
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Nonlinear Double-Capacitor Model for Rechargeable
Batteries: Modeling, Identification and Validation

Tian, Ning; Fang, Huazhen; Chen, Jian; Wang, Yebin

TR2020-035 April 03, 2020

Abstract
This paper proposes a new equivalent circuit model for rechargeable batteries by modifying
a double-capacitor model proposed in [1]. It is known that the original model can address
the rate capacity and energy recovery effects inherent to batteries better than other models.
However, it is a purely linear model and includes no representation of a battery’s nonlinear
phenomena. Hence, this work transforms the original model by introducing a nonlinear-
mapping-based voltage source and a serial RC circuit. The modification is justified by an
analogy with the single-particle model. Two offline parameter estimation approaches, termed
1.0 and 2.0, are designed for the new model to deal with the scenarios of constant-current and
variable-current charging/discharging, respectively. In particular, the 2.0 approach proposes
the notion of Wiener system identification based on maximum a posteriori estimation, which
allows all the parameters to be estimated in one shot while overcoming the nonconvexity
or local minima issue to obtain physically reasonable estimates. An extensive experimental
evaluation shows that the proposed model offers excellent accuracy and predictive capability.
A comparison against the Rint and Thevenin models further points to its superiority. With
high fidelity and low mathematical complexity, this model is beneficial for various real-time
battery management applications.
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Abstract—This paper proposes a new equivalent circuit model
for rechargeable batteries by modifying a double-capacitor model
proposed in [1]. It is known that the original model can address
the rate capacity and energy recovery effects inherent to batteries
better than other models. However, it is a purely linear model and
includes no representation of a battery’s nonlinear phenomena.
Hence, this work transforms the original model by introducing a
nonlinear-mapping-based voltage source and a serial RC circuit.
The modification is justified by an analogy with the single-particle
model. Two offline parameter estimation approaches, termed 1.0
and 2.0, are designed for the new model to deal with the scenarios
of constant-current and variable-current charging/discharging,
respectively. In particular, the 2.0 approach proposes the notion
of Wiener system identification based on maximum a posteriori
estimation, which allows all the parameters to be estimated in one
shot while overcoming the nonconvexity or local minima issue to
obtain physically reasonable estimates. An extensive experimental
evaluation shows that the proposed model offers excellent accu-
racy and predictive capability. A comparison against the Rint
and Thevenin models further points to its superiority. With high
fidelity and low mathematical complexity, this model is beneficial
for various real-time battery management applications.

Index Terms—Batteries, equivalent circuit model, nonlinear
double-capacitor model, parameter identification, experimental
validation.

I. INTRODUCTION

RECHARGEABLE batteries have seen an ever-increasing
use in today’s industry and society as power sour-

ces for systems of different scales, ranging from consumer
electronic devices to electric vehicles and smart grid. This
trend has motivated a growing body of research on advanced
battery management algorithms, which are aimed to ensure
the performance, safety and life of battery systems. Such
algorithms generally require mathematical models that can
well characterize a battery’s dynamics. This has stimulated
significant attention in battery modeling during the past years,
with the current literature offering a plethora of results.
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There are two main types of battery models: 1) electroche-
mical models that build on electrochemical principles to des-
cribe the electrochemical reactions and physical phenomena
inside a battery during charging/discharging, and 2) equivalent
circuit models (ECMs) that replicate a battery’s current-voltage
characteristics using electrical circuits made of resistors, capa-
citors and voltage sources. With structural simplicity, the latter
ones provide great computational efficiency, thus more suitable
for real-time battery management. However, as the other side
of the coin, the simple circuit-based structures also imply a
difficulty to capture a battery’s dynamic behavior at a high
accuracy. Therefore, this work aims to develop a new ECM
based on the one in [1] so that it can offer high fidelity while
retaining low mathematical complexity, through systematically
investigating the model construction, parameter identification,
and experimental validation.

A. Literature Review

1) Review of Battery Modeling: As mentioned above, the
electrochemical models and ECMs constitute the majority
of the battery models available today. The electrochemical
modeling approach seeks to characterize the physical and
chemical mechanisms underlying the charging/discharging
processes. One of the best-known electrochemical models is
the Doyle-Fuller-Newman model, which describes the con-
centrations and transport of lithium ions together with the
distribution of separate potential in porous electrodes and elec-
trolyte [2–4]. While delineating and reproducing a battery’s
behavior accurately, this model, like many others of similar
kind, involves many partial differential equations and causes
high computational costs. This has driven the development
of some simplified versions, e.g., the single-particle model
(SPM) [4, 5], and various model reduction methods, e.g., [6–
8], toward more efficient computation.

By contrast, the ECMs are generally considered as more
competitive for real-time battery monitoring and control, ha-
ving found their way into various battery management sys-
tems. The first ECM to our knowledge is the Randles model
proposed in the 1940s [9]. It reveals a lead-acid battery’s
ohmic and reactive (capacitive and inductive) resistance, de-
monstrated in the electrochemical reactions and contributing
to various phenomena of voltage dynamics, e.g., voltage drop,
recovery and associated transients. This model has become a
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de facto standard for interpreting battery data obtained from
electrochemical impedance spectroscopy (EIS) [10]. It also
provides a basis for building diverse ECMs to grasp a bat-
tery’s voltage dynamics during charging/discharging. Adding
a voltage source representing the open-circuit voltage (OCV)
to the Randles model, one can obtain the popular Thevenin
model [11–13]. The Thevenin model without the resistance-
capacitance (RC) circuit is called as the Rint model, which
includes an ideal voltage source with a series resistor [12].
If more than one RC circuit is added to the Thevenin model,
it becomes the dual polarization (DP) model that is capable
of capturing multi-time-scale voltage transients during char-
ging/discharging [12].

The literature has also reported a few modifications of the
Thevenin model to better characterize a battery’s dynamics.
Generally, they are based on two approaches. The first one
aims to describe a battery’s voltage more accurately by incor-
porating certain phenomena, e.g., hysteresis, into the voltage
dynamics, or through different parameterizations of OCV with
respect to the state of charge (SoC) [14–20]. Some literature
also models the resistors and capacitors as dependent on SoC,
as well as some other factors like the temperature or rate
and direction of the current loads in order to improve the
accuracy of battery voltage prediction [21, 22]. The second
approach sets the focus on improving the runtime prediction
for batteries. In [23], a battery’s capacity change due to cycle
and temperature is considered and parameterized, and the
dependence of resistors and capacitors on SoC also charac-
terized. A similar investigation is made in [24] to improve
the Thevenin model, which proposes to capture the nonlinear
change of a battery’s capacity with respect to the current loads.

