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Abstract

Recently, data-driven approaches motivated by modern deep learning have been applied to
optical communications in place of traditional model-based counterparts. The application
of deep neural networks (DNN) allows flexible statistical analysis of complicated fiber-optic
systems without relying on any specific physical models. Due to the inherent nonlinear-
ity in DNN, various equalizers based on DNN have shown significant potentials to mitigate
fiber nonlinearity. In this paper, we propose turbo equalization (TEQ) based on DNN as a
new alternative framework to deal with nonlinear fiber impairments. The proposed DNN-
TEQ is constructed with nested deep residual networks (ResNet) to train extrinsic likelihood
given soft-information feedback from channel decoding. Through extrinsic information trans-
fer (EXIT) analysis, we verify that our DNN-TEQ can accelerate decoding convergence to
achieve a significant gain in achievable throughput by 0.61 b/s/Hz. We also demonstrate that
optimizing irregular low-density parity-check (LDPC) codes based on the EXIT chart of the
DNN-TEQ can improve achievable rates by up to 0.12 b/s/Hz.
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Abstract—Recently, data-driven approaches motivated by
modern deep learning have been applied to optical communi-
cations in place of traditional model-based counterparts. The
application of deep neural networks (DNN) allows flexible
statistical analysis of complicated fiber-optic systems without
relying on any specific physical models. Due to the inherent
nonlinearity in DNN, various equalizers based on DNN have
shown significant potentials to mitigate fiber nonlinearity. In
this paper, we propose turbo equalization (TEQ) based on DNN
as a new alternative framework to deal with nonlinear fiber
impairments. The proposed DNN-TEQ is constructed with nested
deep residual networks (ResNet) to train extrinsic likelihood
given soft-information feedback from channel decoding. Through
extrinsic information transfer (EXIT) analysis, we verify that
our DNN-TEQ can accelerate decoding convergence to achieve a
significant gain in achievable throughput by 0.61 b/s/Hz. We also
demonstrate that optimizing irregular low-density parity-check
(LDPC) codes based on the EXIT chart of the DNN-TEQ can
improve achievable rates by up to 0.12 b/s/Hz.

Index Terms—Deep Learning, turbo equalization, digital signal
processing, fiber nonlinearity, high-order QAM, LDPC codes

I. INTRODUCTION

ACHINE learning techniques [1]-[3] have been re-

cently applied to optical communications systems to
deal with various issues such as network monitoring [4]-[6],
traffic control [7]-[10], signal design [11]-[15], and nonlinear-
ity compensation [16]-[21]. Since the fiber nonlinearity is a
major limiting factor to the achievable information rates [22]-
[24], mitigating nonlinearity has been of great importance to
realize reliable, high-speed, and long-reach optical commu-
nications. Conventionally, a number of model-based nonlinear
equalizers to compensate for fiber distortion were investigated,
e.g., maximum-likelihood sequence equalizer (MLSE) [25]-
[27], turbo equalizer (TEQ) [28]-[30], Volterra series transfer
function [32], [33], and digital backpropagation (DBP) [35]-
[38]. However, those nonlinear equalizations are computation-
ally complex and susceptible to model parameter mismatch
in general. Recent data-driven approaches motivated by deep
learning can favorably replace such traditional model-based
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methods as the use of deep neural networks (DNN) allows
flexible statistical analysis of complicated fiber-optic systems
without relying on specific models. In the past few years,
DNN has shown its high potential in nonlinear performance
improvement, e.g., [12]-[21].

Nonetheless, most existing work did not appropriately ac-
count for practical interaction with forward error correction
(FEC) codes. For example, multi-class soft-max cross-entropy
loss is often used to train DNN, which is relevant only when
nonbinary FEC codes are assumed. For more practical bit-
interleaved coded modulation (BICM) systems, it was found
in [20] that binary cross-entropy (BCE) loss can improve
accuracy and scalability to high-order quadrature-amplitude
modulation (QAM). In this paper, we propose a novel DNN
application to perform TEQ for nonlinear mitigation in the
context of BICM with iterative demodulation (ID). Although
DNN has already been popular in nonlinear compensation,
our paper is the first attempt to adopt DNN for TEQ in the
framework of BICM-ID which takes soft-decision messages
from the FEC decoder to refine the DNN output for improved
equalization accuracy. We analyze the extrinsic information
transfer (EXIT) of turbo DNN, and demonstrate that the
proposed DNN paired with irregular low-density parity-check
(LDPC) codes used in DVB-S2 standards offers a significant
performance gain by accelerating the decoder convergence in
nonlinear transmissions.

