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Abstract
This paper provides detailed information about the seventh Dialog System Technology Chal-
lenge (DSTC7) and its three tracks aimed to explore the problem of building robust and
accurate end-to-end dialog systems. In more detail, DSTC7 focuses on developing and ex-
ploring end-to-end technologies for the following three pragmatic challenges: (1) sentence
selection for multiple domains, (2) generation of informational responses grounded in exter-
nal knowledge, and (3) audio visual scene-aware dialog to allow conversations with users
about objects and events around them. This paper summarizes the overall setup and results
of DSTC7, including detailed descriptions of the different tracks, provided datasets and anno-
tations, overview of the submitted systems and their final results. For Track 1, LSTM-based
models performed best across both datasets, allowing teams to effectively handle task variants
where no correct answer was present or when multiple paraphrases were included. For Track
2, RNN-based architectures augmented to incorporate facts by using two types of encoders:
a dialog encoder and a fact encoder plus using attention mechanisms and a pointer-generator
approach provided the best results. Finally, for Track 3, the best model used Hierarchical
Attention mechanisms to combine the text and vision information obtaining a 22% better
result than the baseline LSTM system for the human rating score. More than 220 partic-
ipants were registered and about 40 teams participated in the final challenge. 32 scientific
papers reporting the systems submitted to DSTC7, and 3 general technical papers for dialog
technologies, were presented during the one-day wrap-up workshop at AAAI-19. During the
workshop, we reviewed the state-of-the-art systems, shared novel approaches to the DSTC7
tasks, and discussed the future directions for the challenge (DSTC8).
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Abstract

This paper provides detailed information about the seventh Dialog System
Technology Challenge (DSTC7) and its three tracks aimed to explore the
problem of building robust and accurate end-to-end dialog systems. In more
detail, DSTC7 focuses on developing and exploring end-to-end technologies
for the following three pragmatic challenges: (1) sentence selection for multi-
ple domains, (2) generation of informational responses grounded in external
knowledge, and (3) audio visual scene-aware dialog to allow conversations
with users about objects and events around them.

This paper summarizes the overall setup and results of DSTC7, including
detailed descriptions of the different tracks, provided datasets and annota-
tions, overview of the submitted systems and their final results. For Track
1, LSTM-based models performed best across both datasets, allowing teams
to effectively handle task variants where no correct answer was present or
when multiple paraphrases were included. For Track 2, RNN-based archi-
tectures augmented to incorporate facts by using two types of encoders: a
dialog encoder and a fact encoder plus using attention mechanisms and a
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pointer-generator approach provided the best results. Finally, for Track 3,
the best model used Hierarchical Attention mechanisms to combine the text
and vision information obtaining a 22% better result than the baseline LSTM
system for the human rating score.

More than 220 participants were registered and about 40 teams partici-
pated in the final challenge. 32 scientific papers reporting the systems sub-
mitted to DSTC7, and 3 general technical papers for dialog technologies,
were presented during the one-day wrap-up workshop at AAAI-19. During
the workshop, we reviewed the state-of-the-art systems, shared novel ap-
proaches to the DSTC7 tasks, and discussed the future directions for the
challenge (DSTC8).
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DSTC7: Dialog Challenge to build more robust and accurate end-to-end
dialog systems.

Track 1, Sentence selection for multiple domains, including variations where
there are a large number of candidate options, and where the candidate set
has zero, one, or multiple correct options.

Track 2, Beyond Chitchat: Generation of informational responses grounded
in external knowledge.

Track 3, Audio visual scene-aware dialog systems to allow dynamic conver-
sations about objects and events around users.
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Abstract24

This paper provides detailed information about the seventh Dialog System25

Technology Challenge (DSTC7) and its three tracks aimed to explore the26

problem of building robust and accurate end-to-end dialog systems. In more27

detail, DSTC7 focuses on developing and exploring end-to-end technologies28

for the following three pragmatic challenges: (1) sentence selection for multi-29

ple domains, (2) generation of informational responses grounded in external30

knowledge, and (3) audio visual scene-aware dialog to allow conversations31

with users about objects and events around them.32

This paper summarizes the overall setup and results of DSTC7, including33

detailed descriptions of the different tracks, provided datasets and annota-34

tions, overview of the submitted systems and their final results. For Track35

1, LSTM-based models performed best across both datasets, allowing teams36

to effectively handle task variants where no correct answer was present or37

when multiple paraphrases were included. For Track 2, RNN-based archi-38

tectures augmented to incorporate facts by using two types of encoders: a39

dialog encoder and a fact encoder plus using attention mechanisms and a40

pointer-generator approach provided the best results. Finally, for Track 3,41

the best model used Hierarchical Attention mechanisms to combine the text42
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and vision information obtaining a 22% better result than the baseline LSTM43

system for the human rating score.44

More than 220 participants were registered and about 40 teams partici-45

pated in the final challenge. 32 scientific papers reporting the systems sub-46

mitted to DSTC7, and 3 general technical papers for dialog technologies,47

were presented during the one-day wrap-up workshop at AAAI-19. During48

the workshop, we reviewed the state-of-the-art systems, shared novel ap-49

proaches to the DSTC7 tasks, and discussed the future directions for the50

challenge (DSTC8).51

Keywords:52

Dialog System Technology Challenge, end-to-end dialog systems, Sentence53

Selection, Natural Language Generation, Audio Visual Scene-Aware Dialog.54

1. Introduction55

The ongoing DSTC series started as an initiative to provide a common56

testbed for the task of Dialog State Tracking; the first edition was organized57

in 2013 (Williams et al. (2013)) and used human-computer dialogs in the58

bus timetable domain. Dialog State Tracking Challenges 2 (Henderson et al.59

(2014a)) and 3 (Henderson et al. (2014b)) followed in 2014, using more com-60

plicated and dynamic dialog states for restaurant information in different61

situations, e.g. state tracking for unseen states, and tested with different do-62

main data. Dialog State Tracking Challenge 4 (Kim et al. (2017)) and Dialog63

State Tracking Challenge 5 (Kim et al. (2016)) moved to tracking human-64

human dialogs in mono- and cross-language settings. Then, for DSTC6 in65

2017, the challenge focused on end-to-end systems with the aim of minimiz-66

ing effort on human annotation while exploring more complex and diverse67

tasks related with dialog systems (Hori et al. (2019c)). For this last edition,68