An ECM that shows emerging importance is a double-
capacitor model [1, 25]. It consists of two capacitors con-
figured in parallel, which correspond to an electrode’s bulk
inner part and surface region, respectively, and can describe
the process of charge diffusion and storage in a battery’s
electrode [26]. Compared to the Thevenin model, this circuit
structure allows the rate capacity effect and charge recovery
effect to be captured, making the model an attractive choice for
charging control [26, 27]. However, based on a purely linear
circuit, this model is unable to grasp nonlinear phenomena
innate to a battery—for instance, the nonlinear SoC-OCV
relation is beyond its descriptive capability—and thus has
its applicability limited. The presented work is motivated to
remove this limitation by revamping the model’s structure. The
effort will eventually lead to a new ECM that, for the first time,
can capture the charge diffusion within a battery’s electrode
and its nonlinear voltage behavior simultaneously.

2) Review of Battery Model Identification: A key problem
associated with battery modeling is parameter identification,
which pertains to extracting the unknown model parameters
from the measurement data. Due to its importance, recent
years have seen a growth of research. The existing methods
can be divided into two main categories, experiment-based
and data-based. The first category conducts experiments of
charging, discharging or EIS and utilizes the experimental data
to read a model’s parameters. It is pointed out in [28, 29]
that the transient voltage responses under constant- or pulse-

current charging/discharging can be leveraged to estimate the
resistance, capacitance and time constant parameters of the
Thevenin model. In addition, the relation between SoC and
OCV is a defining characteristic of a battery’s dynamics. It
can be experimentally identified by charging or discharging
a battery using a very small current [30], or alternatively,
using a current of normal magnitude but intermittently (with a
sufficiently long rest period applied between two discharging
operations) [31, 32]. The EIS experiments have also been
widely used to identify a battery’s impedance properties [33–
35]. While involving basic data analysis, the methods of this
category generally put emphasis on the design of experiments.
In a departure, the second category goes deeper into under-
standing the model-data relationship and pursues data-driven
parameter estimation. It can enable provably correct identi-
fication even for complex models, thus often acknowledged
as better at extracting the potential of data. It is proposed
in [36] to identify the Thevenin model by solving a set of
linear and polynomial equations. Another popular means is to
formulate model-data fitting problems and solve them using
least squares or other optimization methods to estimate the
parameters [37–42]. When considering more complicated elec-
trochemical models, the identification usually involves large-
size nonlinear nonconvex optimization problems. In this case,
particle swarm optimization and genetic algorithms are often
exploited to search for the best parameter estimates [3, 43–45].
A recent study presents an adaptive-observer-based parameter
estimation scheme for an electrochemical model [46]. While
the above works focus on identification of physics-based
models, data-driven black-box identification is also examined
in [47–49], which construct linear state-space models via
subspace identification or nonparametric frequency domain
analysis. A topic related with identification is experiment
design, which is to find out the best input sequences to
excite a battery to maximize the parameter identifiability.
In [50, 51], optimal input design is performed by maximizing
the Fisher information matrices—an identifiability metric—
involved in the identification of the Thevenin model and the
SPM, respectively.

The presented work is also related with the literature on
Wiener system identification, because the model to be de-
veloped has a Wiener-type structure featuring a linear dyn-
amic subsystem in cascade with a static nonlinear subsystem.
Wiener systems are an important subject in the field of
parameter identification, and a reader is referred to [52] for
a collection of recent studies. Wiener system identification
based on maximum likelihood (ML) estimation is investigated
in [53, 54], which shows significant promises. However, the
optimization procedure resulting from the ML formulation
can easily converge to local minima due to the presence of
the nonlinear subsystem. This hence yields a motivation to
enhance the notion of ML-based identification in this work to
achieve more effective battery parameter estimation.

B. Statement of Contributions
This work presents the following contributions.
• A new ECM, named the nonlinear double-capacitor

(NDC) model, is developed. By design, it transforms the
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linear double-capacitor model in [1] by coupling it with a
nonlinear circuit mimicking a battery’s voltage behavior.
With this pivotal change, the NDC model introduces two
advantages over existing ECMs. First, it can simulate
not only the charge diffusion characteristic of a battery’s
electrochemical dynamics, but also the critical nonlinear
electrical phenomena. This unique feature guarantees the
model’s better accuracy, which comes at only a very slight
increase in model complexity. Second, the NDC model
can be interpreted as a circuit-based approximation of the
SPM. This further justifies its soundness while inspiring
a refreshed look at the connections between the SPM and
ECMs.

• Parameter identification is investigated for the proposed
model. This begins with a study of the constant-current
charging/discharging scenario, with an identification ap-
proach, termed 1.0, developed by fitting parameters with
the measurement data. Then, shifting the focus to the sce-
nario of variable-current charging/discharging, the study
introduces a Wiener perspective into the identification
of the NDC model due to its Wiener-type structure. A
Wiener identification approach is proposed for the NDC
model based on maximum a posteriori (MAP) estimation,
which is termed 2.0. Compared to the ML-based coun-
terparts in the literature, this new approach incorporates
into the estimation a prior distribution of the unknown
parameters, which represents additional information or
prior knowledge and can help drive the parameter search
toward physically reasonable values.

• Experimental validation is performed to assess the pro-
posed results. This involves multiple experiments about
battery discharging under different kinds of current profi-
les and a comparison of the NDC model with the Rint and
Thevenin models. The validation shows the considerable
accuracy and predictive capability of the NDC model, as
well as the effectiveness of the 1.0 and 2.0 identification
approaches.

C. Organization

The remainder of the paper is organized as follows.
Section II presents the construction of the NDC model.
Section III studies parameter identification for the NDC model
in the constant-current charging/discharging scenario. Inspi-
red by Wiener system identification, Section IV proceeds
to develop an MAP-based parameter estimation approach to
identify the NDC model. Section V offers the experimental
validation. Finally, Section VI gathers concluding remarks and
suggestions for future research.

II. NDC MODEL DEVELOPMENT

This section develops the NDC model and presents the
mathematical equations governing its dynamic behavior.