The contributions of this paper are summarized as follows:

o Trend overview: We overview the recent trend of deep
learning in optical communications literature.

o Multi-label DNN: We verify that nonbinary cross-
entropy is not scalable to high-order QAM signals and
DNN trained with BCE loss can appropriately compen-
sate for fiber nonlinearity.

o Turbo DNN: We propose a nested residual DNN archi-
tecture for TEQ to further improve performance.

o EXIT analysis: We analyze the EXIT chart of our DNN-
TEQ and show that DNN-TEQ accelerates decoding
convergence.

o LDPC design: We optimize the degree distribution of
LDPC codes based on the EXIT charts of DNN-TEQ,
achieving higher throughput.

Note that due to the above contributions, in particular the
demonstration of rate improvement with optimized LDPC
codes for DNN-TEQ, this paper is distinguished from our pre-
liminary reports [20], [21], [48]. To the best of our knowledge,
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Fig. 1. Machine/deep learning trend in optical communication applications
(keyword hits on Google Scholar, excluding non-relevant ones).

there is no other literature which applied DNN to TEQ for
nonlinear compensation.

II. MACHINE LEARNING FOR OPTICAL COMMUNICATIONS
A. Trend Overview

Fiber-optic communications suffer from various linear and
nonlinear impairments, such as amplified spontaneous emis-
sion (ASE) noise, laser linewidth, chromatic dispersion (CD),
polarization mode dispersion (PMD), self-phase modulation
(SPM), cross-phase modulation (XPM), cross-polarization
modulation (XPolM), and four-wave mixing (FWM) [22]-
[24]. Although the physics is well captured by the nonlinear
Schrodinger equation model, the high-complexity split-step
Fourier method is required for solving lightwave propagation
numerically. It is hence natural to admit that the nonlinear
physics calls for nonlinear signal processing to appropriately
deal with the nonlinear distortions in practice.

In place of conventional model-based nonlinear signal pro-
cessing, the application of machine learning techniques [1]-
[3] to optical communication systems has recently received
increased attention [4]-[21]. The promise of such data-driven
approaches is that learning a black-box DNN could potentially
overcome situations where limited models are inaccurate and
complex theory is computationally intractable.

Fig. 1 shows the trend of machine learning applications
in optical communications society in the past two decades.
Here, we plot the number of articles in each year according to
Google Scholar search of the keyword combinations; “machine
learning” + “optical communication” or “deep learning” +
“optical communication.” As we can see, machine learning has
been already used for optical communications since twenty
years ago. Interestingly, we observe an exponential trend in
which the number of applications exponentially grows by a
factor of nearly 130% per year. For deep learning applications,
more rapid annual increase by a factor of 320% can be found
in the past half decade. As of today, there are nearly a thousand
articles on deep learning applications. Note that the author’s
article [48] in 2014 is one of very first papers discussing the
application of deep learning to optical communications.

Machine Learning Optical Communications

« DET,KDE, GMM « Linearity: CD, PMD
+ PCA,ICA Nonlinearity: SPM, XPM, XPolM, FWM
« IS, MCMC Nonlinear equalization

+ HMM (EKF, UKF, PF) - Polarization recovery

* ANN (MLP, HNN, RBM, CNN, RNN) + Carrier phase recovery
* SVM (kemnel: polynomial, RBF) * Nonlinear capacity analysis
+ Deep learning (DBN, etc.) » Coded-modulation design

Fig. 2. Machine learning approaches applied to optical communications [48].

B. Machine Learning Techniques

We briefly overview some learning techniques to ana-
lyze nonlinear statistics applied to optical communications
as shown in Fig. 2. For example, kernel density estimation
(KDE), density estimation trees (DET), and Gaussian mixture
model (GMM) are alternatives to histogram analysis. Principal
component analysis (PCA) and independent component anal-
ysis (ICA) are used to analyze major factors of data. For high-
dimensional data sets, we may use Markov-chain Monte—Carlo
(MCMC) and importance sampling (IS). To analyze stochas-
tic sequence data, extended Kalman filter (EKF), unscented
Kalman filter (UKF), and particle filter (PF) based on hidden
Markov model (HMM) may be used.

