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Abstract
In this survey paper, we systematically summarize existing literature on bearing fault di-
agnostics with deep learning (DL) algorithms. While conventional machine learning (ML)
methods, including artificial neural network, principal component analysis, support vector
machines, etc., have been successfully applied to the detection and categorization of bearing
faults for decades, recent developments in DL algorithms in the last five years have sparked
renewed interest in both industry and academia for intelligent machine health monitoring.
In this paper, we first provide a brief review of conventional ML methods, before taking a
deep dive into the state-of-the-art DL algorithms for bearing fault applications. Specifically,
the superiority of DL based methods are analyzed in terms of fault feature extraction and
classification performances; many new functionalities enabled by DL techniques are also sum-
marized. In addition, to obtain a more intuitive insight, a comparative study is conducted
on the classification accuracy of different algorithms utilizing the open source Case Western
Reserve University (CWRU) bearing dataset. Finally, to facilitate the transition on applying
various DL algorithms to bearing fault diagnostics, detailed recommendations and sugges-
tions are provided for specific application conditions. Future research directions to further
enhance the performance of DL algorithms on health monitoring are also discussed.
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Abstract—In this survey paper, we systematically summa-
rize existing literature on bearing fault diagnostics with deep
learning (DL) algorithms. While conventional machine learning
(ML) methods, including artificial neural network, principal
component analysis, support vector machines, etc., have been
successfully applied to the detection and categorization of bearing
faults for decades, recent developments in DL algorithms in the
last five years have sparked renewed interest in both industry and
academia for intelligent machine health monitoring. In this paper,
we first provide a brief review of conventional ML methods,
before taking a deep dive into the state-of-the-art DL algorithms
for bearing fault applications. Specifically, the superiority of DL
based methods are analyzed in terms of fault feature extrac-
tion and classification performances; many new functionalities
enabled by DL techniques are also summarized. In addition, to
obtain a more intuitive insight, a comparative study is conducted
on the classification accuracy of different algorithms utilizing the
open source Case Western Reserve University (CWRU) bearing
dataset. Finally, to facilitate the transition on applying various
DL algorithms to bearing fault diagnostics, detailed recommen-
dations and suggestions are provided for specific application
conditions. Future research directions to further enhance the
performance of DL algorithms on health monitoring are also
discussed.

Bearing fault, deep learning, diagnostics, feature extraction,
machine learning.

I. INTRODUCTION

Electric machines are widely employed in a variety of
industry applications and electrified transportation systems.
For certain applications these machines may operate under
unfavorable conditions, such as high ambient temperature,
high moisture and overload, which can eventually result in
motor malfunctions that lead to high maintenance costs, severe
financial losses, and safety hazards [1]–[3]. The malfunction
of electric machines can be generally attributed to various
faults of different categories, including drive inverter failures,
stator winding insulation breakdown, bearing faults and air
gap eccentricity. Several surveys regarding the likelihood of
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Fig. 1. Structure of a rolling-element bearing with four types of common
scenarios of misalignment that are likely to cause bearing failures: (a)
misalignment (out-of-line), (b) shaft deflection, (c) crooked or tilted outer
race and (d) crooked or tilted inner race [8].

induction machine failures conducted by the IEEE Industry
Application Society (IEEE-IAS) [4]–[6] and the Japan Electri-
cal Manufacturers’ Association (JEMA) [7] reveal that bearing
fault is the most common fault type and is responsible for 30%
to 40% of all the machine failures.

The structure of a rolling-element bearing is illustrated in
Fig. 1, which contains the outer race typically mounted on the
motor cap, the inner race to hold the motor shaft, the balls or
the rolling elements, and the cage for restraining the relative
distances between adjacent rolling elements [8]. The four
common scenarios of misalignment that are likely to cause
bearing failures are demonstrated in Fig. 1(a) to (d). Since
bearing is the most vulnerable component in a motor drive
system, accurate bearing fault diagnostics has been a research
frontier for engineers and scientists for the past decades.
Specifically, this problem has been approached by developing
a physical model of bearing faults, and understanding the
relationship between bearing faults and measurable signals,
which can be captured by a variety of sensors and analyzed
with signal processing techniques. Sensing modalities that
have been explored include vibration [9], [10], acoustic noise
[11], [12], stator current [13], [14], thermal-imaging [15], and
multiple sensor fusion [16], among which vibration analysis is
the most dominant. The existence of a bearing fault as well as
its specific fault type can be readily determined by performing
frequency spectral analysis on the monitored signals and



2

analyzing their components at characteristic fault frequencies,
which can be calculated by a well-defined mechanical model
[8] that depends on the motor speed, the bearing geometry and
the specific location of the bearing defect.

However, accurately identifying the presence of a bearing
fault can be challenging in practice, especially when the fault
is still at its incipient stage and the signal-to-noise ratio of
the monitored signal is small. In addition, unlike other motor
failures (stator inter-turn, broken rotor bar, etc. [3]) that can
be accurately determined by electric signals, the uniqueness
of a bearing failure lies in its multi-physics nature. It is the
primary mechanical vibration due to the bearing defect that
triggered the abnormal electric signal, which further influences
the output torque, the motor speed, and finally the bearing
vibration pattern itself, whose fault frequency is directly
proportional to the motor speed. Furthermore, the accuracy
of the traditional physical model-based vibration analysis can
be further affected by background noise due to external motion
and vibration, and its sensitivity is also subject to change with
respect to sensor mounting positions and spatial constraints in
a highly-compact environment. Therefore, instead of vibration
analysis, a popular alternative approach is to analyze the stator
current signal [13], [14], which has already been measured in
motor drives to regulate the motor’s torque and speed, and
thus it would not bring extra device or installation costs.

Despite its advantages such as economic savings and simple
implementation, the motor current signature analysis (MCSA)
can encounter many practical issues. For example, the mag-
nitude of stator currents at the bearing fault frequency can
vary at different loads, different speeds, and different power
ratings of the motors themselves, thus bringing challenges to
identify a universal threshold of the stator current to trigger
a fault alarm at an arbitrary operating condition. Therefore,
a thorough and systematic commissioning stage is usually
required while the motor is still at the healthy condition, and
the healthy data would be collected while the target motor is
running at different loads and speeds. However, this process,
summarized as a “Learning Stage” in patent US5726905 [17],
can be tedious and expensive to perform, and needs to be
repeated for any new motor with a different power rating.

Most of the challenges described above can be attributed to
the fact that all of the conventional model-based methods rely
solely upon the threshold value of different signals (data) at
the fault frequencies to determine the presence of a bearing
fault. These models can only describe the signal features of
a few well-defined fault types, while in reality the naturally
occurring faults are often more complicated. For example, at
the early stage of a fault the signatures can be less well-
defined or even not traceable by using the physical models;
more than one faults can occur at the same time, which
potentially modifies the fault features and creates new features
due to the the coupling effect. Therefore, there may exist
many unique features or patterns hidden in the data themselves
that can potentially reveal a bearing fault, and it is almost
impossible for humans to identify these convoluted features
through manual observation or interpretation. Therefore, many
researchers have applied various machine learning (ML) algo-
rithms, including artificial neural networks (ANN), principal

component analysis (PCA), support vector machines (SVM),
etc., to parse the data, learn from them, and apply what
they have learned to make intelligent decisions regarding the
presence of bearing faults [18]–[21]. Most of the literature
applying these ML algorithms report satisfactory results with
classification accuracy over 90%.

To achieve an even better performance at versatile oper-
ating conditions and noisy environments, deep learning (DL)
based methods are becoming increasingly popular to meet this
demand [22]–[25]. This literature survey incorporates more
than 180 papers dedicated to bearing fault diagnosis, around
80 of which employed some type of DL approaches. The
number of papers also grows exponentially over the recent
years, indicating a booming interest in employing DL methods
for bearing fault diagnostics.

In this context, this paper seeks to present a thorough
overview on the recent research work devoted to applying ML
and DL techniques on bearing fault diagnostics. The rest of the
paper is organized as follows. In Section II, we introduce some
of the most popular datasets used for bearing fault detection.
Next, in Section III, we look into some traditional ML meth-
ods, including ANN, PCA, k-nearest neighbors (k-NN), SVM,
etc., with a brief overview of major publications applying each
ML algorithm for bearing fault detection. For the main part
of this paper, in Section IV, we take a deep dive into the
research frontier of DL based bearing fault identification. In
this section, we will provide our understanding of the research
trend toward DL approaches. Specifically, we will discuss
the advantages of DL based methods over the conventional
ML methods in terms of fault feature extraction and classifier
performance, as well as new functionalities offered by DL
techniques that cannot be accomplished before. We will also
provide a detailed analysis to each of the major DL tech-
niques, including convolutional neural network (CNN), auto-
encoder (AE), deep belief network (DBN), recurrent neural
network (RNN), generative adversarial network (GAN), and
their applications in bearing fault detection. In Section V, a
comparative study is conducted on different DL algorithms
to offer a more intuitive insight, which compared the clas-
sifier performance utilizing the popular open source “Case
Western Reserve University (CWRU) bearing dataset”. Finally
in Section VI, detailed recommendations and suggestions are
provided regrading the selection of specific DL algorithms for
specific application scenarios, such as the setup environment,
the data size, and the number of sensors and sensor types.
Future research directions are also discussed to further improve
the classifier accuracy, and facilitate domain adaptation and
technology transfer from laboratories to the real-world.

II. POPULAR BEARING FAULT DATASETS

Data is the foundation for all of the ML methods. To
develop effective ML and DL algorithms for bearing fault
detection, a good collection of datasets is necessary. Since
the natural bearing degradation is a gradual process and may
take many years, most people conduct experiment and collect
data either using bearings with artificially induced faults, or
with accelerated life testing methods. While the data collection
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Fig. 2. Experimental setup for collecting the CWRU bearing dataset [26].

is still time consuming, fortunately a few organizations have
made the effort and published their bearing fault datasets for
engineers and researchers to develop their own ML algorithms.
Thanks to their prevalence in the research community, these
datasets can also serve as a common ground for the evaluation
and comparison of different algorithms.

Before getting into details of various ML and DL devel-
opments, in this section, we briefly introduce a few popular
datasets used by most papers covered in this review.

A. Case Western Reserve University (CWRU) Dataset

The test stand used to acquire the Case Western Reserve
University (CWRU) bearing dataset is illustrated in Fig. 2, in
which a 2-hp induction motor is shown on the left, a torque
transducer/encoder is in the middle, while a dynamometer is
coupled on the right. Single point faults are introduced to
the bearings under test using electro-discharge machining with
fault diameters of 7 mils, 14 mils, 21 mils, 28 mils, and 40
mils, at the inner raceway, the rolling element and the outer
raceway. Vibration data are collected for motor loads from 0
to 3 hp and motor speeds from 1,720 to 1,797 rpm using two
accelerometers installed at both the drive end and fan end of
the motor housing, and two sampling frequencies of 12 kHz
and 48 kHz were used. The generated dataset is recorded and
made publicly available on the CWRU bearing data center
website [26].

The CWRU dataset serves as a fundamental dataset to
validate the performance of different ML and DL algorithms,
and a comprehensive comparative study on previous work
employing the CWRU dataset will be presented in Section
V.

B. Paderborn University Dataset

The Paderborn university bearing dataset [27] includes the
synchronous measurement of motor current and vibration
signals, thus enabling the verification of multi-physics mod-
els and sensor fusion of different signals to increase the
accuracy of bearing fault detection. Both stator current and
vibration signals are measured with a high resolution and
a high sampling rate, and experiments are performed on 26
damaged bearings and 6 undamaged (healthy) ones. Among
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Fig. 5. Difference between standard convolution and atrous convolution. 

and γ l ( i ) and β l ( i ) are the scale and shift parameters to be learned, 

respectively. 

2.4. Auxiliary classifiers 

As stated in [24] , the features produced by the hidden lay- 

ers of a well-performed inception net are very discriminative. Fur- 

thermore, the auxiliary classifiers corresponding to these hidden 

inception layers act as some kind of a regularizer [28] and also 

improve the convergence behavior [29] . The effect of auxiliary clas- 

sifiers has been proved in many experiments with inception net, 

such as [30] . 

Generally, the goal of training a CNN model is to determine the 

optimal weights of kernels and biases in each layer so that the 

CNN model could have the minimum classification error. Combin- 

ing all layers of weights gives: 
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Therefore, the total objective function is: 
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the classifier weights for the i th layer are denoted as w 

( i ) . 

Note that w 

( m ) depends on W m 

. By adding the auxiliary objec- 

tive, the overall goal of producing a good classification of output 

does not change and the auxiliary part acts as a type of regulariza- 

tion or as a proxy for discriminative features. 

In our paper, auxiliary classifiers play a similar but more impor- 

tant role in our model. With respect to the difficulties in discover- 

ing the common features between data generated from artificial 

damaged bearings and data generated from natural damaged bear- 

ings, we suggest using the ensemble learning algorithm with the 

classification of different classifiers based on different scale fea- 

tures. This is where the auxiliary classifiers come in. In ACDIN, 

two auxiliary classifiers with softmax as the activation function are 

constructed. The first auxiliary classifier based on the second stage 

of the inception layers is used to increase the training gradient, 

while the second one based on the fourth stage of the inception 

layers is used to stabilize the terminal classification result. All clas- 

sifiers (including the auxiliary ones and the final one) deliver the 

classification results as vectors with each element corresponding 

to the possibility of each type. Since the outputs of the classifiers 

are in the same shape, their summary is the terminal classification 

result of ACDIN. Moreover, in our experiment, these two auxiliary 

classifiers stabilize the loss of validation data and improve conver- 

gence during training, and also make some contributions to the ac- 

curacy of the test data. 