To begin with, let us review the original linear double-
capacitor model proposed in [1]. As shown in Figure 1(a),
this model includes two capacitors in parallel, Cb and Cs,
each connected with a serial resistor, Rb and Rs, respectively.
The double-capacitor structure simulates a battery’s electrode,
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Figure 1: (a) The original double-capacitor model; (b) the
proposed NDC model.

providing storage for electric charge, and the parallel con-
nection between them allows the transport of charge within
the electrode to be described. Specifically, one can consider
the Rs-Cs circuit as corresponding to the electrode surface
region exposed to the electrolyte; the Rb-Cb circuit represents
an analogy of the bulk inner part of the electrode. As such,
this model has the following features:
• Cb � Cs and Rb � Rs;
• Cb is where the majority of the charge is stored, and
Rb-Cb accounts for low-frequency responses during char-
ging/discharging;

• Cs is much smaller, and its voltage changes at much faster
rates than that of Cb during charging/discharging, making
Rs-Cs responsible for high-frequency responses.

In addition, R0 is included to embody the electrolyte re-
sistance. This model was designed in [1] for high-power
lithium-ion batteries, and its application can naturally extend to
double-layer capacitors that are widely used in hybrid energy
storage systems, e.g., [55].

As pointed out in [26], the linear double-capacitor model
can grasp the rate capacity effect, i.e., the total charge absorbed
(or released) by a battery goes down with the increase in
charging (or discharging) current. To see this, just notice that
the terminal voltage V mainly depends on Vs (the voltage
across Cs), which changes faster than Vb (the voltage across
Cb). Thus, when the current I is large, the fast rise (or
decline) of Vs will make V hit the cut-off threshold earlier than
when Cb has yet to be fully charged (or discharged). Another
phenomenon that can be seized is the capacity and voltage
recovery effect. That is, the usable capacity and terminal
voltage would increase upon the termination of discharging
due to the migration of charge from Cb to Cs. However,
this model by nature is a linear system, unable to describe a
defining characteristic of batteries—the nonlinear dependence
of OCV on the SoC. It hence is effective only when a battery



4

is restricted to operate conservatively within some truncated
SoC range that permits a linear approximation of the SoC-
OCV curve.

To overcome the above issue, the NDC model is proposed,
which is shown in Figure 1(b). It includes two changes. The
primary one is to introduce a voltage source U , which is a
nonlinear mapping of Vs, i.e., U = h(Vs). Second, an RC
circuit, R1-C1, is added in series to U . Next, let us justify
the above modifications from a perspective of the SPM, a
simplified electrochemical model that has recently attracted
wide interest.

Figure 2 gives a schematic diagram of the SPM. The
SPM represents an electrode as a single spherical particle.
It describes the mass balance and diffusion of lithium ions
in a particle during charging/discharging by Fick’s second
law of diffusion in a spherical coordinate system [5]. If
subdividing a spherical particle into two finite volumes, the
bulk inner domain (core) and the near-surface domain (shell),
one can simplify the diffusion of lithium ions between them
as the charge transport between the capacitors of the double-
capacitor model, as proven in [26]. For SPM, the terminal
voltage consists of three elements: the difference in the open-
circuit potential of the positive and negative electrodes, the
difference in the reaction overpotential, and the voltage across
the film resistance [4]. The open-circuit potential depends
on the lithium-ion concentration in the surface region of the
sphere, which is akin to the role of Vs here. Therefore, it
is appropriate as well as necessary to introduce a nonlinear
function of Vs, i.e., h(Vs), as an analogy to the open-circuit
potential. With U = h(Vs), the NDC model can correctly
show the influence of the charge state on the terminal voltage,
while inheriting all the capabilities of the original model.

Furthermore, the NDC model also contains an RC circuit,
R1-C1, which, together with R0, simulates the impedance-
based part of the voltage dynamics. Here, R0 characterizes
the linear kinetic aspect of the impedance, which relates
to the ohmic resistance and solid electrolyte interface (SEI)
resistance [56]; R1-C1 accounts for the voltage transients
related with the charge transfer on the electrode/electrolyte
interface and the ion mass diffusion in the battery [57]. This
work finds that one RC circuit can offer sufficient fidelity,
though it is possible to connect more RC circuits serially with
R1-C1 to gain better accuracy.

The dynamics of the NDC model can be expressed in the
state-space form as follows:

V̇b(t)V̇s(t)

V̇1(t)

 = A

Vb(t)Vs(t)
V1(t)

+BI(t),

V (t) = h(Vs(t))− V1(t) +R0I(t),

(1a)

(1b)

where

A =


−1

Cb(Rb+Rs)
1

Cb(Rb+Rs) 0
1

Cs(Rb+Rs)
−1

Cs(Rb+Rs) 0

0 0 −1
R1C1

 , B =


Rs

Cb(Rb+Rs)
Rb

Cs(Rb+Rs)
−1
C1

 .
In above, I > 0 for charging, I < 0 for discharging, and
V1 refers to the voltage across the R1-C1 circuit. One can
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Figure 2: The single-particle model (top), and a particle
(bottom) subdivided into two volumes, core and shell, which
correspond to Rb-Cb and Rs-Cs, respectively.

parameterize h(Vs) as a polynomial. A fifth-order polynomial
is empirically selected here:

h(Vs) = α0 + α1Vs + α2V
2
s + α3V

3
s + α4V

4
s + α5V

5
s ,

where αi for i = 0, 1, . . . , 5 are coefficients. Note that h(Vs)
should be lower and upper bounded, depending on a battery’s
operating voltage range. This implies that Vb and Vs must also
be bounded. For any bounds selected for them, it is always
possible to find out a set of coefficients αi’s to satisfy h(·).
Hence, one can straightforwardly normalize Vb and Vs to let
them lie between 0 V and 1 V, without loss of generality. In
other words, Vb = Vs = 1 V at full charge (SoC = 1) and
that Vb = Vs = 0 V for full depletion (SoC = 0). Following
this setting, SoC is given by

SoC =
Qa
Qt

=
CbVb + CsVs
Cb + Cs

, (2)

where Qt = Cb + Cs denotes the total capacity, and Qa =
CbVb +CsVs the available capacity, respectively. It is easy to
verify that the SoC’s dynamics is governed by

˙SoC =
[

Cb

Cb+Cs

Cs

Cb+Cs
0
]V̇bV̇s

V̇1

 =
1

Qt
I. (3)

Meanwhile, it is worth noting that the SoC-OCV function
would share the same form with h(·). To see this point, recall
that OCV refers to the terminal voltage when the battery
is at equilibrium without current load. For the NDC model,
the equilibrium happens when Vb = Vs, V1 = 0 V and
I = 0 A, and in this case, Vs = SoC according to (2),
and OCV = h(Vs). This suggests that OCV = h(SoC). In
addition, the internal resistance R0 is also assumed to be SoC-
dependent following the recommendation in [58], taking the
form of

R0 = γ1 + γ2e
−γ3SoC + γ4e

−γ5(1−SoC). (4)

The rest of this paper will center on developing parameter
identification approaches to determine the model parameters
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using measurement data and apply identified models to expe-
rimental datasets to evaluate their predictive accuracy.