DSTC7 in 2018, we focused on scaling the capabilities of the systems, explore69

multimodal approaches and better use of external information.70

It is clear that, since its first edition in 2013, the challenge has evolved71

in several ways. First, from modeling human-computer interactions, then to72

explore human-human interactions, and finally moving toward complex and73

more robust end-to-end systems. DSTC has also offered pilot tasks on speech74

act prediction, spoken language understanding, natural language generation,75

and end-to-end system evaluation, which expanded interest in the challenge76

for the dialog and AI research communities. Therefore, given the remarkable77
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success of the first five editions, the complexity of the dialog phenomenon78

and the interest of the research community in the broader variety of dialog79

related problems, the DSTC rebranded itself as “Dialog System Technology80

Challenges” since its sixth edition.81

For the seventh edition, there were five task proposals. These were dis-82

cussed during the AAAI-19 workshop, with a focus on how applied proposals83

were, and how they fit within the larger space of problems of interest to84

the research community. Three critical issues were raised in the discussion.85

First, despite the enormous success of the generative approaches used in neu-86

ral conversation models for response generation, retrieval-based approaches87

are still essential from a practical point of view (Sentence Selection Track).88

Second, improving generative approaches is important too in order to allow89

more response variety considering the dialog context, dialog history, other90

dialog situations, and grounding the responses by means of external knowl-91

edge (Sentence Generation Track). The final issue was to extend the dialog92

systems with complementary multimodal information to allow the system to93

understand better the context, and allowing the fusion with other research94

areas; visual dialog is one direction in which information in images is used95

in the dialog (Audio Visual Scene-Aware Dialog Track). Following this dis-96

cussion, three tasks were selected for the seventh Dialog System Technology97

Challenge, as described below.98

For the Sentence Selection track (described in more detail in section 2),99

the challenge consists of five sub-tasks, in which systems are given a partial100

conversation, and they must select the correct next utterance from a short or101

very large set of candidates, including paraphrases as candidates, or indicate102

that none of the proposed utterances is correct. This is intended to push the103

utterance classification task towards real-world problems.104

For the Sentence Generation track (described in detail in section 3),105

the goal is to generate informative responses that go beyond chitchat, in106

this case by injecting informational responses that are grounded in external107

knowledge (e.g., news stories, or background information such as Wikipedia108

pages). This task is indented to promote research on fully data-driven re-109

sponse generation—which has so far been mostly limited to chitchat—by110

combining the benefits of fully end-to-end approaches with more practical111

purposes (e.g., informing the users rather than just entertaining them).112

Finally, in the Audio Visual Scene-aware Dialog track (described in detail113

in section 4), the goal is to generate system responses in a dialog about an114

input video. Dialog systems need to understand scenes to have conversa-115

4



tions with users about the objects and events around them. In this track,116

multiple research technologies are integrated including: end-to-end dialog117

technologies, which generate system responses using models trained from di-118

alog data; visual question answering (VQA) technologies, which answer to119

questions about images using learned image features; and video description120

technologies, in which videos are described/narrated using multimodal infor-121

mation.122

1.1. Workshop summary and future DSTC123

The workshop for the Dialog System Technology Challenge (DSTC) was124

held on January 27, 2019 at Honolulu, Hawaii, USA, collocated with the125

Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19). More126

than 220 participants were registered in one or several of the proposed three127

tasks; finally, about 40 teams submitted their final results and 32 scientific128

papers were presented during the workshop, together with 3 general technical129

papers about dialog systems. We had about 80 pre-registrations for the130

workshop and more participants joined on-site. The workshop also had many131

supporting organizations including three sponsors, and an invited talk about132

Massively Multilingual Dialog and Q&A by Dr. Holger Schwenk.133

In addition, as part of our efforts to promote the research in dialog tech-134

nologies, we presented the challenge, tracks, provided data and results during135

the 2nd NeurIPS workshop on Conversational AI: Today’s Practice and To-136

morrow’s Potential2.137

Finally, to initiate DSTC8, from November 22, 2018 until January 11,138

2019 we received up to 7 track proposals for DSTC8 3. During the AAAI-139

19 workshop these proposals were presented to the attendees and then we140

passed them a survey to know their interest and willingness to participate141

on each; after the workshop, the following tracks were selected: a) End-to-142

end Task Completion b) Predicting Responses, c) Audio Visual Scene-Aware143

Dialog, and d)Schema-Guided State Tracking. This way, we will continue144

focusing on end-to-end dialog tasks and their application to Dialog Systems145

in a pragmatic way.146

2http://alborz-geramifard.com/workshops/nips18-Conversational-AI/Main.html
3For detailed information about each proposal and the selection criteria check:

http://workshop.colips.org/dstc7/dstc8 proposals.html
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2. Sentence Selection Track147

Automatic dialogue systems have great potential as a new form of user148

interface between people and computers. Unfortunately, there are relatively149

few large resources of human-human dialogues (Serban et al., 2018), which150

are crucial for the development of robust statistical models. Evaluation also151

poses a challenge, as the output of an end-to-end dialogue system could152

be entirely reasonable, but not match the reference, either because it is a153

paraphrase, or it takes the conversation in a different, but still coherent,154

direction.155

In this track, we introduced two new datasets and explored variations in156

task structure for research on goal-oriented dialogue. One of our datasets was157

carefully constructed with real people acting in a university student advising158

scenario. The other dataset was formed by applying a new disentanglement159

method (Kummerfeld et al., 2018) to extract conversations from an IRC160

channel of technical help for the Ubuntu operating system. We structured the161

dialogue problem as next utterance selection, in which participants receive162

partial dialogues and must select the next utterance from a set of options.163

Going beyond prior work, we considered larger sets of options, and variations164

with either additional incorrect options, paraphrases of the correct option,165

or no correct option at all. These changes push the next utterance selection166

task towards real-world dialogue.167

This task is not a continuation of prior DSTC tasks, but it is related to168

tasks 1 and 2 from DSTC6 (Perez et al., 2017; Hori and Hori, 2017a). Like169

DSTC6 task 1, our task considers goal-oriented dialogue and next utterance170

selection, but our data is from human-human conversations, whereas theirs171

was simulated. Like DSTC6 task 2, we use online resources to build a large172

collection of dialogues, but their dialogues were shorter (2 - 2.5 utterances173

per conversation) and came from a more diverse set of sources (1,242 twitter174

customer service accounts, and a range of films).175

Below we provide an overview of (1) the task structure, (2) the datasets,176

(3) the evaluation metrics, and (4) system results. Twenty teams partici-177

pated, with one clear winner, scoring the highest on all but one sub-task.178

The data and other resources associated with the task have been released4 to179

enable future work on this topic and to make accurate comparisons possible.180

4https://ibm.github.io/dstc7-noesis/public/index.html
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2.1. Task181