3. Validation of the proposed ACDIN model 

In the real world, data from natural damaged bearings is rare, 

while data from artificial damaged bearings can be easily collected. 

However, distinctions between these two kinds of data always con- 

fuse many classification algorithms. From the results of the follow- 

ing experiments, ACDIN shows its better performance in address- 

ing this problem, compared to traditional learning machines and 

CNN models. Then, more experiments have been conducted to an- 

alyze ACDIN. 

3.1. Data description 

The dataset we used to verify the proposed model comes from 

the Chair of Design and Drive Technology, Paderborn University. 

This dataset is collected from a modular test rig as shown in Fig. 6 . 

The test rig consists or several modules: an electric motor (1) , a 

torque-measurement shaft (2) , a rolling bearing test module (3) , a 

flywheel (4) and a load motor (5) . A more detailed description can 

be found in [21] . 

In this dataset, the vibration signals of bearings running in the 

test rig are measured and saved with a sampling rate of 64 kHz. 

Bearings are run at a rotational speed of 1500 rpm with a load 

torque of 0.1 Nm and a radial force on the bearing of 10 0 0 N. 

There are three possible statuses of bearings: healthy, inner race 

fault and outer race fault. These faults are either caused by artifi- 

cial methods or natural operation. 

The detailed situation of healthy bearings, artificial damaged 

bearings and natural damaged bearings are shown in Tables 1–3 . In 

Fig. 6. Modular Test Rig. 

Fig. 3. Modular test rig collecting the Paderborn bearing dataset consisting
of (1) an electric motor, (2) a torque-measurement shaft, (3) a rolling bearing
test module, (4) a flywheel, and (5) a load motor [27].652 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 62, NO. 1, JANUARY 2015

Fig. 5. CNC machine [Singapore Institute of Manufacturing Technology (SIMTECH Institute)] and PRONOSTIA testbed (Department of Automatic
Control and Micro-Mechatronic Systems (AS2M), Franche-Comté Electronique Mécanique Thermique et Optique-Sciences et Technologies
(FEMTO-ST) Institute). (a) CNC machine, work piece, and sensors. (b) PRONOSTIA bearing testbed.

TABLE II
KEY FEATURES OF THE PHM CHALLENGE DATA SETS FROM TWO APPLICATIONS

learning scheme is synthesized in Fig. 4. Details can be found
in [34].

IV. EXPERIMENTS, RESULTS, AND DISCUSSION

A. PHM Challenge Data Sets

To demonstrate the effectiveness of our contributions, we
consider the vibration data from two real applications under
constant operating conditions: 1) cutting tools from a computer
numerical control (CNC) machine [39] [see Fig. 5(a)]; and
2) ball bearings from the experimental platform PRONOSTIA
[25], [40] [see Fig. 5(b)]. Key features of both applications are
summarized in Table II, and a brief introduction is given as
follows.

• Cutting tools are used for an extremely dynamical cut-
ting process. The in situ monitoring during the cutting
process can give important information about the tool
condition, the process itself, the work-piece surface qual-
ity, and even the machine condition [4]. CM systems
for the cutting process are normally based on the mea-
surements of vibration, acoustic emission, and cutting
force. However, the vibration measurement benefits from a
wide frequency range, less restrictive conditions, and easy
implementation [41].

• Bearings are of great importance because rotating machin-
ery often includes bearing inspections and replacements,
which implies high maintenance costs. However, it is hard
to evaluate the model performance due to the inherent
nonlinearity in features extracted from raw vibration data
[3], [42]. In this context, the platform PRONOSTIA is
dedicated to test and validate the fault detection, diagno-
sis, and prognostics methods on ball bearings. It allows

performing accelerated degradations of bearings by con-
stant and/or variable operating conditions while gathering
CM data (load force, speed, vibration, and temperature).

B. Feature Extraction and Selection Results

As aforementioned in Section III-B1, the decomposition of
the vibration signal requires the selection of a mother wavelet
and a decomposition level. Therefore, as suggested in literature,
for the cutting-tool application, a Daubechies wavelet of the
fourth order (db4) [26] and the third [43] level of decomposition
were used, whereas for the bearings, db4 and the fourth level
were considered [27], prior to feature extraction.

1) Classical Features Versus Trigonometric Features:
Here, we compare the performance of trigonometric features
with that of classical features on cutter C1 (from the CNC ma-
chine) and bearing Ber1−1 (from PRONOSTIA) (see Fig. 6(a)
and (c), respectively). For both cases, the vibration data ap-
pear to be noisy with low trendability. In particular, for bear-
ing Ber1−1, the vibration signal is almost constant until the
fourth hour, but it suddenly grows at the end. The results in
Fig. 6(a) and (c) show that the classical features from both cases
(C1 and Ber1−1) have low monotonicity/trendability and high
noise/scales. Therefore, consider now the proposition of feature
extraction using a combination of the SD and trigonometric
functions (see Table I). The results in Fig. 6(b) and (d) show
that the trigonometric features clearly reflect failure progression
with high monotonicity and trendability and have lower scales
as compared with the classical features.

Back to the accuracy of prognostics, one can point out
that classical features (RMS, Kurtosis, etc.) are not well
adapted to catch machine conditions. Moreover, they can have
large scales, which require normalization before feeding a

Fig. 4. PRONOSTIA testbed (Department of Automatic Control and Micro-
Mechatronic Systems (AS2M), Franche-Comté Electronique Mécanique [29].

the 26 damaged bearings, 12 are artificially damaged, and the
other 14 have more realistic damages caused by accelerated
life tests. This enables a more confident evaluation of ML
algorithms in practical applications, where the real defects are
generated through aging and the gradual loss of lubrication.
The modular test rig used to acquire the Paderborn bearing
dataset is illustrated in Fig. 3.

C. PRONOSTIA Dataset

Another popular dataset for predicting a bearing’s remaining
useful life (RUL) is known as the “PRONOSTIA bearings
accelerated life test dataset”, which serves for researchers
to investigate new algorithms for bearing RUL prediction.
During the International Conference on Prognostics and Health
Management (PHM) in 2012, an “IEEE PHM 2012 Prognostic
Challenge” was organized, where the PRONOSTIA degrada-
tion dataset [28] was provided to participants allowing them
to train their prognostic methods. Every participant’s method
was evaluated based on the estimation accuracy of the RUL
of bearings under test.

The main objective of PRONOSTIA is to provide real data
related to the accelerated degradation of bearings performed
at varying operating conditions [29]. The operating conditions
are characterized by two sensors: a rotating speed sensor
and a force sensor. In the PRONOSTIA platform as shown
in Fig. 4, the bearing health is monitored by gathering two
types of signals: temperature and vibration (with two uni-
axis accelerometers installed in the horizontal and the vertical
direction respectively). Furthermore, the data are recorded with
a high sampling frequency which allows the interpretation of
the entire frequency spectrum of interest during the bearing
degradation process. Ultimately, the monitored data can be
used for post-processing to extract the relevant features offline
and continuously assess the bearing’s RUL.
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TABLE I
COMPARISON OF POPULAR BEARING FAULT DATASETS.

Dataset Sensor type Number of sensors Sampling frequency Fault mode

Case Western Reserve University (CWRU) Dataset Accelerometer 2 12 & 48 kHz Artificial

Paderborn University Dataset Accelerometer & current sensor
& thermocouple 1 & 2 & 1 64 kHz Artificial

& accelerated aging

PRONOSTIA Dataset Accelerometer & thermocouple 2 & 1 25.6 kHz Natural

Intelligent Maintenance Systems (IMS) Dataset Accelerometer 2 20 kHz Natural

1 

IMS Bearing Data 

The data was generated by the NSF I/UCR Center for Intelligent Maintenance Systems (IMS – 
www.imscenter.net) with support from Rexnord Corp. in Milwaukee, WI. 

Test Rig Setup 
Four bearings were installed on a shaft. The rotation speed was kept constant at 2000 RPM by an AC 

motor coupled to the shaft via rub belts. A radial load of 6000 lbs is applied onto the shaft and bearing 
by a spring mechanism. All bearings are force lubricated. 

Rexnord ZA-2115 double row bearings were installed on the shaft as shown in Figure 1. PCB 353B33 
High Sensitivity Quartz ICP accelerometers were installed on the bearing housing (two accelerometers
for each bearing [x- and y-axes] for data set 1, one accelerometer for each bearing for data sets 2 and 3). 
Sensor placement is also shown in Figure 1. All failures occurred after exceeding designed life time of 
the bearing which is more than 100 million revolutions. 

Radial Load

Motor

Bearing 1 Bearing 2 Bearing 3 Bearing 4

ThermocouplesAccelerometers

(a)

and input data actually indicates how far away the input data

is deriving from the normal operation region. Thus, the

MQE can be defined as:

MQE Z jjD KmBMUjj (14)

where D is the input data vector and mBMU stands for the

weight vector of BMU. Extremely high MQE value may

occur for two reasons: either the testing feature vector is an

outlier or it belongs to a fault class [27]. Therefore, the

condition degradation can be quantized and visualized by

following the trends of MQE.

4. Experimental verification using roller element bearing

4.1. Experimental setup

Most bearing diagnostics research involves studying the

defective bearings recovered from the field, where the

bearings exhibit mature faults, or from simulated or

‘seeded’ damage. Simulated damage is typically induced

by scratching or drilling the surface, introducing debris into

the lubricant, or machining with an electrical discharge.

Experiments using defective bearings have less capability to

discover natural defect propagation in the early stages. In

order to validate the wavelet filter methodology and

truly reflect the real defect propagation processes, bearing

run-to-failure tests were performed under constant load

conditions on a specially designed test rig.

The bearing test rig hosts four test bearings on one shaft.

The shaft is driven by an AC motor and coupled by rub

belts. The rotation speed was kept constant at 2000 rpm.

Fig. 10. Photo of bearing components after test (a) inner race defect in bearing 3, test 1 (b) roller element defect in bearing 4, test 1 (c) outer race defect in

bearing 1, test 2.

Fig. 11. Time feature (a) RMS of bearing 3 (b) RMS of bearing 4 for the whole life cycle.

Fig. 9. Bearing test rig.

H. Qiu et al. / Advanced Engineering Informatics 17 (2003) 127–140134

(b)

Fig. 5. Illustration of the (a) bearing test rig and (b) vibration sensor placement
of the IMS dataset [31].

D. Intelligent Maintenance Systems (IMS) Dataset

The IMS bearing dataset [30] is generated by the NSF
I/UCR Center for Intelligent Maintenance Systems (IMS)
with support from Rexnord Corp. Different from the other
datasets, where the bearing faults are either artificially induced
by scratching or drilling the bearing surface, or created by
exerting a shaft current for accelerated life testing, the IMS
dataset contains a complete record of natural bearing defect
evolution. Specifically, the bearing is kept running for 30 days
consecutively with a constant speed of 2,000 rpm, totaling
around 86.4 million cycles before a defect is confirmed [31].
The test rig consists of four Rexnord ZA-2115 double row
bearings installed on a shaft, which is coupled to an AC motor
via a rubber belt as shown in Fig. 5(a). A radial load of
6,000 lbs is applied onto the shaft and bearing by a spring

mechanism. Two accelerometers are installed on each bearing
housing, and four thermocouples are attached to the outer race
of each bearing to record bearing temperature for monitoring
the lubrication purposes, as shown in Fig. 5(b).

The same experiment is repeated three times. Test 1 ends
up with an inner race defect in bearing 3 and a rolling element
defect in bearing 4. Test 2 and 3 end up with an outer
race defect in bearing 1 and 3, respectively. The vibration
data is collected every 5 or 10 minutes for a duration of
1 second with the sampling rate set at 20 kHz by National
Instruments DAQCard 6062E. Since this dataset contains a
complete collection of vibration signals of bearing experiments
from start to failure with explicit time stamps, it is particularly
suitable for predicting the RUL of rolling-element bearings.

E. Summary

A summary of the comparing the differences between
different datasets is illustrated in TABLE I. So far a majority
of literature on bearing fault identification with ML or DL
algorithms employ the CWRU dataset due to its simplicity
and popularity. The authors anticipate a growing interest on the
Paderborn dataset, as it contains both the stator current signal
and the vibration signal. In addition, this dataset also enables
the validation of deep transfer learning and domain adaptation
algorithms [32], [33] to predict a more realistic bearing fault
from accelerated life testing with classifiers trained on artifi-
cially induced scratches or drills. Besides, many researchers
working on RUL prediction also rely on the PRONOSTIA
dataset and the IMS dataset. Since the main scope of this
paper is bearing fault detection, research contributions on RUL
prediction is not included in this literature survey.

III. CLASSICAL MACHINE LEARNING BASED
APPROACHES

Before the recent DL boom, a variety of classical “shal-
low” machine learning and data mining algorithms have been
around for many years, i.e., the artificial neural network
(ANN). Applying these algorithms requires a lot of domain
expertise and complex feature engineering. A deep exploratory
data analysis is usually performed on the dataset first, fol-
lowed by dimension reduction techniques such as the principal
component analysis (PCA), etc., for feature extraction. Finally,
the most representative features are passed along to the ML
algorithm. The knowledge base of different domains and
applications can be quite different and often requires extensive
specialized expertise within each field, making it difficult to
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perform appropriate feature extraction, or maintain a good
level of transferability of ML models trained in one domain
to be generalized or transferred to other contexts or settings.

Some of the earliest reviews investigating the use of artificial
intelligence (AI) techniques on motor fault diagnostics can be
found in [18], [19], where the characteristic fault frequencies
for different motor fault types are systematically summarized,
and relevant papers employing ANN and fuzzy systems are
discussed. In this section, a brief summary of each classical
ML method will be presented, with a comprehensive list of
publications for readers’ reference.