Since the mid-70’s, artificial neural networks (ANN) have
been a major theme in machine learning research. Vari-
ous architectures including restricted Boltzmann machines
(RBM), multi-layer perceptron (MLP), Hopfield neural net-
works (HNN), convolutional neural networks (CNN), and
recurrent neural networks (RNN) have been investigated. Since
the mid-90’s, the support vector machine (SVM) emerged as
an influential method to address nonlinear statistics via the
kernel trick, which analyzes higher-dimensional linearlized
feature spaces called reproducing kernel Hilbert space with
kernel functions, such as the radial basis function (RBF).
Since 2006, deep learning [1] based on DNN has been a
major breakthrough in media signal processing fields. In deep
learning, many-layer deep belief networks (DBN) are trained
with massively large amount of data.

C. Classical Machine Learning Applications

We show a few examples of machine learning approaches
applied to nonlinear fiber-optic communications. In [39], the
use of ICA 1is proposed for polarization recovery as an
alternative to constant-modulus adaptation. Shallow ANN-
based nonlinear equalizers have been studied in the literature
[40]-[42]. We have investigated GMM-based TEQ and MLSE
receivers [27], where 2 dB performance gain was achieved over
DBP. SVM has been used as another equalizer [43], [44], in
which an irregular decision rule like Yin—Yang spiral boundary
[45] can be learned by kernel-SVM. RBF kernels have been
studied in other literature, e.g., [46]. HMM-based cycle-slip
compensation [47] offers greater than 2dB gain. A stochastic
DBP proposed in [38] exhibits an outstanding performance by
adopting MCMC particle representation of stochastic noise.

D. Modern Deep Learning Applications

As shown in Fig. 1, there exist a lot of deep learning
applications, among which a limited number of examples are
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listed below. DNN was introduced for optical signal-to-noise
ratio (OSNR) monitoring in [4]. Modulation classification
as well as OSNR monitoring was considered in [5], and a
deep CNN showed an accurate performance in [6]. Deep
learning-based network management and resource allocation
were studied in [7], [8]. Analogously, traffic optimization
with deep reinforcement learning was considered in [9], [10].
Various end-to-end learning methods, which jointly optimizes
signal constellation and detection, have been proposed, e.g.,
[11]-[15], where a denoising auto-encoder is trained for
nonlinear fiber channels. Also for receiver-end design, many
DNN equalizers to compensate for fiber nonlinearity were
introduced for coherent or non-coherent optical links, e.g.,
[16]-[21].

Note that large amounts of data necessary for deep learning
are readily available in high-speed optical communications,
where we can obtain terabits of data in a second [51]. In
addition, the DNN can be massively parallelized in hard-
ware implementation, which is suited for high-throughput
communications. In deep learning, various techniques have
been introduced, e.g., pre-training, rectified linear unit (ReLU),
mini-batch, dropout, batch normalization, skip connection,
inception, adaptive-momentum (Adam) stochastic gradient,
adversarial, and long short-term memory architectures [3].

III. DEEP LEARNING FOR NONLINEAR COMPENSATION

Similar to the other DNN equalizers, we focus on deep
learning for fiber nonlinearity compensation. This paper has
a distinguished contribution over existing literature as we
propose a novel DNN-based TEQ suited for BICM-ID systems
where state-of-the-art LDPC codes are employed.

A. Nonlinear Fiber-Optic Communications System

The optical communications system under consideration
is depicted in Fig. 3. Three-channel dual-polarization (DP)-
QAMs for 34 GBd baud and 37.4 GHz spacing are sent
over fiber plants towards coherent receivers. We consider NV

spans of dispersion managed (DM) links with 80 km non-zero
dispersion-shifted fiber (NZDSF) at a residual dispersion per
span (RDPS) of 5%. The NZDSF has a dispersion parameter of
D = 3.9 ps/nm/km, a nonlinear factor of v = 1.6 /W/km, and
an attenuation of 0.2 dB/km. The span loss is compensated by
Erbium-doped fiber amplifiers (EDFA) with a noise figure of
5dB, where total ASE noise is added just before the receiver.
We use digital root-raised cosine filters with 10% rolloff at
both transmitter and receiver. The receiver employs standard
phase recovery and linear equalization (LE) to compensate for
linear dispersion. Due to fiber nonlinearity, residual distortion
after LE will limit the achievable information rates.