This task pushed the state-of-the-art in goal-oriented dialogue systems in182

four directions deemed necessary for practical automated agents, using two183

new datasets. We sidestepped the challenge of evaluating generated utter-184

ances by formulating the problem as next utterance selection, as proposed185

by Lowe et al. (2015). At test time, participants were provided with partial186

conversations, each paired with a set of utterances that could be the next187

utterance in the conversation. Systems needed to rank these options, with188

the goal of placing the true utterance first. Prior work used sets of 2 or 10189

utterances. We make the task harder by expanding the size of the sets, and190

considered several advanced variations:191

Subtask 1 100 candidates, including 1 correct option.192

Subtask 2 120,000 candidates, including 1 correct option (Ubuntu data193

only).194

Subtask 3 100 candidates, including 1-5 correct options that are paraphrases195

(Advising data only).196

Subtask 4 100 candidates, including 0-1 correct options.197

Subtask 5 The same as subtask 1, but with access to external information.198

These subtasks push the capabilities of systems. In particular, when199

the number of candidates is small (2-10) and diverse, it is possible that200

systems are learning to differentiate topics rather than learning dialogue. Our201

variations move towards a task that is more representative of the challenges202

involved in dialogue modeling.203

As part of the challenge, we provided a baseline system that implemented204

the Dual-Encoder model from Lowe et al. (2015). This lowered the barrier205

to entry, encouraging broader participation in the task.206

2.2. Data207

We used two datasets containing goal-oriented dialogues between two208

participants, but from very different domains. This challenge introduced the209

two datasets, and we kept the test set answers secret until after the challenge.5210

5The entire datasets are now publicly available at https://ibm.github.io/dstc-
noesis/public/index.html
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10:30 <elmaya> is there a way to setup grub to not press the esc button
for the menu choices?

10:31 <scaroo> elmaya, edit /boot/grub/ menu.lst and comment the
”hidemenu” line

10:32 <scaroo> elmaya, then run grub -install
10:32 <scaroo> grub-install
10:32 <elmaya> thanls scaroo
10:32 <elmaya> thanks

Figure 1: Example Ubuntu dialogue before our pre-processing.

To construct the partial conversations we randomly split each conversation.211

Incorrect candidate utterances are selected by randomly sampling utterances212

from the rest of the dataset. For subtask 3 (paraphrases), the incorrect213

candidates are sampled with paraphrases as well. For subtask 4 (no correct214

option sometimes), twenty percent of examples were randomly sampled and215

the correct utterance was replaced with an additional incorrect one.216

Along with the datasets we provided additional sources of information217

that were specific to each dataset. Participants were able to use the provided218

knowledge sources as is, or automatically transform them to appropriate219

representations (e.g. knowledge graphs, continuous embeddings, etc.) that220

were integrated with end-to-end dialogue systems so as to increase response221

accuracy.222

2.2.1. Ubuntu223

We constructed one dataset from the Ubuntu Internet Relay Chat (IRC)224

support channel, in which users help each other to resolve technical problems225

related to the Ubuntu operating system. We consider only conversations in226

which one user asks a question and another helps them resolve their problem.227

We extracted conversations from the channel using the conversational dis-228

entanglement method described by Kummerfeld et al. (2018), trained with229

manually annotated data using Slate (Kummerfeld, 2019).6,7 See Kummer-230

feld et al. (2018) for detailed analysis of the extraction process. At a high231

6Previously, Lowe et al. (2015) extracted conversations from the same IRC logs, but
with a heuristic method. Kummerfeld et al. (2018) showed that the heuristic was far less
effective than a trained statistical model.

7The specific model used in DSTC 7 track 1 is from an earlier version of Kummerfeld
et al. (2018), as described in the ArXiv preprint and released as the C++ version.
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level, we used a feedforward neural network that considers each message in232

the logs and predicts which earlier message it is a response to. This forms a233

structure in which each connected component is a single conversation. The234

manual annotation of the data had a convention that when a user asks a235

question that starts a new conversation, which makes it clear who is asking236

for help and who is providing it.237

We further applied several filters to increase the quality of the extracted238

dialogues: (1) the first message must not be directed, (2) there are exactly239

two participants (a questioner and a helper), not counting the channel bot,240

(3) no more than 80% of the messages are by a single participant, and (4)241

there are at least three turns. This approach produced 135,000 conversations,242

and each was cut off at different points to create the necessary conversations243

for all the subtasks. In all cases, the cutoff point was chosen to ensure there244

were at least three prior turns of dialogue.245

Figure 1 shows an example dialogue from the dataset. For the actual246

challenge we identify the users as ‘speaker 1’ (the person asking the question)247

and ‘speaker 2’ (the person answering), and removed usernames from the248

messages (such as ‘elmaya’ in the example). We also combined consecutive249

messages from a single user, and always cut conversations off so that the250

last speaker was the person asking the question. This meant systems were251

learning to behave like the helpers, which fits the goal of developing a dialogue252

system to provide help.253

For subtask 5, additional data was provided in the form of manual pages.254

These provide information on commands that are frequently mentioned in255

the Ubuntu technical support conversations.256

2.2.2. Advising257

Our second dataset is based on an entirely new collection of dialogues in258

which university students are being advised which classes to take. These were259

collected at the University of Michigan with IRB approval. Pairs of Michigan260

students play-acted the roles of a student and an advisor. We provided261

a persona for the student, describing the classes they had taken already,262

what year of their degree they were in, and several types of class preferences263

(workloads, class sizes, topic areas, time of day, etc.). Advisors did not264

know the student’s preferences, but did know what classes they had taken,265

what classes were available, and which were suggested (based on aggregate266

statistics from real student records). The data was collected over a year,267

with some data collected as part of courses in NLP and social computing,268
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Student Hi professor, I am looking for courses to take. Do you have any sugges-
tions?