A. Artificial Neural Networks (ANN)

ANN is one of the oldest AI paradigms that has been applied
to bearing fault diagnostics for almost 30 years [34]. In [34],
the bearing wear of the motor is reflected in the damping
coefficient B that can be inferred from a nonlinear mapping
of the stator current I and the rotor speed ω. The complexity of
obtaining an analytical expression for this nonlinear mapping
is avoided by training a supervised neural network with stator
current and motor speed measurements as input and predicted
bearing condition as output. 35 training and 70 testing data
patterns are collected on a laboratory test stand with the
Dayton 6K624B-type bearing at different operating conditions.
Highest bearing fault detection accuracy of 94.7% is achieved
with the conventional neural network using two input nodes
{I, ω}. The accuracy can be further improved by utilizing
five input dimensions {I, ω, I2, ω2, I∗ω} that are manually
selected. However, besides the commonly used current sensor
for bearing fault diagnostics, this method requires an addition
speed encoder to collect the motor speed signal as an extra
input, which is not commonly available in many low-cost
induction motor drives. Similarly, the rest of the papers based
on ANN [35]–[38] all require some degree of human expertise
to guide its feature selection process in order to train the ANN
model in a more effective manner.

B. Principle Component Analysis (PCA)

PCA is an algorithm that reveals the internal structure of
the data in a way that best explains the variance in the data.
If a multivariate dataset is visualized as a set of coordinates
in a high-dimensional data space (one axis per variable), PCA
can supply the user with a lower-dimensional projection of
this object viewed from its most informative viewpoint. Since
the sensitivity of various features that are characteristics of
a bearing defect may vary considerably at different operat-
ing conditions, PCA has proven itself as an effective and
systematic feature selection scheme that provides guidance
on manually choosing the most representative features for
classification purposes.

One of the earliest adoption of PCA on bearing fault
diagnostics can be found in [39]. Experimental results revealed
that the advantage in using only PCA identified features
instead of the 13 original features is significant, as the fault
diagnosis accuracy is increased from 88% to 98%. The study
demonstrated that the proposed PCA technique is effective in
classifying bearing faults with a higher accuracy and a lower

number of input features when compared to using all of the
original feature. Similarly, the rest of the papers based on
PCA [40]–[43] take advantage of its data mining capability
to facilitate the manual feature selection process and generate
more representative features.

C. K-Nearest Neighbors (k-NN)

The k-NN algorithm is a non-parametric method used for
either classification or regression. In k-NN classification, the
output is the class of an object, which is identified by a major-
ity vote of its k nearest neighbors. One early implementation of
the k-NN classifier on bearing fault diagnostics can be found
in [44], where k-NN serves as the core algorithm for a data
mining based ceramic bearing fault classifier based on acoustic
signals. Similarly, other k-NN based papers [45]–[47] employ
k-NN to perform a distance analysis on each new data sample
and determine whether it belongs to a specific fault class.

D. Support Vector Machines (SVM)

SVMs are supervised learning models that analyze data
used for non-probabilistic classification or regression analysis.
One classical work on the use of SVM towards identifying
bearing faults can be found in [48], where classification
results obtained by the SVM are optimal in all of the cases,
with an overall improvement over the performance of ANN.
Other similar SVM based papers [49]–[61] also illustrated the
effectiveness and efficiency of employing SVM to serve as the
fault classifier.

E. Others

Besides the commonly used ML methods listed above, many
other algorithms have been applied to the identification of
bearing faults, bringing in different characteristics and benefits,
including neural fuzzy network [62]–[64], Bayesian networks
[65]–[67], self-organizing maps [68], [69], extreme learning
machines (ELM) [70], [71], transfer learning [72]–[74], linear
discriminant analysis [75], [76], quadratic discriminant analy-
sis [77], random forest [78], independent component analysis
[79], softmax classifiers [80], manifold learning [81], [82],
canonical variate analysis [83], particle filter [84], nonlinear
preserving projection [85], artificial Hydrocarbon Networks
[86], expectation maximization [87], ensemble learning [88],
multi-scale permutation entropy [89], empirical mode decom-
position [90]–[94], topic correlation analysis [95], affinity
propagation [96], and dictionary learning [97], [98].

F. Challenges with the Classical ML Algorithms

As presented in the earlier sections, to detect the pres-
ence of a bearing fault using a classical ML algorithm, the
characteristic fault frequencies are calculated based on the
rotor mechanical speed and the specific bearing geometry,
and these frequencies will serve as fault features. This feature
determination process is known as “feature engineering”. The
amplitude of signals at these frequencies can be monitored
to train various ML algorithms and identify any anomalies.
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However, such a technique may encounter many challenges
that ultimately affect the classification accuracy.

1) Sliding: The fault frequency is based on the assumption
that no sliding occurs between the rolling element and the
bearing raceway, i.e., these rolling elements will only roll
on the raceway. Nevertheless, this is seldom the case in
reality, as the rolling element often undergoes a combina-
tion of rolling and sliding movement. As a consequence,
the calculated frequency may deviate from the real fault
frequency and make this manually determined feature less
informative of a bearing defect.

2) Frequency interplay: If multiple types of bearing faults
occur simultaneously, these faults will interact and the
resultant characteristic frequencies can add or subtract
due to a complicated electro-mechanical process, thereby
obfuscating the informative frequencies.

3) External vibration: There is also the possibility of inter-
ference induced from additional sources of vibration, i.e.
bearing looseness and environment vibration, which can
obscure the useful features.

4) Observability: Some faults, such as the bearing lubrica-
tion and general roughness related faults, do not even
manifest themselves as a characteristic cyclic frequency,
which makes them very hard to detect with the traditional
model-based spectral analysis or classical data-driven ML
methods.

5) Sensitivity: The sensitivity of various features that are
characteristic of bearing defect may vary considerably
at different operating conditions. A very thorough and
systematic “learning stage” is typically required to test the
sensitivity of these frequencies on any desirable operating
condition before it can be actually put into use with the
traditional approach.

Because of the aforementioned challenges, manually en-
gineered features based on the bearing characteristic fault
frequency can be difficult to interpret, and sometimes may
even lead to inaccurate classification results, especially when
applying the “shallow” classical ML methods that rely on
human-engineered features in the training process. Therefore,
many DL algorithms with automated feature extraction capa-
bilities and better classification performance have been applied
to bearing fault diagnostics, which will be discussed in detail
in the next section.

IV. DEEP LEARNING BASED APPROACHES

Deep learning is a subset of machine learning that achieves
great power and flexibility by learning to represent the world
as nested hierarchy of concepts, with each concept defined in
relation to simpler concepts, and more abstract representations
computed from less abstract ones. The trend of transitioning
from classical “shallow” machine learning algorithms to deep
learning can be attributed to the following reasons.

1) Data explosion: With the availability of exploding amount
of data, and the application of crowdsourced labeling
mechanisms such as Amazon mTurk [99], we are seeing
a surging appearance of large scale dataset in many do-
mains, such as ImageNet in image recognition, COCO for

 

Fig. 6. Performance comparison of deep learning and most classical learning
algorithms [100].

object segmentation and recognition, VoxCeleb in speaker
identification, et al. DL generally requires a large amount
of labeled data. Some DL models in computer vision
were trained using more than one million images. For
many applications, including the diagnostics of bearing
faults, such large datasets are not readily available and
will be expensive and time consuming to acquire. On
smaller datasets, classical ML algorithms can compete
with or even outperform deep learning networks. With
the increase of the amount of data, the performance
of DL can significantly outperform most classical ML
algorithms, as illustrated in Fig. 6 [100] by Andrew Ng.

2) Algorithm evolution: More techniques are being invented
and getting matured in terms of controlling the training
process of deeper models to achieve faster speed, better
convergence, and improved generalization. For example,
algorithms such as ReLU help accelerate convergence
speed; techniques such as dropout and pooling help
prevent overfitting; numerical optimization methods such
as mini-batch gradient descent, RMSprop, and L-BFGS
optimizer help leverage more data and train deeper mod-
els.

3) Hardware evolution: Training deep networks is extremely
computationally intensive, but running on a high per-
formance GPU can significantly accelerate this training
process. Specifically, GPU offers parallel computing ca-
pability and computational compatibility with deep neural
networks, which makes them indispensable for training
DL based algorithms. More powerful GPUs allows data
scientists to quickly get the DL training up and running.
For example, the NVIDIA Tesla V100 Tensor Core GPUs
can now parse petabytes of data orders of magnitude
faster than traditional CPUs [101], and leverage mixed
precision to accelerate DL training throughputs across
every type of neural network. In the most recent years,
the emergence of the accelerators for parallel computing
such as GPUs, FPGAs, ASICs and TPUs have promoted
the fast evolution of DL algorithms.

All of the factors above contribute to the new era of ap-
plying DL algorithms to a variety of data-related applications.
Specifically, advantages of applying DL algorithms compared
to classical ML algorithms include:
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1) Best-in-class performance: The complexity of the com-
puted function grows exponentially with model depth
[102]. DL has the best-in-class performance that sig-
nificantly outperforms other solutions to problems in
multiple domains, including speech, language, vision,
game playing, etc.

2) Automatic feature extraction: DL removes the need for
feature engineering. Classical ML algorithms usually
demand sophisticated manual feature engineering, which
unavoidably requires expert domain knowledge and nu-
merous human effort. However, when using deep neural
network, there’s no need for this manual process. One
can simply pass the data directly to the network, and the
network can automatically learn the features from raw
data by auto-tuning the weights in the network. The DL
network eliminates completely the challenging stage of
feature engineering.

3) Transferability: The strong expressive power and high
performance of a deep neural network trained in one
domain can be easily generalized or transferred to other
contexts, settings or domains. Deep learning is an archi-
tecture that can be adapted to new problems relatively
easily. For instance, problems in different domains such
as vision, time series, and language are being solved using
the same techniques like convolutional neural networks,
recurrent neural networks, and long short-term memory,
etc.

Thanks to the aforementioned reasons for the transition from
traditional methods to DL methods, as well as the benefits
of DL algorithms discussed above, we have witnessed an
exponential increase in DL applications, such as machine
health monitoring and fault diagnostics, among which the
bearing fault detection is a very representative case.

A. Convolutional Neural Network (CNN)
Inspired by animal visual cortices [103], the convolution

operation is first introduced to detect image patterns in a
hierarchical way from simple features such as edge and corner
to complex features. Specifically, lower layers in the network
detect fundamental lower level visual features; and layers
afterward detect higher level features, which are built upon
these simple lower level features.

The first paper employing CNN to identify bearing fault
was published in 2016 [104], and in the next three years many
papers applying the same technique [105]–[119] have emerged
and contributed to advancing bearing fault detection in various
aspects. The basic architecture of a CNN-based bearing fault
classifier is illustrated in Fig. 7. Specifically, the 1-D temporal
raw data obtained from different accelerometers are firstly
stacked to 2-D vector form similar to the representation of
images, which is then passed over to a convolutional layer
for feature extraction, followed by a pooling layer for down-
sampling. The combination of this convolution-pooling pattern
is repeated many times to further deepen the network. Finally,
the output from the hidden layers will be handed over to
one or several fully-connected layers, the result of which is
transferred to a top classifier based on Softmax or Sigmoid
functions to determine if a bearing fault is present.

In [104], the vibration data are collected using two uni-axis
accelerometers installed on x- and y- direction respectively.
A CNN is able to autonomously learn useful features for
bearing fault detection from the raw data pre-processed by
scaled discrete Fourier transform. The classification result
demonstrates that the feature learning based approach signifi-
cantly outperforms the feature engineering based approach of
conventional ML. Moreover, another contribution of this work
is to show that feature learning based approaches such as CNN
can also perform bearing health prognostics, and identify some
early-stage faulty conditions that have no explicit characteristic
frequencies, such as lubrication degradation, which cannot be
achieved using classical ML methods.

To obtain a better trade-off between the training speed
and accuracy, an adaptive CNN (ADCNN) is applied on the
CWRU dataset to dynamically change the learning rate in
[105]. The entire fault diagnosis model employs a fault pattern
determination component using 1 ADCNN and a fault size
evaluation component using 3 ADCNNs, and 3-layer CNNs
with max pooling. Classification results demonstrate that AD-
CNN has a better accuracy compared to conventional shallow
CNN and SVM methods, especially in terms of identifying
the rolling element defect. In addition, this proposed ADCNN
is also able to predict the fault size (defect width) with a
satisfactory accuracy. On top of the conventional structure
of CNN, a dislocate layer is added in [106] that can better
extract the relationship between signals with different intervals
in periodic forms, especially during the change of operating
conditions. It is reported in [106] that the best accuracy of
96.32% is achieved with a disclose step factor k = 3, while
the accuracy of conventional CNN without this disclose layer
is only 83.39%.

Similar to earlier work [104]–[106], [107] implements a 4-
layer CNN structure with 2 convolutional and 2 pooling layers
employing both the CWRU dataset & dataset generated by
Qian Peng Company in China, and the accuracy outperforms
the conventional SVM and the shallow Softmax regression
classifier, especially when the vibration signal is mixed with
ambient noise. The improvement can be as large as 25%,
showcasing the excellent built-in denoising capabilities of the
CNN algorithm. A sensor fusion approach is applied in [108],
in which both the temporal and spatial information of the
CWRU raw data from two accelerometers at the drive end
and the fan end are stacked by transforming 1-D time-series
data into a 2-D matrix form. The average accuracy using the
fusion of two sensors is increased to 99.41% from the previous
98.35% with only one sensor.