III. PARAMETER IDENTIFICATION 1.0:
CONSTANT-CURRENT CHARGING/DISCHARGING

This section studies parameter identification for the NDC
model when a constant current is applied to a battery. The
discharging case is considered here without loss of generality.
In a two-step procedure, the h(·) function is identified first,
and the impedance and capacitance parameters estimated next.

A. Identification of h(·)
The SOC-OCV relation of the NDC model is given by

OCV = h(SoC), as aforementioned in Section II. Hence,
one can identify h(·) by fitting it with a battery’s SoC-OCV
data. To obtain the SoC-OCV curve, one can discharge a
battery using a small current (e.g., 1/25 C-rate as suggested
in [30]) from full to empty. In this process, the terminal
voltage V can be taken as OCV. Immediately one can see
that α0 = V and

∑5
i=0 αi = V , where V and V are the

minimum and maximum value of V in the process. Therefore,
OCV = h(SoC) can be written as a function of αi for
i = 1, 2, . . . , 4 as follows:

OCV = V +

4∑
i=1

αiSoCi +

(
V − V −

4∑
i=1

αi

)
SoC5,

where OCV can be read directly from the terminal voltage
measurements. By (3), SoC can be calculated using the cou-
lomb counting method as follows:

SoC = 1 +
1

Qt
It.

From above, one can observe that αi for i = 1, 2, . . . , 4 can
be identified by solving a data fitting problem, which can be
addressed as a linear least squares problem. The identification
results are unique and can be easily obtained. Then with α0 =
V and α5 = V − V −

∑4
i=1 αi, the function h(·) becomes

explicit and ready for use.

B. Identification of Impedance and Capacitance

Now, consider discharging the battery by a constant cur-
rent of normal magnitude to determine the impedance and
capacitance parameters. The identification can be attained by
expressing the terminal voltage in terms of the parameters and
then fitting it to the measurement data.

1) Terminal Voltage Response Analysis: Consider a battery
left idling for a long period of time, and then discharge it using
a constant current. According to (1a), Vs can be derived as

Vs(t) = Vs(0) +
It

Cb + Cs
+
Cb(RbCb −RsCs)I

(Cb + Cs)2

·
[
1− exp

(
− Cb + Cs
CbCs(Rb +Rs)

t

)]
, (5)

where Vs(0) is known to us as it can be accessed from
SoC(0) when the battery is initially relaxed. However, it is
impossible to identify Cb, Rb, Cs and Rs altogether. This

issue can be seen from (5), where Vs depends on three para-
meters, i.e., 1/(Cb+Cs), Cb(RbCb −RsCs)/(Cb + Cs)

2 and
(Cb+Cs)/ [CbCs(Rb +Rs)]. Even if the three parameters are
known, it is still not possible to extract all the four individual
impedance and capacitance parameters from them due to the
parameter redundancy. Therefore, one can sensibly assume
Rs = 0, as recommended in [59]. This is a tenable assumption
for the NDC model since Rs � Rb as aforementioned. As a
result, (5) reduces to

Vs(t) = Vs(0) + β1It+ β2I
(
1− e−β3t

)
, (6)

where

β1 =
1

Cb + Cs
, β2 =

RbC
2
b

(Cb + Cs)2
, β3 =

Cb + Cs
CbCsRb

.

Here, β1 is known because Qt has been calibrated by coulomb
counting in Section III-A. When β2 and β3 are also available,
Cb, Cs and Rb can be reconstructed as follows:

Cb =
β2β3

β1(β1 + β2β3)
, Cs =

1

β1 + β2β3
, Rb =

1

β1β3CbCs
.

Further, in the above constant-current discharging scenario, the
evolution of V1 follows

V1(t) = e−β5tV1(0)− Iβ4

(
1− e−β5t

)
, (7)

where
β4 = R1, β5 =

1

R1C1
.

Since the battery has idled for a long period prior to dischar-
ging, V1(0) relaxes at zero and can be removed from (7).

Then, combining (1b), (4), (6) and (7), the terminal voltage
response is given by

V (θ; t) =

5∑
i=0

αiV
i
s (θ; t) + Iθ3

(
1− e−θ4t

)
+ Iθ5

+ Iθ6e
−θ7SoC(t) + Iθ8e

−θ9(1−SoC(t)). (8)

with

θ =
[
β2 β3 β4 β5 γ1 γ2 γ3 γ4 γ5

]>
,

and

Vs(θ; t) = Vs(0) + It/Qt + θ1I
(
1− e−θ2t

)
,

SoC(t) = SoC(0) + It/Qt.

2) Data-Fitting-Based Identification of θ: In above, the
terminal voltage V is expressed in terms of θ, allowing
one to identify θ by minimizing the difference between the
measured voltage and the voltage predicted by (8). Hence, a
data fitting problem similar to the one in Section III-A can be
formulated. It should be noted that the resultant optimization
will be nonlinear and nonconvex due to the presence of h(·).
As a consequence, a numerical algorithm may get stuck in
local minima and eventually give unreasonable estimates. A
promising way of mitigating this challenge is to constrain the
numerical optimization search within a parameter space that
is believably correct. Specifically, one can roughly determine
the lower and upper bounds of part or all of the parameters,
set up a limited search space, and run numerical optimization
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within this space. With this notion, the identification problem
can be formulated as a constrained optimization problem:

θ̂ = arg min
θ

1

2
[y − V (θ)]

>
Q−1 [y − V (θ)] ,

s.t. θ ≤ θ ≤ θ,

(9a)

(9b)

where θ̂ is the estimate of θ, θ and θ are the pre-set lower
and upper bounds of θ, respectively, y the terminal voltage
measurement vector, Q an M×M symmetric positive definite
matrix representing the covariance of the measurement noise,
with M being the number of the data points. Besides,

y =
[
y(t1) y(t2) · · · y(tM )

]>
,

V (θ) =
[
V (θ; t1) V (θ; t2) · · · V (θ; tM )

]>
.