Advisor What topic do you prefer, computer science or electrical engineering?
Student I prefer electrical engineering.
Advisor Based on your background, I would like to suggest you take one of the

two courses: EECS 550 Information Theory and EECS 551: Matrix
Methods for Signal Processing, Data Analysis and Machine Learning
FA 2012

Student Can you describe a little bit about EECS 550?
Advisor This course contains a lot of concepts about source, channel, rate of

transformation of information, etc.
Student Sounds interesting. Do you know the class size of this course?
Advisor This is a relatively small class and the average size of it is around 12.
Student I would prefer class with larger class size. What is EECS 551 about?
Advisor This course is about theory and application of matrix methods to signal

processing, data analysis and machine learning
Student What is the course size of EECS 551?
Advisor It is around 71
Student I would take EECS 551. Thanks professor!
Advisor You are welcome!

Student Hello, I need some courses. What would you recommend?
Student Hi. I am looking for courses. Could you recommend some?
Student Hi professor, what courses would you suggest for me to take?
Student Professor, what courses do you advise I take?
Student Hi professor, I look for suggestions to take courses. Do you have any?
Student Hi professor, do you have any suggestions to search and take courses?

Advisor Is electrical engineering your main interest, or computer science?
Advisor Do you think you would like computer science or electrical engineering

best?
Advisor computer science or electrical engineering,which do you prefer?
Advisor Do u prefer computer science or do u prefer electrical engineering?
Advisor Which subject is more interesting to you, computer science or electrical

engineering?
Advisor Do you prefer computer science or electrical engineering?

Figure 2: Example Advising dialogue and paraphrases of the first two utterances.
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Property Advising Ubuntu

Dialogues 815 135,078
Utterances / Dialogue 18.3 10.0
Tokens / Utterance 9.8 9.9
Utterances / Unique utt. 1.1 1.1
Tokens / Unique tokens 50.8 22.9

Table 1: Comparison of the diversity of the complete underlying datasets
(train, dev, test, and unused). Advising is smaller, has longer conversations,
and more token diversity. Tokens are based on splitting on whitespace.

and some collected with paid participants.269

In the shared task, we provide all of this information - student pref-270

erences, and course information - to participants. 815 conversations were271

collected, and then the data was expanded by collecting 82,094 paraphrases272

using the crowdsourcing approach described by Jiang et al. (2017). This in-273

volved asking each worker for multiple paraphrases, with carefully designed274

examples that guided them towards creative edits that were still correct. Of275

this data, 500 conversations were used for training, 100 for development, and276

100 for testing. The remaining 115 conversations were used to create a large277

pool of utterances. This pool was then used as a source of negative candi-278

date sentences in the candidate sets. For the test data, 500 conversations279

were constructed by cutting the conversations off at 5 points and using para-280

phrases to make 5 distinct conversations. The training data was provided in281

two forms. First, the 500 training conversations with a list of paraphrases282

for each utterance, which participants could use in any way. Second, 100,000283

partial conversations generated by randomly selecting paraphrases for every284

message in each conversation and selecting a random cutoff point.285

Two versions of the test data were provided to participants. A mistake286

led to the first version of the test set drawing from both training and test287

dialogues, rather than using just the test dialogues. During the challenge this288

issue was identified and a corrected version was released to all participants.289

Results on both sets were included in the initial task summary, but we only290

include the final set here and encourage all future work to only consider the291

second test set.292
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2.2.3. Comparison293

Table 1 provides statistics about the two raw datasets. The Ubuntu294

dataset is based on several orders of magnitude more conversations, but they295

are automatically extracted, which means there are errors (conversations that296

are missing utterances or contain utterances from other conversations). Both297

have similar length utterances, but these values are on the original Ubuntu298

dialogues, before we merge consecutive messages from the same user. The299

Advising dialogues contain more messages on average, but the Ubuntu dia-300

logues cover a wider range of lengths (up to 118 messages). Interestingly, the301

diversity in tokens varies substantially, while utterance lengths and utterance302

diversity are similar.303

2.3. Results304

Twenty teams submitted entries for at least one subtask. Additional305

external resources were not permitted, with the exception of pre-trained em-306

beddings that were publicly available prior to the release of the data.307

2.3.1. Participants308

Table 2 presents a summary of approaches teams used. One clear trend309

was the use of the Enhanced LSTM model (ESIM, Chen et al., 2017), though310

each team modified it differently as they worked to improve performance on311

the task. Other approaches covered a wide range of neural model compo-312

nents: Convolutional Neural Networks, Memory Networks, the Transformer,313

Attention, and Recurrent Neural Network variants. Two teams used ELMo314

word representations (Peters et al., 2018), while three constructed ensembles.315

Several teams also incorporated more classical approaches, such as TF-IDF316

based ranking, as part of their system.317

We provided a range of data sources in the task, with the goal of enabling318

innovation in training methods. Six teams used the external data, while four319

teams used the raw form of the Advising data. The rules did not state320

whether the validation data could be used as additional training data at test321

time, and so we asked each team what they used. As Table 2 shows, only322

four teams trained their systems with the validation data.323

2.3.2. Metrics324

We considered a range of metrics when comparing models. Following325

Lowe et al. (2015), we use Recall@N, where we count how often the correct326

answer is within the top N specified by a system. In prior work, there were327
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either 2 or 10 candidates (including the correct one), and N was set at 1, 2,328

or 5. Our sets are larger, with 100 candidates, and so we considered larger329

values of N: 1, 10, and 50. 10 and 50 were chosen to correspond to 1 and 5 in330

prior work (the expanded candidate set means they correspond to the same331

fraction of the space of options). We also considered a widely used metric332

from the ranking literature: Mean Reciprocal Rank (MRR). For subtask 3333

we measured Mean Average Precision (MAP) since there are multiple correct334

utterances in the set. Finally, for subtask 4, participants had to return 101335

values, the extra one being the value ‘NONE’, to indicate that no valid answer336

was present.337

To determine a single winner for each subtask, we used the mean of338

Recall@10 and MRR, as presented in Table 3.339

2.3.3. Discussion340

Table 3 presents the overall scores for each team on each subtask, ordered341

by teams’ average rank. Team 3 consistently scored highest, winning all but342

one subtask. For details of their approach, see Chen and Wang (2019).343

Looking at individual metrics, they had the best score 75% of the time on344

Ubuntu and all of the time on the final Advising test set. The subtask they345

were beaten on was Ubuntu-2, in which the set of candidates was drastically346

expanded. Team 10 did best on that task, indicating that their extra filtering347