Many variations of CNN are also employed to tackle
the bearing fault diagnosis challenge [109]–[116] using the
CWRU dataset to obtain more desirable characteristics than
conventional CNN. For example, a CNN based on LeNet-5 is
applied in [109], which contains 2 alternating convolutional-
pooling layers and a 2 fully-connected layers. Padding is
used to control the size of learned features, and zero-padding
is applied to prevent dimension loss. This improved CNN
architecture is able to provide a better feature extraction
capability with an astonishing accuracy (99.79%) on test set,
which is higher than other deep learning based methods such
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Fig. 2. Architecture of the CNN-based fault diagnosis model.

and complicated object models in latter layers. The classification
layer can use the learned bank of filters (or the extracted features)
to achieve the classification.

III. CNN-BASED FAULT DIAGNOSIS WITH

MULTIPLE SENSORS

This paper proposes an intelligent fault diagnosis approach
for rotating machinery based on CNN with the raw data from
multiple sensors. With the appealing capability of automatic
feature extraction of the approach, no hand-crafted features are
needed to classify different conditions. Multiple sensor fusion at
data level is achieved by combining the raw data from multiple
sensors into a 2-D matrix at the input layer. Fig. 1 shows the
flowchart of the proposed fault diagnosis method. Condition
monitoring data of the running machinery is collected from
multiple sensors such as vibration signals from accelerometers.
After denoising and preprocessing, these sets of 1-D time series
are stacked row by row to form a 2-D input matrix. The temporal
information and the spatial information from the sensors are
constructed in the input matrix in this manner. All the collected
samples are then divided into training, validation, and testing
dataset. The training dataset is used to train the initialized CNN
model by minimizing the error between the predicted condition
and the actual one. The validation dataset is used to select a
model before possible overfitting. The generalization capability
of the trained model is then evaluated by the testing dataset. No
manual feature extraction or selection is needed in this approach
as the representative features are automatically extracted during
the training process.

Fig. 2 shows the detailed structure of the CNN-based fault
diagnosis model. Machine condition monitoring data Xn

i , (i =
1, 2, . . . ,m) from m vibration sensors is collected and fused
at the data level as input X ∈ Rm×n of the CNN model. The
input is convolved by K1 filters of size p1 × q1 × 1. The ReLU
operation is applied on the convolved outcome to form the K1

feature maps with dimension (m − p1 + 1) × (n − q1 + 1). A
max-pooling layer is followed to subsample the feature maps by
using (4). Followed by another such stage, the convolution pro-
cess aims to capture the representative features from the input
data. A fully connected layer and a softmax layer are added next
to output the machine condition. Minibatch stochastic gradient
descent is used in this paper to update the parameters of the
model in the training process using (6) through (8). After train-
ing, the CNN model extracts representative features directly
from the raw vibration signals from multiple sensors. Fault di-
agnosis can then be performed on new monitoring data.

Fig. 3. Experimental setup of the CWRU dataset.

Overfitting is a common issue in training, which leads to
a poor performance on the test data especially with limited
training data. This paper uses dropout to prevent overfitting.
Dropout is a technique that avoids extracting same features
repeatedly to reduce the chance of overfitting [36]. During each
iteration of training, neurons are randomly dropped out, which
means temporarily removed from the network, along with all
their incoming and outgoing connections with probability p,
so that a reduced network is left for training [37]. It can be
implemented by setting the selected elements of the feature
maps to zero. In the testing phase, the dropout is turned OFF

and the probability p will be multiplied by each feature map
element. Dropout is considered to exponentially combine many
different neural network architectures in an efficient way to find
the fittest model.

IV. EXPERIMENTAL EVALUATION

To evaluate the effectiveness of the proposed approach for ro-
tating machinery fault diagnosis, two typical rotating machinery,
bearings and gearboxes, are investigated in this paper. Vibration
signals of different machine conditions are collected through
multiple accelerometers.

A. Case One: Bearing Fault Diagnosis

1) Experimental Setup and Data Description: In this
case study, the public available roller bearing condition dataset
collected from a motor drive system by Case Western Reserve
University (CWRU) is analyzed [38]. The objective is to
diagnose the different faults of bearing also with different levels
of severity. The main components of the experimental setup

Fig. 7. Architecture of the CNN-based fault diagnosis model [109].

as the adaptive CNN (98.1%) and the deep belief network
(87.45%). The proposed CNN based on LeNet-5 also dom-
inates the classical ML methods such as SVM (87.45%)
and ANN (67.70%). In addition, a deep fully convolutional
neural network (DFCNN) incorporating 4 convolution-pooling
layer pairs is employed in [110], while the raw data are
also transformed into spectrograms for easier processing. An
accuracy of 99.22% is accomplished, outperforming 94.28% of
the linear SVM with particle swarm optimization (PSO), and
91.43% of the conventional SVM. These results are obtained
using the same training set to train different networks and the
same test set to evaluate and compare their performances.

To save the extensive training time required for most CNN
based algorithms, a multi-scale CNN (MS-DCNN) is adopted
in [111], where convolution kernels of different sizes are
used to extract features of different scales in parallel. The
mean accuracy of a 9-layer 1-D CNN, a 2-D CNN and
the proposed MS-DCNN are 98.57%, 98.25% and 99.27%,
respectively. In addition to the subtle increase in accuracy
compared to conventional CNNs, the number of parameters
to be determined during training is only 52,172, which is
significantly lower than those of 1-D CNN (171,606) and 2-
D CNN (213,206). Moreover, a very deep CNN of 14 layers
with training interference is used in [112], which is able to
maintain a high accuracy in noisy environments or during
load shifts. However, the training time and the amount of
parameters to be trained would increase dramatically, posing a
potential threat of overfitting the data. Similarly, to overcome
the impact of load variations, a novel bearing fault diagnosis
algorithm based on improved Dempster-Shafer theory CNN
(IDS-CNN) is employed in [113]. This improved D-S evidence
theory is implemented via a distance matrix from the modified
Gini Index. Extensive evaluations revealed that, by fusing
complementary or conflicting evidences from different models
and sensors, the proposed IDS-CNN algorithm is able to
accommodate different load conditions and achieve a better
fault diagnosis performance than conventional DNN models
and ML approaches such as SVM.

To better suppress the impact of speed variations on bearing
fault diagnosis, a novel architecture based on CNN referred to
as “LiftingNet” is implemented in [114], which consists of
split layers, predict layers, update layers, pooling layers, and
fully-connected layers, with the main learning process per-
formed in a split-predict-update loop. A 4-class classification is

carried out with the CWRU dataset randomly and evenly split
into training set and test set. The final classification accuracy is
99.63%. However, since all of the signals recorded by CWRU
are measured in a small speed range (from 1,720 to 1,797
rpm), another experiment is established to record vibration
signals with four distinct rotor frequencies (approximately 10,
20, 30, and 40 Hz), and the average accuracy still reaches
93.19%, which is 14.38% higher than conventional SVM
algorithm. Similarly, a fault diagnosis method based on the
Pythagorean spatial pyramid pooling (PSPP) CNN is proposed
in [115] to enhance the classification accuracy during motor
speed variations. Compared to a spatial pyramid pooling layer
that has been used in an CNN, a PSPP layer is allocated in
this work as a front layer of CNN, and features obtained by
the PSPP layer can be delivered to convolutional layers for
further feature extraction. According to the experiment result,
this method has a higher diagnosis accuracy at various rotating
speeds compared to other methods. In addition, the PSPP-
CNN model trained by data at certain rotating speeds can be
transferred and used to diagnose bearing fault at full working
speed.

Since CNN excels at processing 2-D matrix data, such as
images in the field of computer vision, it generally requires the
transformation of 1-D time-domain vibration signal into 2-D
signal to take full advantage of the strength that CNN can offer.
Aiming at simplifying this conversion process and reducing the
percentage of training data required due to the expensiveness
of acquiring a large amount of data through experiments, an
adaptive overlapping CNN (AOCNN) is proposed in [116] to
directly process the 1-D raw vibration signal, and eliminate
the shift variant problem of time-series signal. Compared to
the conventional CNN, its novelty lies in the overlapping
layer, which is used to sample the raw vibration signal. After
the adaptive convolutional layer separates these samples into
segments, sparse filtering is employed in the local layer to
obtain local features. Classification results reveal that AOCNN
with SF can identify ten health conditions of the bearing with a
99.19% test accuracy when only 5% samples are used as the
training set, which is a significant improvement considering
most of the DL based methods demand a minimum of 25%
data allocated in the training set. In addition, the test accuracy
can further rise to 99.61% when the test set data percentage
increases from 5% to 20%.

Besides the CWRU dataset which contains only vibra-
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tion signal, the Paderborn University bearing dataset [27],
as stated in Section II, includes synchronized stator current
and vibration signals. In addition, the Paderborn dataset also
incorporates both artificially induced bearing fault and realistic
damages caused by accelerated lifetime tests. In [117], the
Paderborn dataset is used to train a deep inception net with
atrous convolution, which improves the average accuracy from
75% (best result of conventional data-driven methods) to
95% for diagnosing the real bearing faults when trained only
with the data generated from artificial bearing damages. The
“PRONOSTIA bearings accelerated lifetime test dataset” [28],
as introduced in Section II, is applied in [118] with a deep
convolution structure consisting of 8 layers: 2 convolutional,
2 pooling, 1 flat, and 3 nonlinear transformation layers. Health
indicators (HI) are later defined based on the CNN output, and
the classification result shows the accuracy of HI predicted
using CNN is superior than that of self-organizing maps
(SOM).

In addition to identifying damages on rolling element
bearings, the adoption of CNN on spindle bearings is also
discussed in [119], in which the wavelet packet energy of the
vibration signal is taken as input.

B. Auto-encoders

Auto-encoder is proposed in the 1980s as an unsupervised
pre-training method for ANNs [120], [121]. After decades of
evolution, the auto-encoder has become widely adopted as an
unsupervised feature learning method and a greedy layer-wise
neural network pre-training method. The training process of
an auto-encoder with 1 hidden layer is illustrated in Fig. 8
[122]. Specifically, an auto-encoder is trained from an ANN,
which consists of two parts: the encoder and the decoder.
The output of the encoder is fed into the decoder as input.
The ANN takes the mean squared error between the original
input and output as the loss function, which essentially aims
at generating the final output by imitating the input. After this
ANN is trained, the decoder part is dropped while only the
encoder part is kept. Therefore, the output of the encoder is the
feature representation that can be employed in the next-stage
classifier.

Among a large number of studies of applying auto-encoders
to bearing fault diagnosis [122]–[134], an early attempt can be
found in [123], where a 5-layer auto-encoder based DNN is
utilized to adaptively extract fault features from the frequency
spectrum and effectively classify the bearing health condition.
The classification accuracy reaches 99.6%, which is signifi-
cantly higher than the 70% of back-propagation based neural
networks (BPNN). In [124], an auto-encoder based extreme
learning machine (ELM) is employed, seeking to integrate
the automatic feature extraction capability of auto-encoders
and the high training speed of ELMs. The average accu-
racy of 99.83% compares favorably against other traditional
ML methods, including wavelet package decomposition based
SVM (WPD-SVM) (94.17%), EMD-SVM (82.83%), WPD-
ELM (86.75%) and EMD-ELM (81.55%). More importantly,
the required training time drops by around 60% to 70% using
the same training and test data, thanks to the adoption of ELM.

relationships in machinery fault diagnosis issues [14–16]. Consequently, it is necessary to design deep architectures for
rotating machinery fault diagnosis.

Deep learning is a new unsupervised feature learning method with multiple hidden layers of representation [17]. The
greatest advantage of deep learning is that the features of each hidden layer are not designed manually, which is, they
are learned from the input data automatically [18]. Despite it is not surprising that deep learning has produced extremely
satisfactory results for various tasks, it is still in its infancy for machinery fault diagnosis. Tamilselvan et al. applied deep
learning for aircraft engine fault diagnosis [19]. Tran et al. used deep learning for reciprocating compressor valves fault diag-
nosis [20]. Shao et al. proposed optimization deep learning model for rolling bearing fault diagnosis [21]. However, there still
exists manual signal processing or feature selection in these methods, in other words, they treated the deep learning models
as traditional classifiers, which ignored the powerful ability of deep learning in automatically capture the useful information
from the raw vibration signals.

Deep autoencoder is a popular deep learning model, which has been successfully used in various applications [22]. Due to
its simplicity and efficiency, the mean square error (MSE) has been widely applied to design the deep autoencoder loss func-
tion [23]. Standard deep autoencoder under MSE usually performs very well when the signals are not disturbed by complex
noises. However, in most practical situations, the measured vibration signals are always affected by the variable operating
conditions and heavy background noises, which make the performance of the standard deep autoencoder deteriorate rapidly
[24,25]. Therefore, the research and development of the new deep autoencoder loss function has become an urgent task.

In this paper, a novel deep autoencoder feature learning method is proposed for rotating machinery fault diagnosis. The
proposed method is applied for the fault diagnosis of gearbox and electrical locomotive roller bearings. The results show that
the proposed method is more effective and robust than other methods. The main contributions of our work can be summa-
rized as follows.

(1) In order to get rid of the dependence on signal processing techniques and diagnosis experience, we propose a deep
autoencoder feature learning method to automatically and effectively learn the useful fault features from the mea-
sured vibration signals.

(2) In order to eliminate the background noise affection and enhance the feature learning ability, maximum correntropy is
used to design the new deep autoencoder loss function.

(3) In order to enable the deep autoencoder to adapt to the signal characteristics, artificial fish swarm algorithm (AFSA) is
adopted to optimize its key parameters.