Multiple numerical algorithms are available in the literature
to solve (9), a choice among which is the interior-point-based
trust-region method [39].

IV. PARAMETER IDENTIFICATION 2.0:
VARIABLE-CURRENT CHARGING/DISCHARGING

While it is not unusual to charge or discharge a battery at
a constant current, real-world battery systems such as those
in electric vehicles generally operate at variable currents.
Motivated by practical utility, an interesting and challenging
question is: Will it be possible to estimate all the parameters of
the NDC model in one shot when an almost arbitrary current
profile is applied to a battery? Having this question addressed
will greatly improve the availability of the model, even to an
on-demand level, for battery management tasks. This section
offers a study in this regard from a Wiener identification
perspective. It first unveils the NDC model’s inherent Wiener-
type structure and then develops an MAP-based identification
approach. Here, the study assumes R0 to be constant for
convenience.

A. Wiener-Type Strucutre of the NDC Model

The NDC model is structurally similar to a Wiener system—
the double RC circuits constitute a linear dynamic subsystem,
and cascaded with it is a nonlinear mapping. The following
outlines the discrete-time Wiener-type formulation of (1).

Suppose that (1a) is sampled with a time period ∆T and
then discretized by the zero-order-hold (ZOH) method. The
discrete-time model is expressed as

x(tk+1) = Adx(tk) +BdI(tk), (10)

where k is the discrete-time index with tk = k∆T , and

Ad = eA∆T , Bd =

(∫ ∆T

0

eAτdτ

)
B.

Let us use t instead of tk to represent the discrete time instant
in sequel for notational simplicity. Then, (10) can be written
as

x(t) = (qI3×3 −Ad)−1BdI(t) + (qI3×3 −Ad)−1qx(0),

where q is the forward shift operator, and I3×3 ∈ R3×3 is an
identity matrix, respectively. Since Vs(t) =

[
0 1 0

]
x(t)

and V1(t) =
[
0 0 1

]
x(t), one can obtain the following

after some lengthy derivation:

Vs(t) = G1(q)I(t) +G2(q)Vs(0),

V1(t) = G3(q)I(t) +G4(q)V1(0),

(11)
(12)

where

G1(q) =
(β1 + β2)q−1 − (β1β3 + β2)q−2

1− (1 + β3)q−1 + β3q−2
,

G2(q) =
1

1− q−1
,

G3(q) =
β4q
−1

1 + β5q−1
,

G4(q) =
1

1 + β5q−1
,

with

β1 =
A21B11 +A12B21

A12 +A21
∆T,

β2 =
A21(B21 −B11)

(A12 +A21)2
(1− β3) ,

β3 = e−(A12+A21)∆T ,

β4 = − (β5 + 1)B31/A33,

β5 = −eA33∆T .

Note that the notation β is slightly abused above without
causing confusion. Assume that the battery has been at rest
for a sufficiently long time to achieve an equilibrium state
before a test. In this setting, Vs(0) = SoC(0), V1(0) = 0 V,
and G4(q)V1(0) = 0. Besides, one can also see that the same
parameter redundancy issue as in Section III-B occurs again—
only three parameters, β1 through β3, appear in (11), but four
physical parameters, Cb, Cs, Rb and Rs, need to be identified.
To fix this, let Rs = 0 as was done before. Then β1 through
β3 reduce to be

β1 =
∆T

Cb + Cs
, β2 =

RbC
2
b (1− β3)

(Cb + Cs)2
, β3 = e

− Cb+Cs
CbCsRb

∆T
.

If β1 through β5 become available, the physical parameters
can be reconstructed as follows:

Cb =
∆T

β1
− Cs, Cs =

(1− β3) ∆T

β1 − β1β3 − β2logβ3
,

Rb = − (∆T )
2

CbCsβ1logβ3
, R1 =

−β4

β5 + 1
, C1 =

−∆T

log(−β5)R1
.

Finally, it is obvious that

V (t) = h [G1(q)I(t) +G2(q)Vs(0)]−G3(q)I(t) +R0I(t).

(13)
The above equation reveals the block-oriented Wiener-type
structure of the NDC model, as depicted in Figure 3, in which
the linear dynamic model G1(q) and the nonlinear function
h(Vs) are interconnected sequentially. Given (13), the next
pursuit is to estimate all of the parameters simultaneously,
which include αi for i = 1, 2, . . . , 4, βi for i = 1, 2, . . . , 5,
and R0. Here, α0 and α5 are free of identification as they can
be expressed by αi for i = 1, 2, . . . , 4 (see Section III-A).
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Figure 3: The Wiener-type structure of the nonlinear double-capacitor (NDC) model.

B. MAP-Based Wiener Identification

Consider the following model based on (13) for notational
convenience:

z(t) = V (θ;u(t)) + v(t), (14)

where u is the input current I , z the measured voltage, v
the measurement noise added to V and assumed to follow a
Gaussian distribution N (0, σ2), and

V (θ;u(t)) = h [G1(q,θ)u(t) +G2(q)Vs(0),θ]

−G3(q,θ)u(t) + θ10u(t),

with

θ =
[
α1 α2 α3 α4 β1 β2 β3 β4 β5 R0

]>
.

The input and output datasets are denoted as

u =
[
u(t1) u(t2) · · · u(tN )

]> ∈ RN×1,

z =
[
z(t1) z(t2) · · · z(tN )

]> ∈ RN×1,

where N is the total number of data samples. A combination
of them is expressed as

Z =
[
u z

]
.

An ML-based approach is developed in [53] to deal with
Wiener system identification. If applied to (14), it leads to
consideration of the following problem:

θ̂ = arg max
θ

p(Z|θ).

Following this line, one can derive a likelihood cost function
and perform minimization to find out θ̂. However, this method
can be vulnerable to the risk of local minima because of
the nonconvexity issue resulting from the static nonlinear
function h(·). This can cause unphysical estimates. While
carefully selecting an initial guess is suggested to alleviate this
problem [60], it is often found inadequate for many practical
systems. In particular, our study showed that it could hardly
deliver reliable parameter estimation when used to handle the
NDC model identification.