step provided a key advantage. They filtered the 120,000 sentence set down348

to 100 options using a TF-IDF based method, then applied their standard349

approach to that set. For details of the method, see Ganhotra et al. (2019).350

Subtasks.351

1. The first subtask drew the most interest, with every team participating352

in it for one of the datasets. Performance varied substantially, covering353

a wide range for both datasets, particularly on Ubuntu.354

2. As expected, subtask 2 was more difficult than task 1, with consistently355

lower results. However, while the number of candidates was increased356

from 100 to 120,000, performance reached as high as half the level of357

task 1, which suggests systems could handle the large set effectively.358

3. Also as expected, results on subtask 3 were slightly higher than on359

subtask 1. Comparing MRR and MAP it is interesting to see that360

while the ranking of systems is the same, in some cases MAP was361

higher than MRR and in others it was lower.362
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4. For both datasets, results on subtask 4, where the correct answer was363

to choose no option 20% of the time, are generally similar. On average,364

no metric shifted by more than 0.016, and some went up while others365

went down. This suggests that teams were able to effectively handle366

the added challenge.367

5. Finally, on subtask 5 we see some slight gains in performance, but368

mostly similar results, indicating that effectively using external re-369

sources remains a challenge.370

Advising Test Sets. We compared results on the two versions of the test set371

(one which had overlap with the source dialogues from training, and the372

other with entirely distinct dialogues). Removing overlap made the task373

considerably harder, though more realistic. In general, system rankings were374

not substantially impacted, with the exception of team 17, which did better375

on the original dataset. This may relate to their use of a memory network376

over the raw advising data, which may have led the model to match test377

dialogues with their corresponding training dialogues.378

Metrics. Finally, we compared the metrics. In 39% of cases a team’s ranking379

is identical across all metrics, and in 34% there is a difference of only one380

place. The maximum difference is 5, which occurred once, between team 6’s381

results in the final Advising results, where their Recall@1 result was 8th, their382

Recall@10 result was 11th and their Recall@50 result was 13th. Comparing383

MRR and Recall@N, the MRR rank is outside the range of ranks given by the384

recall measures 9% of the time (on Ubuntu and the final Advising evaluation).385

2.4. Future Work386

This task provides the basis for a range of interesting new directions.387

We randomly selected negative options, but other strategies could raise the388

difficulty, for example by selecting very similar candidates according to a389

simple model. For evaluation, it would be interesting to explore human390

judgements, since by expanding the candidate sets we are introducing options391

that are potentially reasonable.392

This work has been extended in several direction by a follow-up task at393

DSTC 8. In particular, the setting was expanded to include conversations394

with more than two participants. One subtask also explores the challenge395

of selecting responses in the raw channel, where multiple conversations are396

occurring at once. These pose additional challenges and bring the setting397
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closer to the real world. The data has also been improved, by using an im-398

proved version of the disentanglement algorithm that extracts higher quality399

conversations.400

2.5. Conclusion401

This task introduced two new datasets and three new variants of the next402

utterance selection task. Twenty teams attempted the challenge, with one403

clear winner. The datasets are being publicly released, along with a baseline404

approach, in order to facilitate further work on this task. This resource will405

support the development of novel dialogue systems, pushing research towards406

more realistic and challenging settings.407

3. Sentence Generation Track408

Recent work (Ritter et al., 2011; Sordoni et al., 2015; Shang et al., 2015;409

Vinyals and Le, 2015; Serban et al., 2016, etc.) has shown that conversa-410

tional models can be trained in a completely end-to-end and data-driven411

fashion, without any hand-coding. However, prior work has mostly focused412

to chitchat, as that is a common feature of messages in the social media data413

(e.g., Twitter (Ritter et al., 2011)) used to train these systems. Such end-to-414

end neural conversation systems have a tendency to produce responses that415

are conversationally appropriate, but that are also often bland (Li et al.,416

2016a; Gao et al., 2019), purely chatty, and lacking entities and factual con-417

tent. On the other end, goal-oriented dialog systems have the ability to418

inject entities and facts into responses, but often at the cost of significant419

hand-coding (e.g., slot filling) and this hand-crafting is often specific to the420

domain or task. We argue that dialog shouldn’t necessarily be either com-421

pletely goal-oriented or completely chitchat. This is often reflected in real422

human-human data, which often combines the two genres.423

To effectively move beyond chitchat and produce system responses that424

are both substantive and “useful”, fully data-driven models need grounding425

in the real world and access to external knowledge (textual or structured). To426

do so, the Sentence Generation task was inspired by the knowledge-grounded427

conversational framework of (Ghazvininejad et al., 2018; Qin et al., 2019),428

which combines conversational input and textual data from the user’s envi-429

ronment (here, a web page that is discussed). Such a framework maintains430

the benefit of fully data-driven conversation while attempting to get closer431
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to task-oriented scenarios, with the goal of informing and helping the users432

and not just entertaining them.433

3.1. Task definition434

The task follows the data-driven framework established in 2011 by Rit-435

ter et al. (2011), which avoids hand-coding any linguistic, domain, or task-436

specific information (e.g., there are no explicit dialog act or slots). In the437

knowledge-grounded setting of (Ghazvininejad et al., 2018; Qin et al., 2019),438

that framework is extended as each system input consists of two parts:439

• Conversational input: Similar to DSTC6 Track 2 (Hori and Hori,440

2017b), all preceding turns of the conversation are available to the441

system. For practical purposes, we truncate the context to the K most442

recent turns.443

• Contextually-relevant “facts”: The system is given text that is444

relevant to the context of the conversation, in this case a web page.445

This text is distinct from conversational data, and is extracted from446

external knowledge sources such as Wikipedia or news web sites.447

From this input, the task it to produce a response that is (1) conversa-448

tionally appropriate and relevant, as well as (2) informative and interesting.449