The organization of the paper is as follows. In Section 2, the basic theory of autoencoder is briefly introduced. The pro-
posed method is described in Section 3. In Section 4, the experimental diagnosis results for gearbox are analyzed and dis-
cussed. The engineering application of the proposed method is presented in Section 5. Finally, general conclusions are
given in Section 6.

2. The basic theory of autoencoder

An autoencoder is a three-layer network including an encoder and a decoder, shown in Fig. 1. The encoder maps the input
data from a high-dimensional space into codes in a low-dimensional space, and the decoder reconstructs the input data from
the corresponding codes [26].
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Fig. 1. The structure of an autoencoder.
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Fig. 8. Process of training a one hidden layer auto-encoder [122].

Compared to CNN, the denoising capability of conventional
auto-encoders is not prominent. Thus in [125], a stacked
denoising auto-encoder (SDA) is implemented, which is suit-
able for deep architecture based robust feature extraction
on signals containing ambient noise under varying working
conditions. This specific SDA consists of three auto-encoders
stacked together. To strike a balance between classification
performance and training speed, three hidden layers with 100,
50, and 25 units respectively are employed. The original
CWRU bearing data are perturbed by a 15 dB random noise to
manually create a noisy background, and data from multiple
operating conditions are used as the test set to evaluate
its denoising capability at different speeds and loads. The
average classification result reveals the proposed SDA is able
to achieve a worst case accuracy of 91.79%, which is 3% to
10% higher when compared to the conventional SAE without
the denoising capability, and classical ML algorithms such as
SVM and random forest (RF). Similar to [125], another form
of SDA is utilized in [126] with three hidden layers of (500,
500, 500) units. Signals from the CWRU dataset are mixed
with different levels of artificially induced noise in the time
domain, and later transformed to the frequency domain. The
proposed method has a better diagnosis accuracy than deep
belief networks, particularly with the added noises, where an
average improvement of 7% is achieved.

In [122], a locomotive bearing dataset developed at the
Northwestern Polytechnical University is used to validate
the performance of auto-encoders. Based on this dataset, the
authors adopted the maximum correntropy as the loss function
instead of the traditional mean squared error, and an artificial
fish-swarm algorithm (AFSA) is used to optimize the key
parameters in the loss function of the auto-encoder. Results
show that the customized 5-layer auto-encoder composed of
this maximum correntropy loss function and AFSA algorithm
outperforms standard auto-encoder by an accuracy of 10%
to 40% in a 5-class classification problem. Similarly, a new
deep AE constructed with DAE and contractive auto-encoder
(CAE) is applied to the locomotive bearing dataset for en-
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hancing the feature learning capability. A single DAE is firstly
used to learn low-layer features from the raw vibration data,
then multiple CAEs are used to learn deeper features. In
addition, locality preserving projection (LPP) is also adopted
to fuse these deep features to further improve the quality
of the learned features. The classification accuracy of this
mixed DAE-CAE-LPP approach is 91.90%, showcasing the
advantage over the standard DAE (84.60%), the standard CAE
(85.10%), and the classical ML algorithms of BPNN (49.70%)
and SVM (57.60%). However, all of the auto-encoder based
methods are also 6 to 10 times more time-consuming when
compared to classical ML methods.

In addition. an aircraft-engine inter-shaft bearing vibration
dataset with the inner race, the outer race, and the rolling
element defect is adopted as the input data in [127], where
a new AE based on Gaussian radial basis kernel function is
employed to enhance the feature learning capability. Later,
a stacked AE is developed using this new AE and multiple
conventional AEs. An average accuracy of 86.75% is achieved,
which is much better compared to the standard SAE (44.90%)
and the standard DBN (19.65%). Moreover, the importance
of the proposed Gaussian radial basis kernel function is
showcased in a comparative study. When the Gaussian kernel
function is changed to a polynomial kernel function (PK) and
a power exponent kernel function (PEK), the accuracy would
drop to 24.25% and 65.55%, respectively.

Similar to the case of CNN, many variations of SAE are
also employed in the last two years to tackle the bearing
fault diagnosis problem [128]–[134] using the popular CWRU
dataset, and all of which have achieved some form of per-
formance elevation when compared to the traditional SAE. In
[128], an ensemble deep auto-encoder consisting of a series of
auto-encoders (AE) based on different activation functions is
proposed for unsupervised feature learning from the measured
vibration signal. Later, a decision ensemble strategy is de-
signed to merge the classification result from each individual
AE and ensure an accurate and stable diagnosis result. An
average classification accuracy of 99.15% is achieved, which
performs better than many classical ML methods including
BPNN (88.22%), SVM (90.81%), and RF (92.07%) based
on a manually selected feature of 24 dimensions. Similarly,
by altering the activation function, a deep wavelet auto-
encoder (DWAE) with extreme learning machine (ELM) is
implemented in [129], where the wavelet function is employed
as the nonlinear activation function, enabling wavelet auto-
encoders (WAE) to effectively capture signal characteristics.
Then a DWAE with multiple WAEs is constructed to enhance
the unsupervised feature learning ability, and ELM is adopted
as the output classifier. Based on the final result, this method
(95.20%) not only outperforms the classical ML methods
such as BPNN (85.43%) and SVM (87.97%), but also some
standard DL algorithms, including the standard DAE with
Softmax (89.70%) and the standard DAE with ELM (89.93%).

Considering the relatively large data size required to train
deep neural nets, a 4-layer DNN with stacked sparse auto-
encoder is established in [130] with a compression ratio of
70%, indicating only 30% of the original data are needed to
train the proposed model. The DNN has 720 input nodes, 200

and 60 nodes in the first and the second hidden layer, and
7 nodes in the output layer, the number of which depends
on the number of fault conditions. A nonlinear projection is
performed to compress the vibration data and perform adaptive
feature extraction in the transformed space, and the accuracy of
the proposed method reaches 97.47%, which is 8% higher than
the SVM, 60% higher than a three-layer ANN, and 46% higher
than a multi-layer ANN. [131] summarizes two limitations of
the conventional SAE. Firstly, an SAE tends to extract similar
or redundant features that increase the complexity rather than
the accuracy of the model. Secondly, the learned features
may have shift variant properties. To overcome these issues, a
new SAE-LCN (local connection network) is proposed, which
consists of the input layer, the local layer, the feature layer, and
the output layer. Specifically, this method learns features from
the input signal locally in the local layer, then obtains shift-
invariant features in the feature layer, and finally recognizes
the bearing health condition in the output layer for a 10-
class classification problem. The average accuracy is reported
to reach 99.92%, which is 1% to 5% higher than EMD,
ensemble NN, and DL based methods. Similarly, a diagnosis
model using SAE and incremental support vector machines
is implemented in [132], which is tested for online diagnosis
purposes.

Besides the most commonly used Softmax classifiers in
the output layer, the Gath-Geva (GG) clustering algorithm is
implemented in [133], which induces a fuzzy maximum like-
lihood estimation (FMLE) of the distance norm to determine
the likelihood of a sample belonging to each cluster. While
an 8-layer SDAE is still used to extract the useful features
from the vibration signal, GG is deployed to identify the
different fault types. The worst case classification accuracy
is 93.3%, outperforming the classical EMD based feature
extraction schemes by almost 10%.

To further reduce the DL based model complexity, another
bearing fault diagnosis method based on a fully-connected
winner-take-all auto-encoder is proposed in [134], in which
the model explicitly imposes lifetime sparsity on the encoded
features by keeping only k% largest activations of each neuron
for all of the samples in a mini-batch. A soft voting method
is implemented to increase the classification accuracy and
stability by aggregating the prediction result of each signal
segment sliced by a sliding window. A customized dataset
is generated to test the diagnosis performance under a noisy
environment by adding white Gaussian noise to the original
CWRU dataset. The experimental result demonstrates that with
a simple two-layer network, the proposed method not only
handles the bearing fault detection with a higher precision at
normal conditions, but also demonstrates a better anti-noise
capability when compared to some deeper and more complex
models, such as a deep CNN.

C. Deep Belief Network (DBN)

In DL, a deep belief network (DBN) can be viewed as
a composition of simple unsupervised networks such as re-
stricted Boltzmann machines or auto-encoders, where each
sub-network’s hidden layer serves as the visible layer for the
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Fig. 4. Architecture of DBN.

all the feature sets were divided into two groups, one for
training and the other for testing. Secondly, SAE was applied
for feature fusion. Finally, the fused features were input into
the DBN for fault classification.

The feature fusion and classification of our proposed method
includes the following six procedures.

1) Data Segmentation: The vibration data were obtained
from multiple accelerometers mounted on different loca-
tions under different running conditions, and then were
segmented for grouping into two categories, one for
training and the other for testing.

2) Feature Extraction: All the time-domain and frequency-
domain features were extracted from each data set.

3) Normalization: All the feature vectors were normalized
and rescaled into range [0, 1], according to

x(i) = x(i) − x(i)
min

x(i)
max − x(i)

min

(8)

4) Initialization: Initializing the AE parameters W and b
randomly, and setting up maximum epochs, learning rate
and sparsity parameter.

5) Feature Fusion: Two-layer SAEs were trained through
minimizing the reconstruction error and the output of
the last hidden layer was regarded as the fault feature
representations.

6) DBN Classification: The fused features were utilized
to train the DBN based classification model, and then
the testing data sets were used to validate the proposed
SAE-DBN method.

C. Deep Belief Network

DBN composed of multiple layers of RBMs can be effi-
ciently trained in an unsupervised, layer-by-layer manner.
Lower layers of DBN can extract low-level features in a
greedy way and the upper layers are used to represent more
abstract characteristics of the input data. In this paper, DBN
is composed by stacking three layers of RBMs, as shown
in Fig. 4. Each RBM is a two-layer energy-based model with

Fig. 5. Restricted Boltzmann machine.

visible units and hidden units. Connections only exist between
the visible units of the input layer and the hidden units of the
hidden layer.

The DBN learning process includes two stages: in the first
stage, pretraining the RBM layer step by step in a greedy
way, and in the second stage, fine-tuning the whole network
to adjust the parameters for achieving an ideal performance.
The training data were firstly input into the visible vector for
training the first RBM in an unsupervised manner. And then
the feature representations produced by the level below were
regarded as the input to train the next RBM. This training
process was repeated until the last RBM was learnt.

RBM is a special case of Boltzmann machines and Markov
random fields as shown in Fig. 5. There are a number of
neurons in every RBM layer, which are independent of each
other. A neuron with only inactivated and activated states can
be represented in binary value 0 and 1, respectively. Supposing
a RBM consists of visible vector v and hidden vector h,
the joint probability distribution of (v, h) is given by the energy
function

E(v, h, θ ) = −
m∑

j=1

b j v j −
n∑

i=1

ci hi −
n∑

i=1

m∑

j=1

v j wi, j hi (9)

where w,b,c are the model parameters, v j and h j are the binary
states of visible unit j and hidden unit i , b j and ci are their
biases, respectively, and wi, j is the weight between visible
unit j and hidden unit i .

The joint distribution over the visible and hidden units is
defined as follows:

p(v, h; θ) = 1

Z(θ)
exp(−E(v, h; θ)) (10)

where the partition function Z(θ) = ∑
v,h exp(−E(v, h)).

Because there are no visible-visible or hidden-hidden con-
nections, the conditional probabilities over hidden and visible
units are given by

p(hi = 1|v; θ) = 1/

⎡
⎣1 + exp

⎡
⎣−ci −

m∑

j=1

v j wi, j

⎤
⎦

⎤
⎦

(11)

p(v j = 1|h; θ) = 1/

[
1 + exp

[
−b j −

n∑

i=1

hi wi, j

]]

(12)

To train the DBN model, a fast algorithm so-called con-
trastive divergence, was proposed by Hinton et al. [22]. First,
the conditional probability of hidden units can be obtained by
using (11), then Gibbs sampling is employed to determine the

Fig. 9. Architecture of DBN [136].

next, as illustrated by different colored boxes in Fig. 9. An
RBM is an undirected generative energy-based model with
a “visible” input layer, a hidden layer, and connections in
between, but not within layers. This composition leads to
a fast layer-by-layer unsupervised training procedure, where
contrastive divergence is applied to each sub-network in turn,
starting from the “lowest” pair of layers in the architecture.

This greedy layer-by-layer training process has led to one of
the first effective DL algorithms [135]. There are many attrac-
tive implementations of DBNs in real-life applications such
as natural language understanding and drug discovery; and its
first application on bearing fault diagnosis was published in
2017 [136].

In [136], a multi-sensor vibration data fusion technique is
implemented to fuse the time-domain and frequency-domain
features extracted using multiple 2-layer SAEs. Then a 3-
layer DBN is used for classification purposes. Validation is
performed on the vibration data collected at different speeds,
and the 97.82% accuracy demonstrates that the proposed
method can effectively identify a bearing fault at multiple
operating conditions. The feature visualization using t-SNE
reveals that this multi-SAE based feature fusion outperforms
other methods with only one SAE or without fusion. In [137],
a stochastic convolutional DBN is implemented by means
of stochastic kernels and averaging, and an unsupervised
CNN is built to extract 47 features. Later a 2-layer DBN is
implemented with (28, 14) nodes, 5 kernels in each layer, and
1 pooling layer without overlapping. Finally, a Softmax layer
is used for classification, and the average accuracy exceeds
95%.