MAP-based Wiener identification thus is proposed here to
overcome this problem. The MAP estimation can incorporate
some prior knowledge about parameters to help drive the para-
meter search toward a reasonable minimum point. Specifically,
consider maximizing the a posteriori probability distribution
of θ conditioned on Z:

θ̂ = arg max
θ

p(θ|Z). (15)

By the Bayes’ theorem, it follows that

p(θ|Z) =
p(Z|θ) · p(θ)

p(Z)
∝ p(Z|θ) · p(θ).

In above, p(θ) quantifies the prior information available about
θ. A general way is to characterize it as a Gaussian random
vector following the distribution p(θ) ∼ N (m,P ). Based
on (14), p(z|θ) ∼ N (V (θ;u),R), where R = σ2I and

V (θ;u) =
[
V (θ;u(t1)) · · · V (θ;u(tN ))

]>
.

Then,

p(Z|θ) · p(θ)

∝ exp

(
− 1

2
[z − V (θ;u)]

>
R−1 [z − V (θ;u)]

)
· exp

(
−1

2
(θ −m)

>
P−1 (θ −m)

)
.

If using the log-likelihood, the problem in (15) is equivalent
to

θ̂ = arg min
θ
J(θ), (16)

where

J(θ) =
1

2
[z − V (θ;u)]

>
R−1 [z − V (θ;u)]

+
1

2
(θ −m)

>
P−1 (θ −m) .

For the nonlinear optimization problem in (16), one can exploit
the quasi-Newton method to numerically solve it [53]. This
method iteratively updates the parameter estimate through

θk+1 = θk + λksk. (17)
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Here, λk denotes the step size at iteration step k, and sk is
the gradient-based search direction given by

sk = −Bkgk, (18)

where Bk ∈ R10×10 is a positive definite matrix that approx-
imates the Hessian matrix ∇2J (θk), and gk = ∇J (θk) ∈
R10×1. Based on the well-known BFGS update strategy [61],
Bk can be updated by

Bk =

(
I − δkγ

>
k

δ>k γk

)
Bk−1

(
I − γkδ

>
k

δ>k γk

)
+
δkδ
>
k

δ>k γk
, (19)

with δk = θk − θk−1 and γk = gk − gk−1. In addition,

gk = −
(
∂V (θk;u)

∂θk

)>
R−1 [z − V (θk;u)]

+ P−1 (θk −m) , (20)

where each column of ∂V (θ;u)
∂θ ∈ RN×10 is given by

∂V (θ;u)

∂θi
= x◦i − x◦5 for i = 1, 2, . . . , 4,

∂V (θ;u)

∂θ5
= Σ ◦ q−1 − θ7q

−2

1− (1 + θ7)q−1 + θ7q−2
u,

∂V (θ;u)

∂θ6
= Σ ◦ q−1 − q−2

1− (1 + θ7)q−1 + θ7q−2
u,

∂V (θ;u)

∂θ7
= Σ ◦ θ6q

−2 − 2θ6q
−3 + θ6q

−4

(1− (1 + θ7)q−1 + θ7q−2)
2u,

∂V (θ;u)

∂θ8
=

−q−1

1 + θ9q−1
u,

∂V (θ;u)

∂θ9
=

θ8q
−2

1 + 2θ9q−1 + θ2
9q
−2
u,

∂V (θ;u)

∂θ10
= u,

with
x = G1(q,θ)u+G2(q)Vs(0)1,

Σ =

4∑
i=1

iθix
◦(i−1) + 5

(
V − V −

4∑
i=1

θi

)
x◦4.

Here, x ◦ u denotes the Hadamard product of x and u, x◦2

denotes the Hadamard power with x◦2 = x◦x, and 1 ∈ RN×1

denotes a column vector with all elements equal to one.
Finally, note that λk needs to be chosen carefully to

make J(θ) decrease monotonically. One can use the Wolfe
conditions and let λk be selected such that

J (θk + λksk) ≤ J (θk) + c1λkg
>
k sk,

∇J (θk + λksk)
>
sk ≥ c2∇J (θk)

>
sk,

(21a)

(21b)

with 0 < c1 < c2 < 1. For the quasi-Newton method,
c1 is usually set to be quite small, e.g., c1 = 10−6, and
c2 is typically set to be 0.9. The selection of λk can be
based on trial and error in implementation. One can start
with picking a number and check the Wolfe conditions. If
the conditions are not satisfied, reduce the number and check
again. An interested reader is referred to [61] for detailed
discussion about the λk selection. Summarizing the above,

Table I: Quasi-Newton-based implementation for MAP-based
Wiener identification.

Initialize θ0 and set the convergence tolerance
repeat

Compute gk via (20)
if k = 0 then

Initialize B0 = 0.001 1
‖g0‖I

else
Compute Bk via (19)

end if
Compute sk via (18)
Find λk that satisfies the Wolfe conditions (21)
Perform the update via (17)

until J(θk) converges
return θ̂ = θk

Table I outlines the implementation procedure for the MAP-
based Wiener identification.

Remark 1: While the MAP estimation has enjoyed a long
history of addressing a variety of estimation problems, no
study has been reported about its application to Wiener system
identification to our knowledge. Here, it is found to be a very
useful approach for providing physically reasonable parameter
estimation for practical systems, as it takes into account
some prior knowledge about the unknown parameters. In a
Gaussian setting as adopted here, the prior p(θ) translates into
a regularization term in J(θ), which prevents incorrect fitting
and enhances the robustness of the numerical optimization
against nonconvexity.

Remark 2: The proposed 2.0 identification approach requires
some prior knowledge of the parameters to be available, which
can be developed in several ways in practice. First, R0 can be
roughly estimated using the voltage drop at the beginning of
the discharge, to which it is a main contributor. Second, the
polynomial coefficients of h(·) can be approximately obtained
from an experimentally calibrated SoC-OCV curve if there
is any. Third, one can derive a rough range for Cb + Cs if
a battery’s capacity is approximately known. Finally, as the
parameters of batteries of the same kind and brand are usually
close, one can take the parameter estimates acquired from one
battery as prior knowledge for another.