The evaluation setup is presented in Section 3.4, which includes a human450

evaluation of these two qualities (“Relevance” and “Interest”, respectively).451

3.2. Data452

We extracted conversation threads from Reddit data, which is particularly453

well suited for grounded conversation modeling. Indeed, Reddit conversations454

are organized around submissions, where each conversation is typically initi-455

ated with a URL to a web page (grounding) that defines the subject of the456

conversation. An example of the data is shown in Table 4. For this task, we457

restrict ourselves to submissions that contain exactly one URL and a title. To458

reduce spamming and offensive language and improve the overall quality of459

the data, we restricted our grounded dataset to 226 web domains and to 178460

high-quality Reddit topics (i.e., “subreddits”). We also imposed constraints461

on turn length similar to those in place in Twitter (e.g., responses must be462

less than 280 characters), in order to ensure that dialogue turns are con-463

versational and not long monologues. This filtering yielded about 3 million464
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conversational responses and 20 million facts.8 We split the data into train,465

validation and test, with the following month ranges for these different sets:466

years 2011-2016 for train, Jan-Mar 2017 for validation, and the rest of 2017467

for test. For the test set, we selected conversational turns for which 6 or more468

responses were available, in order to create a multi-reference test set. Given469

other filtering criteria such as turn length, this yielded a 5-reference test set470

of size 2208 (For each instance, we set aside one of the 6 human responses to471

assess human performance on this task). More information about the data472

can be found in Qin et al. (2019), which introduced this dataset. All code473

and data can also be found on the DSTC Track 2 page,9 which makes data474

extraction, baseline, and evaluation code available, and lets anyone recreate475

the training, development, validation and test sets.476

3.3. Submitted Systems477

The submitted systems include sequence-to-sequence models (Sordoni478

et al., 2015; Shang et al., 2015; Vinyals and Le, 2015) with memory network479

and related models (Weston et al., 2015; Sukhbaatar et al., 2015), copy-based480

mechanism (See et al., 2017; Gu et al., 2016; He et al., 2017), hierarchical481

model (Serban et al., 2016), attention mechanism (Bahdanau et al., 2015),482

and variational model (Kingma and Welling, 2013). The following is a brief483

summary of the systems based on system descriptions and private commu-484

nication:485

• TeamA: Details of this systems are unknown to us as a system de-486

scription was not submitted.487

• TeamB: It is a sequence-to-sequence model with a copying mechanism488

(See et al., 2017) from both the conversation history and facts. A489

modified beam search with some semantic clustering is proposed to490

discourage bland or meaningless responses.491

• TeamC: It is a sequence-to-sequence modeling the skeleton of dialog492

response for pretraining, then fine-tuned with a Memory Network en-493

8We could have easily increased the number of web domains to create a bigger dataset,
but we aimed to make the task relatively accessible for participants with limited computing
resources.

9https://github.com/mgalley/DSTC7-End-to-End-Conversation-Modeling
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coder (Sukhbaatar et al. (2015)) that utilizes retrieved top-10 related494

facts.495

• TeamD: This system consists of a Memory-augmented Hierarchical496

Encoder-Decoder (MHRED) that extends (Serban et al., 2016), a sen-497

tence selection module to retrieve facts, and a reranker.498

• TeamF: It is a variational generative model with a joint attention499

mechanism conditioning on the contexts and textual facts.500

• TeamG: It is a variational generative model. Contexts (and response501

at the training stage) are encoded to extract textual fact information502

using an attention mechanism.503

3.4. Evaluation504

We evaluated response quality using both automatic and human evalu-505

ation. Since we are not considering task-oriented dialog, there is no pre-506

specified task and therefore no extrinsic way of measuring task success. In-507

stead, we performed a per-response human evaluation judging each system508

response using crowdsourcing:509

• Relevance: This evaluation criterion measures whether the system510

response is conversationally appropriate and relevant to the given K511

immediately preceding turns (to reduce the judges’ cognitive load we512

set K as 2). Grounding in external sources is not involved in this judge.513

• Interest: This evaluation criterion asks whether the produced response514

is interesting and informative given the document provided by the URL.515

To reduce cognitive load, we only considered URLs with named anchors516

(i.e., prefixed with ‘#’ in the URL) and only a snippet of the document517

immediately following that anchor is provided to the crowdworkers.518

Note that models could use full web pages as input.519

Both evaluation criteria were scored on a 5-point Likert scale, and finally520

combined the two judgments with equal weights.521

In order to provide participants with preliminary results to include in their522

system descriptions, we also performed automatic evaluation using standard523

machine translation metrics, including BLEU (Papineni et al., 2002), ME-524

TEOR (Lavie and Agarwal, 2007), and NIST (Doddington, 2002). NIST is a525
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variant of BLEU that weights n-gram matches by their information gain, i.e.,526

it indirectly penalizes uninformative n-grams such as “I don’t” and “don’t527

know”. The final ranking of the systems was based only on human evaluation528

scores.529

3.5. Results530

3.5.1. Automatic Evaluation531

The Generation Task received 26 system submissions from 7 teams. In532

addition to these systems, we also evaluated a “human” system (one of the533

six human references set aside for evaluation) and three baselines: a seq2seq534

baseline, a “random human” baseline (which randomly selects human re-535

sponses from the training data), and a constant baseline (which always re-536

sponds “I don’t know what you mean.”).10 The reason for including a con-537

stant baseline is that such a deflective response generation system can be538

surprisingly competitive, at least when evaluated on automatic metrics (e.g.,539

BLEU). While the idea of such a constant baseline is relatively new, it is540

inspired by the idea that open-domain conversational systems trained end-541

to-end have a tendency to produce outputs that are relatively constant (Li542

et al., 2016b), such as “I don’t know.” The main automatic score results are543

shown in Table 5, and the findings for each of the metrics are as follows:544

• BLEU-4: When evaluated on 5 references, the constant baseline,545

which always responds deflectively, does surprisingly well (2.87%) and546

outperforms all the submitted systems (ranging from 1.01% to 1.83%),547

and is only outperformed by humans. In further analysis, we found548

that reducing the number of references to one solved the problem, as549

almost all the systems were able to outperform the baseline accord-550

ing to single-reference BLEU. We suspect this deficiency of BLEU with551

many references, previously noted in Vedantam et al. (2015a), to be552

due to its parameterization as a precision metric. For example, if one553

of the gold responses happens to be “I don’t know what you mean”,554

the constant baseline gets a maximum score for that instance, irrespec-555

tively of all other references. Thus, this biases the metric towards very556

bland responses, as often at least one of the 5 references is somewhat557

deflective (e.g., contains “I don’t know”). Based on these observations,558

10This constant response was greedily selected to optimize a combination of BLEU,
NIST, and METEOR on a held-out set.
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we recommend to use single-reference BLEU instead of multi-reference559