Many DBN papers also take the CWRU bearing dataset
as the input data [138]–[140] due to its popularity. For
example, an adaptive DBN and dual-tree complex wavelet
packet (DTCWPT) is proposed in [138]. The DTCWPT first
prepossesses the vibration signal to generate a feature set with
9×8 feature parameters. Then a 3-level wavelet decomposition

of the signal is performed using the order 5 Daubechies
wavelet as the basis function. Then a 5-layer adaptive DBN of
the (72, 400, 250, 100, 16) structure is used for bearing fault
classification. The average accuracy is 94.38%, which is much
higher compared to the classical ML methods such as ANN
(63.13%), GRNN (69.38%), and SVM (66.88%) using the
same training and test data. In [140], data from two accelerom-
eters mounted on the load end and fan end respectively are
processed by multiple DBNs for feature extraction; then faulty
conditions based on the extracted features are determined
by Softmax; and the final health condition is fused by D-
S evidence theory. An accuracy of 98.8% is accomplished
considering the load variation from 1 to 3 hp, a significant
improvement when compared to the conventional SAE and
CNN. Similar to this D-S theory based output fusion method
[139], a 4-layer DBN of the (400, 200, 100, 10) structure with
different hyper-parameters coupled with ensemble learning is
implemented in [140]. Specifically, an improved ensemble
method is used to acquire the weight matrix for each DBN,
and the final diagnosis result is formulated from each DBN
based on their weights. The average accuracy of 96.95% is
better than that of a single DBN of different weights (mostly
around 80%), as well as a simple voting ensemble scheme
based DBN (91.21%).

Besides the CWRU bearing dataset, many other datasets
have been used to evaluate the performance of DBN on bearing
fault diagnostics. In [141], a convolutional DBN constructed
with convolutional RBMs is applied on the locomotive bearing
vibration, where an auto-encoder is firstly used to compress the
data and reduce its dimension. Without any feature extraction
process, the compressed data are divided into training samples
and test samples to be fed into the convolutional DBN. The
convolutional DBN based on Gaussian visible units is able
to learn the representative features, overcoming the problem
of conventional RBMs that all visible units must be related
to all hidden units by different weights. Lastly, a Softmax
layer is used for classification and obtains an accuracy of
97.44%, which compares favorably against other DL methods,
such as the denoising auto-encoder (90.76%), the standard
DBN (88.10%), and the standard CNN (91.24%), using the
same classifier and raw data. In [142], a bearing dataset
directly obtained from power plants is used to evaluate the
performance of a 5-hidden-layer DBN with (512, 2048, 1024,
2048, 512) nodes in each layer. The dataset contains vibration
signals collected from various scaled applications, such as
small testbeds and real field deployments. The unsupervised
feature extraction is performed by DBN, and the fault classifier
is designed using SOM which achieves a 97.13% accuracy.

DBN has also been applied to bearing RUL prediction. In
[143], a DBN-feed-forward neural network (FNN) is applied
to perform automatic feature learning with DBN and RUL
prediction with FNN. Two accelerometers are mounted on the
bearing housing, in directions perpendicular to the shaft, and
the data is collected with a 102.4 kHz sampling frequency
for a duration of 2 seconds. Experimental results demonstrate
the proposed DBN based approach can accurately predict the
true RUL as the bearing approaches the point of failure, and
the accuracy of the predictions tends to increase and converge
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where fh and fo are the activation functions of the hidden 
layer and the output layer, respectively, Wih are the weight 
matrix connecting input layer with a hidden layer, Whh is the 
weight matrix of the hidden layer to its own loop connection, 
Who is the connection weight matrix between the hidden layer 
and the output layer, and bh and bo are bias vectors of the 
hidden layer and output layer, respectively.

However, a conventional RNN as shown in figure  1 has 
inherent flaws. According to figure 1(b), we can see that the 
architecture of the RNN across time steps is equivalent to an 
FNN with multiple hidden layers, and the number of time 
steps can be regarded as its total number of layers. When the 
RNN is trained using back propagation through time (BPTT), 
the error back propagates not only from the output layer to the 
hidden layer but also through time t to time 1 simultaneously 
[38]. However, it can be seen that if t is too large, the learning 
process will be especially challenging due to the gradient van-
ishing or the exploding problem [36].

Therefore, an improved RNN model, named the long-short 
term memory recurrent neural network (LSTMRNN), was 
proposed to overcome the flaws of the conventional RNN [39]. 
From figure 2, we can see that the LSTMRNN can be acquired 
by replacing the hidden neurons of a conventional RNN with 
long-short term memory (LSTM) units. The most obvious 
characteristic of an LSTM unit is that it mainly consists of 
a memory cell and three layer gates, i.e. an input gate, forget 
gate, and output gate. In addition, the dashed lines connecting 
the memory cell with three layer gates are called peephole 
connections [40]. Such architecture of the LSTM cell greatly 
relaxes the problem of gradient vanishing or exploding. 
Therefore, this paper adopts the LSTMRNN model to get sat-
isfactory results. The mathematical calculation procedure of 
an LSTM unit can be described as

gt = g (Wih · xt + Whh · ht−1 + bh) , (3)

it = σ
(
Wiig · xt + Whig · ht−1 + pig � ct−1 + big

)
, (4)

ft = σ
(
Wifg · xt + Whfg · ht−1 + pfg � ct−1 + bfg

)
, (5)

ot = σ
(
Wiog · xt + Whog · ht−1 + pog � ct + bog

)
, (6)

ct = it � gt + ft � ct−1, (7)

ht = ot � h (ct) , (8)

where σ, g, and h are the gate activation function, the input, 
and the output activation functions of the LSTM units, respec-
tively; Wih, Wiig, Wifg, and Wiog are the weight matrices 
between the input layer and the LSTM layer at time t; Whh, 
Whig, Whfg, and Whog are the self-connection weight matrices 
of the LSTM units between time t and t  −  1; bh, big, bfg, and 
bog are the bias vectors of the input nodes, the input gate, the 
forget gate, and the output gate, respectively; pig, pfg, and pog

 
are the weight matrices between the peephole connections and 
the three gate units, respectively.

3. The proposed method

This paper proposes a novel intelligent method based on 
an improved DRNN for fault diagnosis of rolling bearings. 
The proposed method mainly consists of four parts: firstly, 
the bearing data set design is based on frequency spectrum 
sequences; secondly, the DRNN construction; thirdly, an 
improved DRNN with an adaptive learning rate strategy; 
fourthly, the main diagnosis process of the proposed method.

Figure 1. (a) Structure of the RNN, (b) structure of the RNN across a time step.

Figure 2. Structure of the LSTM.
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Fig. 10. Architecture of (a) RNN, and (b) RNN over a time step [144].

over time.

D. Recurrent Neural Network (RNN)

Different from a feed-forward neural network, a recurrent
neural network (RNN) processes the input data in a recurrent
behavior, and its architecture is shown in Fig. 10. With a flow
path going from the hidden layer to itself, when unrolled in
sequence, it can be viewed as a feed-forward neural network in
the input sequence. As a sequential model, it can capture and
model sequential relationships in sequential data or time-series
data. However, often trained with back-propagation through
time, RNN has the notorious gradient vanishing/exploding
issue stemmed from its nature. Although the RNN is pro-
posed as early as the 1980s, it has limited applications due
to this reason, until the birth of long short-term memory
(LSTM) in 1997. Specifically, LSTM is augmented by adding
recurrent gates called “forget” gates. Designed for overcoming
the gradient vanishing/exploding issue, LSTM has shown an
astonishing capability in memorizing and modeling the long-
term dependency in data, and therefore taken a dominant role
in time-series and textual data analysis. So far, it has received
great successes in the field of speech recognition, handwriting
recognition, natural language processing, video analysis, etc.

One of the earliest applications of RNN on bearing fault
diagnostics is reported in 2015 [144], where fault features are
firstly extracted using the discrete wavelet transform and later
selected based on the orthogonal fuzzy neighbourhood dis-
criminative analysis. These features are then fed into an RNN
to perform bearing fault detection. The experimental result has
shown that the proposed scheme based on RNN is capable of
accurately detecting and classifying the bearing fault. Another
RNN based health indicator (RNN-HI) is proposed in [145]
to predict the RUL of bearings with LSTM cells used in
RNN layers. Along with time-frequency features, the related-
similarity (RS) feature calculates the similarity between the
currently monitored data and the data at an initial opera-
tion point. After performing a correlation and monotonicity-
metrics-based feature selection process, the selected features
are transferred to an RNN network to predict the bearing
HI, from which the RUL can be estimated. With the input
dataset collected from generator bearings of wind turbines, the
proposed RNN-HI is demonstrated to offer better performance
than an SOM based method.

In addition, a methodology of a combined 1-D CNN and
LSTM to classify bearing fault types is presented in [146],
where the entire architecture is composed of a 1-D CNN layer,
a max pooling layer, a LSTM layer, and a Softmax layer as
the top classifier. The system input is the raw signal without
any pre-processing, and the best test accuracy of different
configurations reaches 99.6%. A more recent work employing
a deep recurrent neural network (DRNN) is proposed in [147]
with stacked recurrent hidden layers and LSTM units. A
loss function with mean squared errors is introduced and
the stochastic gradient descent (SGD) method is used as the
optimizer. Besides, an adaptive learning rate is also adopted
to improve the training performance. The average accuracy on
the test set using the proposed method is 94.75% and 96.53%
at 1,750 and 1,797 rpm respectively.

E. Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) was proposed by
Goodfellow et al. [148] in 2014 and rapidly became one of
the most exciting breakthroughs in the field of deep learning.
A GAN is composed of two parts: the generator FG and the
discriminator FD, as illustrated in Fig. 11 [149]. The two parts
are competing with each other in a way that the generator FG

is trying to confuse the discriminator FD, and FD is trying
to distinguish samples generated by FG from samples in the
original dataset. Established as a zero-sum game framework,
both FG and FD are competing to obtain an increasingly
stronger capability of imitating the original data samples and
discriminating in an iterative manner.

A GAN is mainly designed for generative purposes to gener-
ate samples or functions as generation modules. Despite its rel-
atively short history, GAN has been rapidly applied to the field
of bearing fault diagnostics. One of the earliest publications
appears in 2017 [150], which aims at addressing the class im-
balance issue using GAN. In addition, GAN is also combined
with the adaptive synthetic sampling (ADASYN) approach
to achieve meaningful oversampling when the original data
samples are sparse. Comparison against standard oversampling
techniques shows the superiority of adopting GAN. In [151], A
novel approach for fault diagnosis based on deep convolution
GAN (DCGAN) with imbalanced dataset is proposed. A new
DCGAN model [152] with 4 convolutional layers serving as
the discriminator and the generator is designed and applied on
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The Imitation Learning problem

The agent (learner) needs to come up with a policy whose 
resulting state, action trajectory distribution matches the expert 
trajectory distribution.

Generative Adversarial Networks, Goodfellow et al. 2014

GANs! Generative Adversarial Networks (on state-action trajectories)
 Does this remind us of something…?

Fig. 11. Architecture of GAN [149].

raw and imbalanced vibration signals. After performing data
balancing using the DCGAN model, statistical features based
on time-domain and frequency-domain data are extracted to
train a SVM classifier for bearing fault classification. Both the
training and the test accuracy of the proposed DCGAN method
demonstrate better performance than other class balancing
methods, including random over-sampling, random under-
sampling, and synthetic minority over-sampling technique.

We can find a number of research works in the field of
bearing fault diagnostics employing GAN and its variants for
data augmentation purposes due to their excellent generative
capability. Besides that, there are also some works using GAN
as the main framework to realize classification tasks, which
heavily rely on the assumption that the data structure in latent
space, although without labels, contains information that can
be used to infer the labels. When a GAN is learning from un-
labeled samples in a unsupervised manner, it can additionally
learn the data distribution in latent space that distinguishes the
data’s unknown classes. In this way, the discriminator of GAN
can be refined as a classifier assisted by some other modules
in the framework. This class of GAN-centered frameworks
has shown superiority in semi-supervised areas, especially in
applications where labeled data are expensive and scarce.

In [153], for example, the authors proposed a novel GAN
framework referred to as the categorical adversarial auto-
encoder (CatAAE), which automatically trains an auto-encoder
through an adversarial training process, and imposes a prior
distribution on the latent coding space. In the next step, a
classifier tries to cluster the input examples by balancing
the mutual information between examples and their predicted
categorical class distributions. The latent coding space and the
training process are presented to investigate the advantage of
the proposed model. Experiments at different signal-to-noise
ratios (SNRs) and different motor load levels have indicated
the preponderance of the proposed CatAAE in learning useful
characteristics when compared to the categorical generative
adversarial networks (CatGAN) and the K-means algorithm.

Since many real-world applications do not comply with
the common assumption that the training set and the test set
have the same distribution, due to the fact that the operating
condition may vary frequently. Similar to [153] and inspired by
GAN, a new adversarial adaptive 1-D CNN model (A2CNN) is
proposed in [154] to address this problem. Experiments show
that the A2CNN has a strong fault-discriminative and domain

invariant capacity, and therefore its prediction can achieve a
high accuracy even at different operating conditions. Other
works employing GAN to tackle the data imbalance issue can
be found in [155] and [156].

F. Deep Learning based Transfer Learning

The success of ML and DL based bearing fault diagnos-
tics relies on a massive amount of heavily annotated data.
However, this is generally not feasible in most real-world
applications due to 1) the dangerous and serious consequences
when machines are running at faulty conditions; 2) the po-
tential time-consuming degradation process before the desired
failure appears; and 3) the possibility of a large number of
operating conditions with different speeds and loads. With DL
methods trained with either the publicly available datasets or
self-collected datasets sampled in a laboratory environment,
the classification accuracy will naturally deteriorate when
determining the presence of bearing fault in a real-world
application. Even if the data collected from the same machines
and bearings are used, certain level of distribution discrepancy
inevitably exists between features of the training and test sets
if they were at different loads or speeds. As a result, the
performance still suffers.