Remark 3: A prerequisite for successful identification is
that the parameters must be identifiable in a certain sense.
Following along similar lines as in [18, 62], one can rigorously
define the parameters’ local identifiability for the considered
Wiener identification problem and find out that a sufficient
condition for it to hold is the full rankness of the sensitivity
matrix ∂V (θ;u)/∂θ, which can be used for identifiability
testing. Using this idea, our simulations consistently showed
the full rankness of the sensitivity matrix under variable cur-
rent profiles such as those in Figure 8, indicating that the NDC
model can be locally identifiable. Related with identification is
optimal input design, which concerns designing the best cur-
rent profile to maximize the parameter identifiability [50, 51].
It will be part of our future research to explore this interesting
problem for the NDC model.
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Remark 4: It is worth mentioning that the 2.0 identification
approach can be readily extended to identify some other
ECMs that have a Wiener-like structure like the Rint and
Thevenin models. One can follow similar lines to develop the
computational procedures for each, and hence the details are
skipped here.

Remark 5: The 1.0 and 2.0 identification approaches are
designed to perform offline identification for the NDC model,
each with its own advantages. The 1.0 approach is designed
for in-lab battery modeling and analysis, using simple two-
step (trickle- and constant-current discharging) battery testing
protocols. While requiring a long time for experiments, it can
offer high accuracy in parameter estimation. More sophistica-
ted by design, the 2.0 approach can extract the parameters all
at once from data based on variable current profiles. It can
be conveniently exploited to determine the NDC model for
batteries operating in real-world applications.

V. EXPERIMENTAL VALIDATION

This section presents experimental validation of the pro-
posed NDC model and parameter identification 1.0 and 2.0
approaches. All the experiments in this section were conducted
on a PEC R© SBT4050 battery tester (see Figure 4). It can
support charging/discharging with arbitrary current-, voltage-
and power-based loads (up to 40 V and 50 A). A specialized
server is used to prepare and configure a test offline and
collect experimental data online via the associated software
LifeTestTM. Using this facility, charging/discharging tests were
performed to generate data on a Panasonic NCR18650B
lithium-ion battery cell, which was set to operate between 3.2
V (fully discharged) and 4.2 V (fully charged).

A. Validation Based on Parameter Identification 1.0

This validation first extracts the NDC model from training
datasets using the 1.0 identification approach in Section III
and then applies the identified model to validation datasets to
assess its predictive capability.

As a first step, the cell was fully charged and relaxed for
a long time period. Then, a full discharge test was applied
to the cell using a trickle constant current of 0.1 A (about
1/30 C-rate). With this test, the total capacity is determined to
be Qt = 3.06 Ah by coulomb counting, implying Cb +Cs =
11, 011 F. Further, from the SoC-OCV curve fitting, we obtain

OCV = 3.2 + 2.59 · SoC− 9.003 · SoC2 + 18.87 · SoC3

− 17.82 · SoC4 + 6.325 · SoC5,

which establishes h(·) immediately. The measured and iden-
tified SoC-OCV curves are compared in Figure 5. Next, the
cell was fully charged again and left idling for a long time.
This was then followed by a full discharge using a constant
current of 3 A to produce data for estimation of the impedance
and capacitance parameters. The identification was achieved
by solving the constrained optimization problem in (9). The
computation took around 1 sec, performed on a Dell Precision
Tower 3620 equipped with 3 GHz Inter Xeon CPU, 16 Gb
RAM and MATLAB R2018b. Table II summarizes the initial
guess, lower and upper bounds, and obtained estimates of the

Figure 4: PEC R© SBT4050 battery tester.
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Figure 5: Identification 1.0: parameter identification of h(·)
that defines SoC-OCV relation.

parameters. The physical parameter estimates are extracted as:
Cb = 10, 037 F, Cs = 973 F, Rb = 0.019 Ω, Rs = 0,
R1 = 0.02 Ω, C1 = 3, 250 F, and

R0 = 0.0531 + 0.1077e−3.807·SoC + 0.0533e−7.613·(1−SoC).

The model is now fully available from the two steps. Figure 6
shows that it accurately fits with the measurement data.

As a model generally can well fit a training dataset, it
is more meaningful and revealing to examine its predictive
performance on some different datasets. Hence, five more tests
were conducted by discharging the cell using constant currents
of 1.5 A, 2.5 A and 3.5 A and two variable current profiles,
respectively. Figure 7 shows what the identified model predicts
for discharging at constant currents. An overall high accuracy
is observed, even though the prediction is slightly less accurate
when the current is 1.5 A, probably because the parameters
are current-dependent to a certain extent. The variable current
profiles are portrayed in Figures 8(a) and 9(a), which were
created by scaling the Urban Dynamometer Driving Schedule
(UDDS) profile in [63] to span the ranges of 0∼3 A and 0∼6
A, respectively. Figures 8(b) and 9(b) present the predictive
fitting results. Both of them illustrate that the model-based
voltage prediction is quite close to the actual measurements.
These results demonstrate the excellent predictive capability
of the NDC model.

B. Validation Based on Parameter Identification 2.0

Let us now consider the 2.0 identification approach develo-
ped in Section III, which treats the NDC model as a Wiener-
type system and performs MAP-based parameter estimation.
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Table II: Identification 1.0: initial guess, bound limits and identification results.

Name β2 β3 β4 β5 γ1 γ2 γ3 γ4 γ5

Initial guess 0.02 0.05 0.005 1/100 0.05 0.2 8 0.07 12
θ 0.005 0.005 0.001 1/800 0.01 0.05 1 0.01 1
θ 0.2 0.2 0.03 1/10 0.09 0.35 15 0.12 15
θ̂ 0.0163 0.0575 0.02 1/65 0.0531 0.1077 3.807 0.0533 7.613

Note: quantities are given in SI standard units in Tables II and III.

Table III: Identification 2.0: initial guess, prior knowledge and identification results.

Name α1 α2 α3 α4 β̆1 β̆2 β̆3 β4 β5 R0

Initial guess 2.59 -9.003 18.87 -17.82 9.078 × 10−5 8.914 × 10−4 0.964 −4.938 × 10−4 −0.9753 0.08
m - - - - 9.078 × 10−5 8.914 × 10−4 0.964 −4.938 × 10−4 −0.9753 0.08√

diag(P ) - - - - 0.001 ×m5 0.15 ×m6 0.15 ×m7 0.15 ×m8 0.15 ×m9 0.15 ×m10

θ̂ 2.32 -8.15 19.345 -20.78 9.082 × 10−5 9.227 × 10−4 0.982 −4.859 × 10−4 −0.8153 0.069
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Figure 6: Identification 1.0: model fitting with the training
data obtained under 3 A constant-current discharging.
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Figure 7: Identification 1.0: predictive fitting over validation
data obtained by discharging at different constant currents.

This approach advantageously allows all the parameters to be
estimated in a convenient one-shot procedure.