BLEU for future DSTC tasks similar to this task, as the former gave560

much more meaningful results.561

• NIST-4: The NIST score weights n-gram matches by their informa-562

tion gain, and effectively penalizes common n-grams such as “I don’t563

know”, which alleviates the problem with multi-reference BLEU men-564

tioned above. None of the baselines is competitive with the top systems565

according to NIST-4, even when using 5 references. This suggests that566

NIST might be a more suitable metric than BLEU when dealing with567

multi-reference test sets, and it penalizes bland responses. Note that568

the “Random Human” system does relatively well according to NIST-4,569

but this is probably due to the fact that this random baseline selects hu-570

man sentences randomly from the training data, and human responses571

generally contain n-grams with more information content than machine572

generated n-grams.573

• METEOR: This metric suffers from the same problem as BLEU-4,574

as the constant baseline performs very well on that metric and outper-575

forms all submitted primary systems but one. We suspect this is due576

to the fact that METEOR (as BLEU) does not consider information577

gain in its scoring.578

Table 5 also provides unigram and bigram diversity scores as defined in Li579

et al. (2016c), which are important to qualify the performance of some of the580

systems and baselines. Indeed, a high BLEU score (e.g., constant baseline)581

can be a consequence of very bland and uninformative output.582

In future work, we will also consider comparing these metrics against583

CIDEr (Vedantam et al. (2015b)), AM-FM (D’Haro et al. (2019), Banchs584

et al. (2015)) Embedding Average cosine similarity, Skip-Thoughts cosine585

similarity, and other metrics used before in dialogue (Sharma et al. (2017)).586

3.5.2. Human Evaluation587

We limited evaluation to a sample of 1000 conversations and only used588

primary systems due to the cost of crowd-sourcing. All systems were evalu-589

ated with the same set of conversations, and results are displayed in Table 6.590

Each output was judged by 3 randomly-assigned judges for Relevance and591
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Interest using a 5-point Likert scale. After removing spamming,11 inter-rater592

agreement on a converted 3-way scale was fair, as indicated by Fleiss’ Kappa593

at 0.39 for Relevance and 0.38 for Interest. As expected, the constant baseline594

performed moderately well on Relevance (2.60), but received a relatively low595

Interest score (constant: 2.32). The best system returned a composite score596

of 2.93 (Relevance: 2.99, Interest: 2.87), but is still below the human level597

of 3.55 (Relevance: 3.61, Interest: 3.49).598

Finally, we assess the level of correlation between automatic and hu-599

man scores for this task, to help determine whether it would be appropri-600

ate to rely mostly on automatic evaluation in future end-to-end response601

generation tasks similar to DSTC Track 2. We computed system-level cor-602

relation between overall human scores (i.e., relevance+interest) on the one603

hand, and each of the individual main metric on the other hand (i.e., ei-604

ther BLEU-4, NIST-4, and METEOR).12 We found that automatic metrics’605

Spearman rank correlation coefficients (ρ) computed against human scores606

to be quite promising, with ρ = 0.535 for BLEU-4, ρ = 0.650 for METEOR,607

and ρ = 0.669 for NIST-4. As Table 5 suggests that BLEU-4 and NIST-4608

tend to complement each other (with NIST-4 giving high scores to diverse609

responses, and BLEU-4 penalizing them), we also computed the correlation610

between the unweighted linear combination of these 3 metrics on one hand611

(Figure 3), and overall human scores on the other hand: this yield Spear-612

man’s ρ = 0.754. While this result indicates a rather strong correlation613

between human ratings and automatic metrics for this task, it is probably614

not strong enough to warrant bypassing human evaluation altogether, espe-615

cially given the small sample size of this correlation analysis. Nonetheless,616

we consider this result to be relatively positive, as we believe it would pro-617

vide participants of future end-to-end responses generation tasks a quick and618

relatively decent substitute to human judgment in their day-to-day (i.e., not619

11We removed annotation of judges suspected to be spammers if their rating diverged
significantly from the mean ratings of the other judges (i.e., correlation coefficient close to
zero.) Such a situation is usually a sign that the judge is either rating deterministically
without looking at the task (e.g., always selecting the first option in the list or ratings) or
is rating randomly.

12Note that we computed system-level rather that sentence-level correlation, as the
BLEU-4 and NIST-4 metrics were designed to be computed at a corpus rather than sen-
tence level, as some of their underlying statistics (e.g., 4-gram matches) cannot be reliably
computed on single turns or sentences.
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Figure 3: System-level correlation between overall human scores (relevance+interest) and
automatic evaluation (unweighted linear combinatation of BLEU-4, NIST-4, and ME-
TEOR).

final) system performance evaluations.620

3.6. Summary621

The sentence generation task challenged participants to produce interest-622

ing and informative end-to-end conversational responses that drew on tex-623

tual background knowledge. In this respect, the task was significantly more624

challenging that the DSTC6 task that was focused on the conversational di-625

mensions of response generation. In general, competing system outputs were626

judged by humans to be more relevant and interesting than our constant and627

random baselines. It is also clear, however, that the quality gap between628

human and system responses is substantial, indicating that there is consid-629

erable space for research in future algorithmic improvements. For the future630

work, one line of investigation will be to explore the effect of other mecha-631

nism to extract information from the textual grounding, such as off-the-shelf632

machine reading models including BERT Devlin et al. (2018). Multimodal633
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grounding is another line of future work.634

4. Audio Visual Scene-aware Dialog Track635

In this track, we consider a new research target: a dialog system that can636

discuss dynamic scenes with humans. This lies at the intersection of research637

in natural language processing, computer vision, and audio processing. As638

described above, end-to-end dialog modeling using paired input and output639

sentences has been proposed as a way to reduce the cost of data prepara-640

tion and system development. Such end-to-end approaches have been shown641

to better handle flexible conversations by enabling model training on large642

conversational datasets (Vinyals and Le, 2015; Hori et al., 2019c). However,643

current dialog systems cannot understand a scene and have a conversation644

about what is going on in it. To develop systems that can carry on a con-645

versation about objects and events taking place around the machines or the646

users, systems need to understand not only the dialog history but also the647

video and audio information in the scene. In the field of computer vision,648

interaction with humans about visual information has been explored in visual649

question answering (VQA) by Antol et al. (2015) and Visual Dialog by Das650

et al. (2017). These tasks have been the focus of intense research, aiming to651

(1) generate answers to questions about things and events in a single static652

image and (2) hold a meaningful dialog with humans about an image using653

natural, conversational language in an end-to-end framework. While VQA654

and visual dialog take significant steps towards human-machine interaction,655

they only consider a single static image. Most real-world scenarios, such as656

helping visually impaired users or intelligent home assistants, involve time-657

varying information. Thus, they need to be able to process video information658

to understanding the content and temporal dynamics of a scene. To capture659

the semantics of dynamic scenes, recent research has focused on video de-660

scription. The state of the art in video description uses multimodal fusion661

to combine different input modalities (feature types), such as the attention-662

based fusion of spatio-temporal motion features and audio features proposed663

by Hori et al. (2017).664

Since the recent revolution of neural network models allows us to combine665

different modules into a single end-to-end differentiable network, this frame-666