Designed to tackle this practical and widely existing issue in
numerous applications, transfer learning has aroused extensive
attention in the machine learning community, and various
transfer learning frameworks are proposed based on classical
ML algorithms [32], [33], [157], [158]. A popular method
among all types of transfer learning approaches is domain
adaptation. By exploring domain-invariant features, domain
adaptation establishes the knowledge transfer from the source
domain to the target domain [159]. Therefore, with labeled
data from the source domain and unlabeled data from the
target domain, the distribution discrepancy between the two
domains can be mitigated by domain adaptation algorithms.
Over the last few years, an integration of deep learning and
transfer learning approaches has been prevalent. Specially
designed domain adaptation modules are combined with deep
learning architectures to endow the domain transfer ability
while maintaining the extraordinary automatic feature learning
ability [159]–[163].

Specifically, a domain adaptation module is proposed in
[161] to facilitate a 1-D CNN to learn domain-invariant
features by maximizing the domain recognition error and
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cluster together, which suggests that the following operations work as a correlation stage. This result matches with the idea
of the state-of-art domain adaptation method named CORAL, whose main idea is to decorrelate first and then re-correlate the
responses in networks to acquire better domain invariant features. However, our method doesn’t need to add any regulation
terms to achieve this and doesn’t need any statistics information of target domain.

5. Conclusion

This paper proposes a new model named TICNN, to address the fault diagnosis problem. TICNN works directly on raw
vibration signals without any time-consuming hand-crafted feature extraction process. TICNN has two main interferences,
first-layer kernel dropout with constantly changing rate and very small batch training. With the help of data augmentation,
the proposed TICNN model works well under noisy environment and performs well when the working load changes.

Results in Section 4 shows that, although state of the art DNN model could achieve pretty high accuracy on normal data-
set, its performance suffer from rapid degradation under noisy environment or when working load changes. However,
TICNN, with high classification accuracy, is also very robust to change of working load and noise.

Ensemble Learning has improved the stability and accuracy of the algorithm. In addition, Networks Visualizations are
used to investigate the inner mechanism of the proposed TICNN model.

Compared with common denoising preprocessing algorithm and domain adaptation algorithm that requires additional
information, our algorithm does not need any subsidiary algorithm. Therefore, in future work, we can try combining some
denoising preprocessing and using information about the target domain to improve the performance of the proposed model.
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Fig. 11. Feature visualization via t-SNE: feature representations for all test signals extracted from raw signal, six convolutional layers and the last fully-
connected layer respectively.
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Fig. 12. Feature visualization via t-SNE: feature representations for all test signals extracted from raw signal, six convolutional layers and the last fully
connected layer respectively [112].

minimizing the probability distribution distance. To validate
the efficacy of domain adaptation, 3 datasets including CWRU
dataset, IMS dataset, and railway locomotive bearing dataset
are employed. By training on one of the three datasets and test-
ing on another one, an average accuracy of 86.3% is achieved,
which has surpassed the conventional CNN of 53.1%, and two
existing domain adaptation frameworks of 75.6% [157] and
78.8% [158].

A novel framework WDCNN (deep CNN with wide first-
layer kernels) combined with adaptive batch normalization
(AdaBN) was proposed in [162]. Taking the raw vibration
signal as input, the new framework is based on a CNN
architecture with wide kernels (64) in the first convolutional
layer to better suppress the high frequency noise. Then domain
adaptation is implemented by extracting the mean and variance
of the target domain signals and passing them to AdaBN. The
CWRU dataset is used to conduct cross-domain experiments
by training the proposed WDCNN in one working condition
and testing in another one. An average accuracy of 90.0% is
achieved, which is further improved to 95.9% by mixing with
AdaBN, outperforming the conventional FFT-DNN method of
78.1%. When tested in a noisy environment (with additive
white Gaussian noise), WDCNN with AdaBN achieves a
92.65% accuracy under a -4 dB SNR, in comparison to 66.95%
without AdaBN.

Deep generative network can also be combined with domain
adaptation to produce a novel framework. In [163], a 2-
stage structure is proposed. In the first stage, an 8-layer

CNN component including 3 convolutional layers with basic
classifiers is trained as the feature extractor to optimize the
classification error under source supervision. Then Nc−1 (Nc

is the number of classes) CNN components, each of which
consists of 3 convolutional layers and 3 dropout layers, are
trained to minimize the maximum mean discrepancy. In the
second stage, with the feature extractor trained in the first
stage, a cross-domain classifier is trained to generate the final
diagnosis result.

G. Other Variants

There are also many other DL variants implemented to cope
with some of the open issues in the field of bearing fault
diagnostics. Some of the selected variants are summarized as
follows.

1) Variational Autoencoders: Proposed by Kingma et al.
[164], the variational auto-encoder (VAE) is different from
other autoencoder variants in that it uses the variational
inference to generate a latent representation of the data,
and impose a distribution over the latent variables and the
data itself. Compared to some general class DL algorithms,
the implementation of VAE in bearing fault detection is a
relatively new domain. A representative work of such is pre-
sented in [165], where a fully unsupervised deep VAE-based
approach is proposed to tackle the high dimensionality of data
used for failure diagnosis. Specifically, the VAE is able to
extract discriminative features from the high-dimensional input
data to form their corresponding low-dimensional latent space
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TABLE II
A SUMMARY OF DIFFERENT DEEP LEARNING ARCHITECTURE.

Architecture Description Characteristics

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

12/26/2018 CONFIDENTIAL 3

CNN

Convolutional Neural Network

• Well-suited for 2-D data, i.e., images,
thus 1-D temporal data need to be pre-
processed to form 2-D vectors

• ReLU after convolutional layers helps
accelerate the convergence speed.

• Many variants have been proposed:
ADCNN [105], LiftingNet [114], and
inception net [117], etc.

Pros:
• Few neuron connections required with

respect to a typical ANN.
• The classical CNN exhibits a good

denosing capability [107].
Cons:

• May require many layers to find an
entire hierarchy.

• May require a large labeled dataset.

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

12/26/2018 CONFIDENTIAL 4

Autoencoder

Deep Autoencoder

• Mainly designed for feature extrac-
tion or dimension reduction.

• Unsupervised learning method aiming
at reconstructing the input vector.

• Many variants have been proposed:
stacked denoising AE [125], deep en-
semble AE [128], and stacked sparse
AE [130].

Pros:
• Does not require labeled data.
• Many AE variants can make the algo-

rithm more noise-resilient and robust.
Cons:

• Requires a pre-training stage.
• Training may suffer from the vanish-

ing of errors.

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

12/26/2018 CONFIDENTIAL 5

DBN Deep Belief Network

• Composed of RBMs where each sub-
network’s hidden layer serves as the
visible layer for the next.

• Has undirected connections just at the
top two layers.

• Allows unsupervised and supervised
training of the network.

Pros:
• Proposes a layer-by-layer greedy

learning strategy to initialize the net-
work.

• Tractable inferences maximize the
likelihood directly.

Cons:
• Training may be computationally ex-

pensive due to the initialization pro-
cess and sampling stage.

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

12/29/2018 CONFIDENTIAL 7

Recurrent Neural Network

• An ANN capable of analyzing 1-D
sequential or temporal data streams.

• LSTM re-vibrated the application of
RNNs.

• Suitable for applications where the
output depends on the previous com-
putations.

Pros:
• Memorizes sequential events.

• Capable of modeling time dependen-
cies.

• Capable of receiving inputs of vari-
able lengths.

Cons:
• Frequent learning issues due to gradi-

ent vanishing/exploding.

© MERL

MITSUBISHI ELECTRIC RESEARCH LABORATORIES

12/27/2018 CONFIDENTIAL 7

GAN Generative Adversarial Network

• Composes of a generator and a dis-
criminator. Originally designed to
generate images that imitate real pho-
tos.

• Applied for data augmentation in la-
beled data scarce applications

• Also used in classification tasks, usu-
ally in with semi-supervised manner.

Pros:
• Requires almost no modifications

when transferring to new applications.
• Requires no Monte Carlo approxima-

tions to train.

• Does not introduce deterministic bias.
Cons:

• GAN training is unstable as it requires
finding the Nash equilibrium of a
game.

• Hard to learn to generate discrete
data, such as text.
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representations. The experimental results show that the VAE
is a more competent and promising tool for dimensionality
reduction than PCA. Besides discriminative feature learning,
it is also worthwhile exploring its generative capabilities for
fault diagnosis in the context of semi-supervised learning.

2) Capsule Neural Networks: The capsule network is a
new deep learning architecture proposed by Hinton et al. in
[166], which has a strong capability to identify the position
and orientation relationship of features through the capsule
module. Meanwhile, its relatively simple structure with a
limited number of parameters significantly promotes the
model generalization.

For instance, in [167], a capsule network with inception block
is proposed aiming at improving the model generalization
capability. This goal is achieved by employing an inception-
module-augmented capsule network to adopt different
working conditions, upon taking the two-dimensional short-
time Fourier transform graph of the raw data as input.
Besides, a regression branch is added to predict the size of
the bearing defect. The experiments showcase better domain
adaptation performance than state-of-the-art algorithms when
training and testing on bearing fault data collected at different
work loads. The authors in [168] also proposes a deep
capsule network with stochastic delta rule (DCN-SDR) for
bearing fault diagnosis under varying working conditions and
noisy environment. The network first receives raw temporal
signal as input, and then extracts noise-immune representative
features via incorporating a noise injection module, which
is a regularization method based on SDR. The superiority
of the proposed architecture is verified through extensive
experiments and the subsequent feature visualization via
t-SNE. Similarly, a capsule network combined with the
Xception module (XCN), an extreme version of inception
module, is developed in [169], aiming at improving the
classification accuracy of the proposed variant of the capsule
network. Trained on ideal laboratory conditions and tested
on an actual system setup, the proposed diagnostic model
delivers improved classification accuracy, robustness, and
training speed.

3) Siamese Neural Networks: Originally proposed by
Bromley and LeCun [170] in the early 1990s, the siamese
neural network is designed to solve signature verification as an
image matching problem. A siamese neural network consists
of twin networks, which compares distinct inputs and rank
similarities between them. With a growing interest in few-
shot learning over the recent years due to insufficient data,
Koch et al. [171] implemented the siamese neural network
for one-shot image recognition, which inspired the later work
of applying this similar siamese network structure to bearing
fault diagnostics [172]. Specifically, in the specific siamese
network model in [172], two identical networks are set up to
take in sample pairs of the same or different categories, which
can measure the distance of the two feature vector outputs to
determine their similarity. Compared to the WDCNN bench-
mark with a limited number of training samples below 200,
the experimental result reveals an approximately 5% increase
of accuracy for the siamese net based one-shot learning, and

a 10% increase for five-shot learning.
4) Others: There are also a number of other variants for

bearing fault diagnostics, either based on novel DL frame-
works or mixture of multiple DL methods listed above. For
example, in [173], a new large memory storage retrieval
(LAMSTAR) neural network is proposed with 1 input layer,
40 input SOM modules as hidden layers, and 1 decision SOM
module as the output layer. More accurate classification results
compared to the conventional CNN are reported at various
operating conditions, especially at low speeds. In [174], the
DBN and SAE are applied simultaneously to identify the
presence of a bearing fault. Other examples include a mixture
of CNN and DBN [175], a deep residual network (DRN) [176],
[177], a deep stack network [178], a RNN based auto-encoders
[179], sparse filtering [180], etc.

V. DISCUSSIONS ON DEEP LEARNING ALGORITHMS FOR
BEARING FAULT DIAGNOSIS

A. Automated Feature Extraction and Selection

As opposed to feature engineering of ML algorithms, which
manually selects features that preserve the discriminative char-
acteristics of the data, the DL based algorithms can learn the
discriminative feature representation directly from input data
in an end-to-end manner. The DL based approach does not
require human expertise or prior knowledge of the problem,
and is therefore advantageous in bearing fault diagnosis, where
it is sometimes challenging to determine the fault characteristic
features accurately. Specifically, DL methods perform feature
learning from raw data and classification in a simultaneous and
intertwined manner, as illustrated in the cluster visualization
results of multiple convolutional layers in Fig. 12. A glimpse
of the clustering effect can be observed in convolutional layer
C2; and it becomes increasingly apparent in later convolu-
tional layers. For comparison reasons, many DL based papers
also present results using classical ML methods with human
engineered features for bearing fault detection. The majority
of DL based methods are reported to outperform traditional
ML methods, especially in the presence of external noise and
frequent change of operating conditions.

B. Comparison of Different DL Algorithms for Bearing Fault
Diagnostics

Thus far, several types DNN architectures and their ap-
plications to bearing fault diagnostics have been extensively
discussed, and TABLE II briefly describes the pros and cons
of the commonly used deep learning approaches in the field
of bearing fault diagnostics. The decision to choose which
specific DL algorithm or which specific variant can be cus-
tomized based on the specific setup environment, the data
size, and the number and type of sensors installed. Details on
algorithm customization and recommendation will be provided
in Section VI.

C. Comparison of DL Algorithm Performance using the
CWRU dataset

A systematic comparison of the classification accuracy of
different DL algorithms employing the CWRU bearing dataset
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TABLE III
COMPARISON OF CLASSIFICATION ACCURACY ON CASE WESTERN RESERVE UNIVERSITY BEARING DATASET WITH DIFFERENT DL ALGORITHMS.