Fig. 4 shows a sample of residual distortion of DP-
16QAM constellation after 31-tap least-squares LE for 16-
span transmissions. We can observe that the constellation
is more distorted with the increased launch power due to
Kerr nonlinearity. To compensate for the residual nonlinear
distortion, we introduce DNN-based TEQ, which exploits soft-
decision feedback from the FEC decoder as shown in Fig. 3.

B. Scalable Deep Neural Network Equalization

Before introducing DNN-TEQ, we discuss the loss func-
tions for training DNN equalizers suited for BICM. Consider
DP-16QAM equalization, where 8 bits per symbol should
be detected, leading to 2% = 256 classes to identify. For
such nonbinary classifications, we may use a single softmax
classification shown in Fig. 5(a), like in [16]. However, this
nonbinary (NB) DNN does not work well for higher-order DP-
QAM in particular for a limited amount of training data. For
example, DP-64QAM has 4096 classes to detect per symbol,
which requires unrealistically huge training datasets.

To overcome the issues in high-order QAM, we shall
use multi-label classification which employs multiple BCE
losses as shown in Fig. 5(b). The binary DNN produces log-
likelihood ratio (LLR), which can be directly fed into the SD-
FEC decoder without external computation such as [16], [49].
This is a great advantage in practice because LLR calculation
is cumbersome, especially for high-order modulation. Note
that minimizing cross-entropy is equivalent to maximizing a
lower bound of generalized mutual information.

C. Nonbinary vs. Binary DNN Equalization

We validate that DNN outperforms classical machine learn-
ing methods, specifically, quadratic discriminant analysis
(QDA) and SVM (refer [20] for more comparisons). For multi-
class SVM, we use the one-vs-one rule with a linear kernel as
it worked best among several variants including one-vs-all and
polynomial kernel. Figs. 6, 7, and 8 show the Q factor versus
launch power of DP-4QAM, DP-16QAM, and DP-64QAM,
respectively, for 50, 16, and 8 spans of 80 km fiber links.
It is seen that DNN offers the best performance among other
methods, achieving greater than 1.2 dB gain over LE in highly
nonlinear regimes. More importantly, the conventional DNN
with nonbinary softmax cross-entropy does not perform well
for high-order QAMs. It suggests that DNN equalizers using
the BCE loss function has a great advantage not only for BICM
compatibility but also for high-order QAM scalability.
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IV. NEURAL TURBO EQUALIZATION: DNN-TEQ

A. Nested Residual Network Architecture

Fig. 9 shows the architecture of our turbo DNN equalizer,
which feeds distorted DP-QAM signals over consecutive W =
3-tap symbols to generate soft-decision LLR values for FEC
decoding. The major extension from conventional DNN lies in
the input layer which takes a priori (APR) information along
with DP-QAM symbols. The APR side information comes
from the FEC decoder representing intermediate soft-decision
LLRs in run time. For efficient DNN training, the APR values
having mutual information of Z;, are synthetically gener-
ated via a Gaussian distribution following N'((—1)%02/2, 52)
where b is an original bit and o = J~1(Z;,,) with J () being
ten Brink’s J-inverse function [52], instead of considering a
particular FEC decoder feedback.

The last layer has two branches, i.e., extrinsic (EXT) and
a posteriori probability (APP) outputs, which uses a skip
connection from the input layer to sum up EXT and APR.
This nested residual network tries to train extrinsic message
passing for TEQ realization. It was found that training a DNN
model to minimize APP cross-entropy loss does not always
minimize EXT cross-entropy loss accordingly, and vice versa.
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Fig. 7. Q factor comparisons for DP-16QAM 16-span NZDSF.
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Fig. 8. Q factor comparisons for DP-64QAM 8-span NZDSF.