Following the manner in Section V-A, one can apply the 2.0
approach to a training dataset to extract an NDC model and
then use it to predict the responses over several other different
datasets. The validation here is also set to evaluate the NDC
model against the Rint model [12] and the Thevenin model
with one serial RC circuit [12], which are commonly used in

the literature. The comparison also extends to a basic version
of the NDC model (referred to as “basic NDC” in sequel),
one with a constant R0 and without R1-C1 circuit, with the
purpose of examining the utility of the NDC model when it is
reduced to a simpler form. Note that, even though the NDC
model is the most sophisticated among them, all of the four
models offer high computational efficiency by requiring only
a small number of arithmetic operations.

These four models are all Wiener-type, so the 2.0 identi-
fication approach can be used to identify them on the same
training dataset, i.e., the one shown in Figure 8, thus ensuring
a fair comparison. The parameter setting for the NDC model
identification and the estimation result are summarized in
Table III. The computation took around 4 sec. The resultant
physical parameter estimates are given by: Cb = 10, 031 F,
Cs = 979 F, Rb = 0.063 Ω, Rs = 0, R1 = 0.003 Ω,
C1 = 2, 449 F and R0 = 0.069 Ω. The identification results
for the Rint, Thevenin model and basic NDC models are
omitted here for the sake of space.

Figure 10(a) depicts how the identified models fit with
the training dataset. One can observe that the NDC model
and its basic version show excellent fitting accuracy, overall
better than the Rint and Thevenin models. A more detailed
comparison is given in Figure 10(b), which displays the fitting
error in percentage. It is seen that the Rint model shows the
least accuracy, followed by the Thevenin model. The NDC
model and its basic version well outperform them, with the
NDC model performing slightly better.

Proceeding forward, let us investigate the predictive per-
formance of the four models over several validation datasets.
First, consider the datasets obtained by constant-current dis-
charging at 1.5 A, 2.5 A and 3.5 A, as illustrated in Figure 7.
Figure 11 demonstrates that the NDC model and its basic ver-
sion can predict the voltage responses under different currents
much more accurately than the Rint and Thevenin models.
Next, consider the dataset in Figure 9 based on variable-current
discharging. Figure 12 shows that the prediction accuracy of
all the models is lower than the fitting accuracy, which is
understandable. However, the NDC model and its basic version
are still again the most capable of predicting, with the error
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Figure 8: Identification 1.0: predictive fitting over validation data obtained by discharging at varying currents (0∼3 A).
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Figure 9: Identification 1.0: predictive fitting over validation dataset obtained by discharging at varying currents (0 ∼ 6 A).

mostly lying below 1%. As a contrast, while the Thevenin
model can offer a decent fit with the training dataset as shown
in Figure 10, its prediction accuracy over the validation dataset
is not as satisfactory. This implies that it is less predictive than
the NDC model.

Another evaluation of interest is about the SoC-OCV rela-
tion. As mentioned earlier, the 2.0 approach can estimate all
the parameters, including the function h(·). This allows one to
write the SoC-OCV function directly based on the identified

h(·) as it also characterizes the SoC-OCV relation. That is,

OCV = 3.2 + 2.32 · SoC− 8.15 · SoC2 + 19.345 · SoC3

− 20.78 · SoC4 + 8.222 · SoC5.

Identification of the other three models can also lead to
estimation of this function. Figure 13 compares them with
the benchmark shown in Figure 5, which is obtained expe-
rimentally by discharging the cell using a small current of
0.1 A. It is obvious that the SoC-OCV curves obtained in
the identification of the NDC model and its basic version are
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Figure 10: Identification 2.0: (a) model fitting with training data; (b) fitting error in percentage.
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Figure 11: Identification 2.0: predictive fitting over validation
dataset obtained by discharging at different varying currents.

closer to the benchmark overall. This further shows the benefit
of the NDC model as well as the efficacy of the 2.0 approach.

Summing up the above validation results, one can draw the
following observations:
• The NDC model is the most competent among the four

considered models for grasping and predicting a battery’s
dynamic behavior, justifying its validity and soundness.

• The basic NDC model can offer fitting and prediction
accuracy almost comparable to that of the full model. It
thus can be well qualified if a practitioner wants to use a
simpler NDC model yet without much loss of accuracy.

• The 2.0 identification approach is effective in estimating
all the parameters of the NDC model as well as the
Rint and Thevenin models in one shot from variable-
current-based data profiles. It can not only ease the cost
of identification considerably but also provide on-demand

model availability potentially in practice.

VI. CONCLUSION

The growing importance of real-time battery management
has imposed a pressing demand for battery models with high
fidelity and low complexity, making ECMs a popular choice
in this field. The double-capacitor model is emerging as a
favorable ECM for diverse applications, promising several
advantages for capturing a battery’s dynamics. However, its
linear structure intrinsically hinders a characterization of a
battery’s nonlinear phenomena. To thoroughly improve this
model, this paper proposed to modify its original structure
by adding a nonlinear-mapping-based voltage source and a
serial RC circuit. This development was justified through
an analogous comparison with the SPM. Furthermore, two
offline parameter estimation approaches, which were named
1.0 and 2.0, respectively, were designed to identify the model
from current/voltage data. The 1.0 approach considers the
constant-current charging/discharging scenarios, determining
the SoC-OCV relation first and then estimating the impedance
and capacitance parameters. With the observation that the
NDC model has a Wiener-type structure, the 2.0 approach
was derived from the Wiener perspective. As the first of its
kind, it leverages the notion of MAP to address the issue of
local minima that may reduce or damage the performance
of the nonlinear Wiener system identification. It well lends
itself to the variable-current charging/discharging scenarios
and can desirably estimate all the parameters in one shot. The
experimental evaluation demonstrated that the NDC model
outperformed the popularly used Rint and Thevenin models
in predicting a battery’s behavior, in addition to showing the
effectiveness of the identification approaches for extracting
parameters. Our future work will include: 1) enhancing the
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Figure 12: Identification 2.0: (a) predictive fitting over validation dataset obtained by discharging at varying currents between
0 A and 6 A; (b) predictive fitting error in percentage.
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Figure 13: Identification 2.0: identification of the SoC-OCV
relation based on different models, compared to the truth.

NDC model further to account for the effects of temperature
and include the voltage hysteresis, 2) investigating optimal
input design for the model, and 3) building new battery
estimation and control designs based on the model.
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