was induced at the Cth receiving system located at Chicago. In

particular, we generated simulated spoofed GPS signals that induces a constant change in position of 74 m

and a gradually increasing timing error from 0−45 µs in a span of 20 s. In addition, during t = 20-45 s,

another independent spoofing attack associated to a second spoofer was induced at the Ath receiving

system located at Austin. Without a position change, this spoofing attack induced a gradually increasing

timing error from 0 − 40 µs in a span of 25 s. Because of the DMDA-based antenna configuration and

the direction of attack, the first attacker can only successfully spoof C1 antenna at the Cth receiving

system and the second attacker can only spoof A3 antenna at the Ath receiving system.

Fig. 5(a) shows the wide-area BP estimates of the antenna-specific timing errors at all the GPS receiving

systems. We validated that the proposed wide-area BP-RNN algorithm not only detects C1 and A3

antennas to be affected by spoofing but also accurately estimates the timing error introduced in the system.

In addition, the mean of the antenna-specific timing errors at Bth and Dth GPS receiving systems are

low, thereby, validating its authenticity.

We observe in Fig. 5(b) that the conventional least squares-based timing estimates of omni-directional

antennas placed at both C1 and A3 antenna locations diverged with time and shows an RMS timing error

of 97.35 µs and 58.90 µs, respectively. In particular, after the spoofing attacks starts, the IEEE-C37.118-1

threshold is violated within 13 s at C1 antenna and within 19.5 s at A3 antenna. However, the proposed

wide-area joint BP and RNN algorithm, which starts at t=12 s, shows a steady convergence with the

RMS timing errors as 1.23 µs, 0.56 µs, 1.28 µs and 0.55 µs at A, B, C and Dth GPS receiving systems,

respectively.

Next, in Fig. 6, we validate the robustness of the bi-directional-LSTM network in computing the

spoofing status of the GPS receiving systems. We compare the performance of the trained bi-directional

LSTM network, explained in Section III-C, with that of Kullback-Leibler (KL)-divergence approach,

whose threshold was manually set to 10. In [8], we designed the KL-based metric, such that when the

KL-test statistic is greater than this threshold, the KL-based metric raKL,t = 1 indicating a spoofed GPS

receiving system and raKL,t = 0 otherwise, indicating an authentic condition.
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(a) Mean of antenna-specific timing errors

(b) GPS timing error

Fig. 5: (a) Mean of the BP estimated belief indicating the antenna-specific timing errors at all the receiving

systems. The red, blue and magenta represent the three antennas at four receiving systems (substations);

(b) Timing errors estimated via the proposed wide-area joint BP-RNN algorithm.

At the Cth and Ath receiving systems, the KL-divergence approach detects the spoofing attack for

the first time after 9.8 s and 7.3 s respectively, whereas the BP-RNN approach quickly detects the

spoofing attack after 2.1 s, 1.6 s, respectively. We observe that the bi-directional-LSTM shows a

comparable performance as KL-divergence in terms of low false alarms and misdetections. Therefore,

during coordinated spoofing attack in which both position and timing of multiple power substations
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are manipulated, we demonstrate improved detection times of the proposed wide-area joint BP-RNN

algorithm as compared to the prior work [8].

(a) RNN-based metric

(b) KL-based metric [8]

Fig. 6: Spoofing status estimated using (a) RNN-based metric; (b) KL-based metric.

V. CONCLUSION

In this article, we have introduced a wide-area spoofing-resilient time authentication algorithm using

a network of GPS receiving systems, each consisting of a DMDA setup. By utilizing the communication

network of power systems, we have designed a distributed architecture of AI-based BP framework

that analyzes the pseudorange residuals computed across the power substations of WAMS to estimate

the marginal distribution of the antenna-specific timing errors. After then, we have authenticated each

substation by analyzing the spatial and temporal variations in the BP estimates of timing errors via a

trained bi-directional-LSTM framework.
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We have validated the improved performance of the proposed wide-area joint BP-RNN algorithm using

four GPS receiving systems, each comprising of three antennas-based DMDA setup and subjecting one

GPS receiving system to a simulated signal-level spoofing attack. While a single omni-directional antenna-

based least squares has shown large RMS timing errors of 97.35 µs that violated the IEEE-C37.118

standards within 13 s after the spoofing attack starts, the wide-area BP-RNN algorithm has demonstrated

low RMS timing errors of less than 1.23 µs. While exhibiting low false alarm and misdetection rates,

we have demonstrated that the proposed AI-based RNN metric has quickly detected the spoofing attack

2.1 s after it starts.

Given the availability of large amounts of open-source GPS data, for our future work, we aim to

explore advanced AI approaches, such as ResNets and autoencoders, to further improve the detection

times while reducing the associated false alarm and mis-detection rates.
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