In order to keep both APP and EXT outputs reliable, we use
a max-pooling layer following sigmoid cross-entropy loss.

The DNN uses four hidden layers, each of which consists of
batch normalization, ReLLU activation, and a fully-connected
layer with skip connections and 50% dropout for 1000 neuron
nodes. The DNN is trained with Adam for a mini-batch size
of 1000 symbols to minimize the worst sigmoid cross-entropy
losses between APP and EXT outputs, using training datasets
of approximately 5 x 105 symbols. Early stopping with a
patience of 13 is employed for up to a maximum of 500
epochs.

B. EXIT Chart Analysis

Fig. 10 shows the EXIT chart of DNN-TEQ given LLRs
having a certain mutual information from the FEC decoder.
It is clearly observed that the DNN outputs can be greatly
improved by feeding in the FEC soft-decision. An almost
linear slope towards Z,,; = 1 in the EXIT curve is achieved,
implying that cross-entropy loss is mitigated linearly with FEC
feedback reliability. This steep slope in the EXIT curve of
DNN-TEQ can eventually make a significant improvement
in LDPC decoding performance, as shown in Fig. 11, where
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we present the decoding trajectory between the variable-node
decoder (VND) and the check-node decoder (CND) in the
LDPC decoder. Here, we use a combined EXIT chart [52] of
DNN-TEQ and LDPC decoder, for DP-16QAM 16-span DM
links at —2 dBm launch power and DVB-S2 LDPC codes
with a code rate of 9/10. As shown, the conventional DNN
equalizer without FEC feedback requires a large number of
decoder iterations to reach an error-free mutual information
of Zout = 1. Whereas for DNN-TEQ, we can open up an
EXIT tunnel between the VND and CND curves, that leads
to a considerable acceleration of the decoder convergence to
reach error-free condition within only a few iterations.

C. BER Performance

We assume the use of an outer Bose—Chaudhuri—
Hocquenghem (BCH) [30832,30592] code with a rate of
0.9922 [51], having a minimum Hamming distance of 33.
Based on the union (upper) bound, the bit-error rate (BER)
threshold for this outer BCH code is at or above an input BER
of 5x 107° to achieve an output BER below 10~'°, Hence, a
post-LDPC BER below 5 x 10~° can be successfully decoded
to a BER below 10~!5 when this outer BCH code is used.
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Fig. 11. Combined EXIT chart [52] of DNN-TEQ & LDPC decoder for

DVB-S2 code rate 9/10 (DP-16QAM in 16-span DM links at —2 dBm).

For FEC codes, we consider variable-rate irregular LDPC
codes of block length 64,800 bits, used in DVB-S2 standards.
The LDPC codes have a different degree distribution for
individual code rates. For instance at a code rate of 9/10,
the variable degree polynomial (node perspective) is given as
Az) = 0.12% + 0.823 + 0.12%, whereas the check degree
polynomial is p(x) = 23°. At a code rate of 5/6, the variable

and check degree polynomials are A(z) = S 2%+ a3+ L5213
and p(x) = 2?2, respectively. We also consider an optimized

degree distribution for DNN-TEQ as done analogously in [52],
where the EXIT chart of DNN-TEQ in Fig. 10 is modeled
with cubic functions and the EXIT curves of combined
VND and DNN-TEQ are optimized for triple-degree check-
concentrated distribution, which has two degrees of freedom
to search for the best distribution. For example, the optimized
LDPC code for a code rate of 5/6 at a launch power of
—4 dBm for DP-64QAM systems has a degree distribution of
M) = 0.72522 4 0.252% + 0.225230.

Figs. 12 and 13 show the post-LDPC BER performance
versus launch power of DP-16QAM and DP-64QAM, respec-
tively, for 16, and 8 spans of NZDSF links. We used 4 and 8
turbo iterations respectively for DP-16QAM and DP-64QAM,
where only one inner iteration between VND and CND for
belief-propagation (BP) decoding is performed for each outer
turbo iteration. We compare DVB-S2 LDPC codes for LE,
DNN and DNN-TEQ and our optimized LDPC code for DNN-
TEQ. From the figures, we can observe the following results:

o Although DNN nonlinear compensation can improve
BER performance of LE, achieving a BER of BCH
threshold is mostly in failure.