Reference Feature extraction
algorithms

No. hidden
layers Classifier Characteristics Training sample

percentage Average accuracy

[105] Adaptive CNN 3 Softmax Predict fault size 50% 97.90%
[107] CNN 4 Softmax Noise-resilient 90% 92.60%
[108] CNN 4 Softmax Sensor fusion 70% 99.40%
[109] CNN based on LeNet-5 8 FC layer Better feature extraction 83% 99.79%

[110] Deep fully connected CNN 8 Connectionist
temporal classification

Validation with
Actual filed test data 78% 99.22%

[111] Multi-scale deep CNN 9 Softmax Reduce training time 90% 98.57%

[112] CNN with
training interface 13 Softmax Adapt to load change 96% 95.50%

[113] IDS-CNN 3 Softmax Adapt to load change 80% 98.92%
[114] CNN-based LiftingNet 6 FC layer Adapt to speed change 50% 99.63%
[115] PSPP-CNN 9 Softmax Adapt to speed change 67% 99.19%
[116] AOCNN with SF 4 Softmax Reduce training set % 5% 99.19%
[123] SAE 3 ELM Adapt to load change 50% 99.61%
[124] SAE 3 ELM Reduce training time 50% 99.83%
[125] Stacked denoising AE 3 N/A Noise-resilient 50% 91.79%
[126] SDAE 3 Softmax Noise-resilient 80% 99.83%
[128] Ensemble deep AE 3 Softmax Better feature extraction 67% 99.15%
[129] Deep wavelet AE 3 ELM Reduce training time 67% 95.20%
[130] Stack sparse AE 2 N/A Data compression N/A 97.47%
[131] SAE-local connection network 2 Softmax Shift-invariant features 25% 99.92%
[132] SAE 3 SVM Online diagnosis N/A 95.10%
[133] SDAE 8 Gath-Geva (GG) Noise-resilient N/A 93.30%
[134] Winner-take-all AE 2 Gath-Geva (GG) Noise-resilient N/A 97.27%

[138] dual-tree
complex wavelet 5 N/A Adaptive DBN 67% 94.38%

[139] DBN 2 Softmax Adapt to load change N/A 98.80%

[140] DBN with
ensemble learning 4 Sigmoid Accurate & robust N/A 96.95%

[146] CNN-LSTM 3 Softmax Accurate 83% 99.60%
[147] Deep RNN 3 N/A Accurate 60% 94.75%
[151] DCGAN 8 SVM Data augmentation 96% 86.33%
[153] CatAAE 11 Softmax Adapt to load changes 91% 90.68%
[154] A2CNN 27 Softmax Domain adaptation N/A% 99.21%
[155] GAN+SDAE 8 Softmax et al. Data augmentation 50-78% 99.20%

is presented in TABLE III. As can be readily observed, the
minimum number of hidden layers for all of the networks is
2, indicating the complete network has at least 4 layers in-
corporating the input and output layers. The maximum hidden
layer size can be as large as 13 in [114], representing a very
deep network that requires more time in the training process.
The selection criterion for the number of hidden layers is
to count the layers that are part of the model’s architecture,
while excluding the input and the output layer. Based on this
criterion, in a CNN we count each convolutional layer and
each pooling layer as an effective hidden layer, and disregard
any of the dropout layer, since it is a regularization technique
that only affects the training process (during evaluation, it is
not active, otherwise the weights of the network will be larger
than normal). For a GAN, we count all of the hidden layers
in both the generator and the discriminator.

The test accuracy of all of the DL algorithms are above
95%, which validates the feasibility and effectiveness of
applying deep learning to bearing fault diagnostics. However,
it is worthwhile to mention that these specific values of test
accuracy cannot be used as the sole indicator to compare the
effectiveness of different algorithms for the following reasons:

1) Generalization: Some of the DL methods with an as-
tonishing accuracy over 99% are generally applied on
a very specific dataset at a fixed operating condition,

i.e., when the motor speed is 1,797 rpm and the load
is 2 hp. However, this accuracy may suffer significantly
under the influence of noise and variation of the motor’s
speed and load, which unfortunately can be a common
issue in practical applications. This is in spite of the
relatively strong robustness to noise disturbances of the
original DL algorithms (CNN, SAE, DBN, etc.), and
their capabilities to learn fault features through a general-
purpose learning architecture. It is also reported in [107]
that the conventional CNN has a better built-in denoising
mechanism compared to other classical DL algorithms
such as AE. Due to this limitation, some papers applied
the stacked denoising AE (SDAE) [125], [126], [133] to
increase AE’s noise resilience under a small SNR, i.e.,
SNR = 5 or 10.

2) Unbalanced Sampling: Regarding the selection of train-
ing samples from the CWRU dataset, many papers did
not guarantee a balanced sampling, which means the ratio
of data samples selected from the healthy condition and
the faulty condition is not close to 1:1. In case of a
significant unbalance, accuracy should not be used as the
only metric to evaluate an algorithm [154]. Compared
with accuracy, other metrics, such as precision, recall and
F1-Score, should be introduced to provide more details
for evaluating the reliability of a fault identification net-
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work. In addition, if the majority of training set are data
from the healthy condition, many of the learnt features
cannot fully indicate various fault conditions. Therefore,
provided that the training data is highly unbalanced, it
would be very challenging to apply the DL classifier
trained with laboratory data to identify a bearing fault in
practical applications, even if the DL framework adopts
transfer learning with domain adaptations.

3) Randomness: Even when these DL methods are using
the same dataset to perform classification, the percentage
of training data and test data can be different, which
unavoidably affects the trustability of the comparison
between different approaches. What’s more, even if this
data distribution is identical, the training and test data
might be randomly selected from the CWRU bearing
dataset. Therefore this comparison is not performed on
the common ground, since the classification accuracy is
subject to change even with the same algorithm due to
the randomness in selecting the training and the test set.

4) Accuracy saturation: Most of the existing DL algorithms
can achieve an excellent classification accuracy of over
95% using the CWRU dataset, even with the classical
CNN without any add-on architectures, which indicates
that this dataset contains relatively simple features that
can be easily extracted by a variety of DL methods.
In fact, all of the bearing defects in the CWRU dataset
are manually drilled or engraved, which are much easier
to detect than the realistic bearing spalls or general
roughness due to aging. Therefore, various perturbations
adding on the original dataset needs to be performed to
evaluate more advanced functionalities of DL algorithms,
i.e., the CWRU data combined with random noise to test
an algorithm’s denoising capability.

All of the factors above would make the classification
accuracy of different DL algorithms less convincing.

VI. SUGGESTIONS, CHALLENGES, AND FUTURE WORK
DIRECTIONS

A. Recommendations and Suggestions

The successful implementation of machine learning and
deep learning algorithms on bearing fault diagnostics can be
attributed to the strong correlations among features that follow
the law of physics. For engineers and researchers considering
applying ML or DL methods to solve their bearing detection
problems at hand, the authors suggest the following sequences
to make the best algorithm selection.

1) Setup environment: The first thing we recommend is to
thoroughly examine the working environment and all of
the possible operating conditions, for example, indoor or
outdoor, operating at a fixed operating point or multiple
speeds and loads. For the simplest case with an indoor
and a single operating point setup, some classical ML
methods or even the frequency based analytical model
should suffice. For applications that are more prone to
external disturbances or having multiple operating points,
such as motors fed by VFD converters in electric vehicles,

more advanced deep learning approaches should be em-
ployed. Specifically, when the workbench is exposed to a
noisy environment, which induces a relatively small SNR,
certain denoising blocks and extra hidden layers should
be added to increase the noise-resiliency and robustness
of the deep neural net.

2) Sensors: Then we would need to check the number and
type of sensors to be mounted close to the bearing.
For the traditional frequency based and classical ML
methods, one or two vibrations sensors mounted close
to the bearing should be sufficient. For deep learning
based approaches, due to the fact that many algorithms
such as CNN are mainly developed for computer vision
to handle 2-D image data, multiple 1-D time-series data
obtained by multiple sensors in the bearing setup need to
be stacked together to form this 2-D data. Alternatively,
some prepossessing functions, such as the wavelet packet
decomposition (WPD), need to be applied before the
data is transferred to the deep neural net. Therefore, it
would be better to have more than two vibration sensors
installed at the same time. In addition, other types of
sensors such as acoustic emission and stator current can
be installed to form a multi-physics dataset to further
improve the accuracy and robustness of the proposed
classifier, especially in the midst of frequent and abrupt
shifts of operating conditions.

3) Data size: If the size of the collected dataset is not suffi-
cient to train a deep learning algorithm with a good level
of generalization, specific algorithms should be selected
that can make the most out of the data and computing
resources available. For example, dataset augmentation
techniques such as GAN, and data random sampling
techniques with replacement such as Boostrapping, can
be readily implemented. Before actually collecting data
from the bearing setup, it is advised to interpret the
required sample size beforehand [181] by considering
how accurate the classification result needs to be. With
a small labeled dataset, another promising routine is to
leverage the unlabeled dataset, if possible, and apply
the semi-supervised learning paradigm by combining the
supervised and unsupervised learning approaches.

B. Current Challenges

Despite the extensive effort and the large number of aca-
demic papers devoted to this field, there are still some major
challenges that need to be tackled to successfully apply ML
and DL algorithms to real-world applications:

1) Knowledge transfer from laboratories to the real world:
The majority of work included in this review is using pub-
licly available dataset collected from laboratories setups
to train their customized ML or DL algorithms. However,
it would be ideal to be able to transfer the learned network
structure and parameters to detect bearing faults from
previously unseen setups, and a very promising example
would be learning to predict naturally occuring bearing
faults in the real-world by only using data collected from
artificial faults in the lab. However, there are still many
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technique details that need to be tackled to accomplish
this ambitious goal.

2) Limited labels: For bearing fault detection, it is often
times much easier to collect a large amount of data than
to accurately obtain their corresponding labels, and this
is especially the case for those faults that evolved natu-
rally over time. Specifically, it is not easy to determine
precisely when the first trace of a fault shows up and how
long it lasts at the incipient stage.

3) Data imbalance: In certain occasions it can be challeng-
ing or expensive to collect a sufficient amount of data
at various bearing faulty conditions to effectively train
DL algorithms, while the vast majority of data collected
would be at the healthy condition, which in fact does not
significantly contribute to training an effective and robust
bearing fault classifier.

4) Noisy data: Most of the existing work employing DL
techniques for bearing fault diagnosis relies on vibration
data collected from accelerometers in a laboratory en-
vironment. However, in real industrial scenarios such as
wind turbines, a large amount of environmental vibration,
resonance, or noise may take place. Therefore, it is still
an open question if these DL algorithms, while being
trained using the vibration data alone, can still deliver
satisfactory fault detection performances if the collected
data is contaminated by noise.

C. Future Work Directions
Regarding future research directions, the authors suggest the

following methodologies and algorithms that might be helpful
to address the aforementioned challenges:

1) Transfer learning: Transfer learning is a promising tech-
nique to transfer the knowledge and experience learned
from existing datasets to help identify unforeseen bearing
fault conditions at different setups in real-world ap-
plications. Typical transfer learning techniques include
domain randomization and domain adaptation, which can
effectively increase the diversity of the source domain
(existing datasets), and help facilitate faster learning
and better performance in the target domain (real-world
cases).

2) Semi-supervised learning: To alleviate the problem of
“limited labels”, semi-supervised learning can be utilized
to make full use of the limited labeled data and the mas-
sive unlabeled data. One potential routine is to employ the
variational encoder based deep generative model perform
variational inference on data with limited labels.

3) Data augmentation: Data augmentation techniques such
as GAN can be introduced solve the “data imbalance and
scarcity” issue by generating more “fake” faulty data to
facilitate the training process of DL algorithms. Despite
this promising feature, it has been reported in [155] that
the accuracy actually declined for some classifiers after
incorporating the generated data into the training process.
The authors in [155] thus concludes that “the quality of
generated spectrum samples” generated by GAN “isn’t
good enough to provide auxiliary information”. There-
fore, it would be interesting to explore more powerful

generative models, such as BigGAN, to address this open
issue.

4) Few-Shot learning: Another way to address the “data
imbalance and scarcity” problem is to adapt few-shot
learning algorithms to achieve a reasonable classification
accuracy using a substantially smaller amount of data.
This can be combined with transfer learning and domain
adaptation to facilitate the use of deep learning for
bearing fault diagnostics at the industry level.

5) Explainability: Rigorous interpretations of DL in general
is not well developed as compared with classical ML
methods. Several references, such as [162], and [161],
attempted to visualize the learnt CNN kernel to inter-
pret its physical meanings. These studies have provided
intuitions on the explainability of DL, but more in-
depth investigations and their adaptability to bearing fault
diagnostics are necessary.

6) Sensor fusion: To solve the potential problem of“noisy
data”, it might be worthwhile to deploy other types of
sensors, such as the load cell, the current sensor, and the
acoustic emission sensor, etc., and apply sensor fusion
techniques to synthesize these data and improve the
robustness of bearing fault diagnosis. Specifically, the
use of acoustic sensors should be advocates since it is
reported in [173] that in comparison with vibration sig-
nals, acoustic emission signals “have certain advantages
in detecting incipient faults, capturing and representing”.
Some existing work on applying acoustic signals to train
ML and DL algorithms can be found in [58] and [173],
respectively.

VII. CONCLUSIONS

In this paper, a systematic review is presented on the
existing literature employing deep learning algorithms to bear-
ing fault diagnostics. Special emphasis is placed on deep
learning based approaches that has spurred the interest of the
research community over the past five years. It is demon-
strated that, despite the fact that deep learning algorithms
require a large dataset to train, they can automatically perform
adaptive feature extractions on the bearing data without any
prior expertise on fault characteristic frequencies or operating
conditions, making them promising candidates to perform real-
time bearing fault diagnostics. A comparative study is also
conducted comparing the performance of many DL algorithm
variants using the common CWRU bearing dataset. Finally,
detailed recommendations and suggestions are provided in
regards to choosing the most appropriate type of DL algorithm
for specific application scenarios. Future research directions
are also discussed to better facilitate the transition of DL
algorithms from laboratory tests to real-world applications.
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