e« DNN-TEQ can significantly improve the BER perfor-
mance of DNN to reach the threshold and about +2dB
margin around an optimal launch power is realized.

e Optimizing LDPC codes for DNN-TEQ can offer an
additional marginal improvement over the standard DVB-
S2 LDPC codes for the whole range of launch power.
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D. Achievable Rate Performance

The BER improvement with our proposed DNN-TEQ im-
plies that we can increase the achievable throughput when the
code rate is adaptively optimized. Fig. 14 shows achievable
rate performance for DP-64QAM at 8-span NZDSF links.
Here, we use the same variable node degree of DVB-S2 rate
5/6 and plot the largest code rate such that the post-LDPC
BER meets the BCH threshold by varying the check node
degree to be a target rate. From this figure, we can see that the
DNN nonlinear compensation can improve the performance of
LE by 0.7b/s/Hz in the nonlinear regimes, and the achieved
gain in the peak throughput is about 0.24 b/s/Hz. Our DNN-
TEQ offers a remarkable BICM-ID gain over the whole range
of launch powers, achieving a throughput improvement of
0.61 b/s/Hz over the DNN when the LDPC code is optimized.
A total throughput improvement of 0.85b/s/Hz from the
standard LE was achieved by the proposed DNN-TEQ.

It should be noted that our DNN-TEQ achieved a remark-
able gain over the DNN even in the linear regimes. The gain
in the linear regimes is purely due to the rate improvement
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Fig. 14. Achievable rate for DP-64QAM 8-span NZDSF DM links (variable-
rate LDPC codes, 8-iteration BP decoding).
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Fig. 15. Achievable rate for DP-64QAM 20-span SSMF UM links (variable-
rate LDPC codes, 8-iteration BP decoding).

from BICM to BICM-ID, whose information-theoretic bound
approaches the Shannon limit at lower SNRs. It does not
contradict the results in Fig. 13, where no gain was observed
at very low (and high) launch power cases. For Fig. 13, we
used a rate-5/6 DVB-S2 code, which was not decodable at
low launch powers, resulting in useless soft-decision feedback
having nearly zero mutual information. With a proper choice
of code rates, TEQ can take advantage of FEC feedback
information to boost the performance. We also note that the
achievable rate evaluation for all cases in Fig. 14 includes
loss caused by the practical constraint of finite 8-iteration BP
decoding.

We finally evaluate the DNN-TEQ in dispersion un-
managed (UM) links in Fig. 15, which shows the achievable
rates for 20-span UM standard single-mode fiber (SSMF) links
(D = 17 ps/nk/km, v = 1.2 /W/km). Note that we extended
the reach from 8 spans to 20 spans for UM links since the non-
linear distortion per span is relatively weak. It was confirmed
that the DNN-TEQ still offers a significant rate improvement
even for the UM links. However, the improvement was mostly



due to BICM-ID gain and there was no additional gain due
to nonlinearity compensation at higher launch powers. This
is because the considered 3-tap DNN could not handle a long
channel memory in the SSMF UM links having approximately
200-times longer memory than 8-span NZDSF DM links. En-
gineering the neural network architectures suited for tackling
long-memory fiber nonlinearity still remains a challenge.

V. CONCLUSIONS

We extended DNN machine learning techniques to TEQ
for improved nonlinear compensation in coherent fiber com-
munications. We first verified that DNN trained with binary
cross-entropy loss can outperform various machine learning
techniques to compensate for fiber nonlinearity. Through EXIT
chart analysis, we then confirmed that the proposed DNN-
TEQ offers decoder acceleration by feeding intermediate
soft-decision LLR from the LDPC decoder. Our DNN-TEQ
significantly improves BER performance through the turbo
iteration. We also investigated LDPC code design based on the
EXIT chart of DNN-TEQ, and demonstrated that the proposed
DNN-TEQ with optimized LDPC codes can improve the
achievable throughput by 0.85b/s/Hz over linear equalization
with standard LDPC codes. To the best of our knowledge, this
is the first paper investigating TEQ based on DNN for fiber
nonlinearity mitigation. Further improvement by dealing with
long nonlinear channel memory, particularly in dispersion un-
managed links, remains as future work.
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