work allow us to build scene-aware dialog systems by combining end-to-end667

dialog and multimodal video description approaches. We can simultaneously668
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input video features and user utterances into an encoder-decoder-based sys-669

tem whose outputs are natural-language responses.670

To advance this goal, we introduce a new dataset of human dialogues671

about videos. As the subject matter of Audio Visual Scene-aware Dialog672

(AVSD), we used the short video clips of the Charades dataset (Sigurdsson673

et al., 2016): simple videos of real people performing everyday actions in674

real-world settings, with natural audio. The baseline system we provided in-675

corporated technologies for video description into an end-to-end dialog sys-676

tem (Hori et al., 2018a). We made the dataset, code, and model publicly677

available for a new Audio Visual Scene-Aware Dialog (AVSD) Challenge at678

DSTC7.679

4.1. Task definition680

In this track, the system must generate responses to a user input in the681

context of a given dialog. The target of VQA and Visual Dialog is sentence682

selection based on information retrieval. For real-world application, however,683

spoken dialog systems cannot simply select from a small set of pre-determined684

sentences. Instead, they need to immediately output a response to a user685

input. For this reason, in this track we focus on sentence generation rather686

than sentence selection. In this track, the system’s task is to use a dialog687

history (the previous rounds of questions and answers in a dialog between688

user and system) and (optionally) a brief video script, plus (in one version of689

the task) the visual and audio information from the input video, to answer a690

next question about the video. There are two tasks, each with two versions691

(a and b):692

Task 1: Video and Text (a) Using the video and text training data pro-693

vided but no external data sources, other than publicly available pre-694

trained feature extraction models (b) Also using external data for train-695

ing.696

Task 2: Text Only (a) Do not use the input videos nor their audio tracks697

for training or testing. Use only the text training data (dialog history698

and video script) provided. (b) Any publicly available text data may699

be used for training.700

4.2. Data701

To set up the Audio Visual Scene-Aware Dialog (AVSD) track, we col-702

lected (in Alamri et al. (2018a)) text-based dialogs about short videos from703
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the Charades dataset (Sigurdsson et al., 2016)13, which consists of untrimmed704

and multi-action videos along with a brief script for each video. The data705

collection paradigm for dialogs was similar to the one described by Das et al.706

(2016), in which for each image, two parties interacted via a text interface707

to yield a dialog. In Das et al. (2016), each dialog consisted of a sequence708

of questions and answers about an image. In our audio visual scene-aware709

dialog case, two parties had a discussion about events in a video. One of710

the two parties played the role of an answerer who had already watched the711

video and read the video script. The answerer answered questions asked by712

their counterpart, the questioner. The questioner was not allowed to watch713

the video but was able to see the first, middle, and last frames of the video714

as single static images. The two had 10 rounds of Q and A, in which the715

questioner asked about the events that happened in the video. At the end,716

the questioner summarized the events in the video as a video description.717

Table 7 shows an example of a dialogue, and Table 8 shows the size of718

the dataset split into training, validation, and test sets. The questions and719

answers of the AVSD dataset mainly consist of 5 to 8 words, making them720

longer and more descriptive than those of VQA and Visual Dialog. Figure721

4 shows the distributions of word 4-grams and average length of sentences722

in the questions and answers of the prototype data set of AVSD Hori et al.723

(2019a), compared with those of VQA and Visual Dialog (VisDial).724

The dialog contains questions about objects, actions, and audio informa-725

tion in the videos. Although we tried to collect questions directly relevant726

to the event displayed, some questions refer to abstract information in the727

video, such as how the videos begin and the duration of the videos.728

4.3. Evaluation729

In this challenge, the quality of a system’s automatically generated sen-730

tences is evaluated using objective measures. These determine how similar731

the generated responses are to groundtruth responses from humans, as well732

as how natural and informative the responses are. In addition to the ground733

truth response that was given by the answerer during dialog collection, we734

collected 5 additional human-generated responses for the test videos. To735

collect these additional responses, we provided 5 humans with all of the in-736

formation that the answerer had in the original dialog: we asked them to737

13http://allenai.org/plato/charades/
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Figure 4: The distributions of word 4-grams in the questions (left) and answers (middle)
of the prototype data set of the AVSD, and the average length (right) of the sentences of
the VQA and the prototype data set of the AVSD. The actions were mainly asked by the
questioners. There are some questions regarding audio information. Half of the answers
are Yes/No. The questions and answers of AVSD are longer than those of VQA. More
descriptive sentences were generated for AVSD.

answer the question after watching a video and reading the video script and738

the dialog history between the questioner and answerer about the video. The739

reason why the humans need to read the history of the dialog before answer-740

ing is that there are some dependencies between each question and the the741

previous question/answer pairs in the sequence (Alamri et al., 2019). A typi-742

cal pattern is when questions contain prepositions such as ”it”— the humans743

cannot answer the questions if they don’t know what the word ”it” refers to.744

We evaluated the automatically generated answers by comparing with the745

6 ground truth sentences (one original answer and 5 subsequently collected746

answers). We used the MSCOCO evaluation tool for objective evaluation of747

system outputs14. The supported metrics include word-overlap-based metrics748

such as BLEU, METEOR, ROUGE L, and CIDEr.749

We also collected human ratings for each system response using a 5-point750

Likert Scale, where humans rated system responses given a dialog context as:751

5 for very good, 4 for good, 3 for acceptable, 2 for poor, and 1 for very poor.752

Since the dataset contains questions and answers, we asked humans to con-753

sider correctness of the answers as well as the naturalness, informativeness,754

and appropriateness of the response according to the given context.755

14https://github.com/tylin/coco-caption
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4.4. Baseline System756

We provided a baseline end-to-end dialog system that can generate an-757

swers in response to user questions about events in a video sequence. The758

baseline system is an LSTM-based encoder decoder with Näıve multimodal759

fusion (Alamri et al., 2018b). The architecture, which is similar to the Hier-760

archical Recurrent Encoder in Das et al. (2016), is based on Natural language761

Generation (NLG) technologies from Track2 of DSTC6 (modeling end-to-end762

conversation for Twitter customer service) (Hori et al., 2018b). The question,763

visual features, and dialog history are fed into corresponding LSTM-based764

encoders to build up a context embedding, and then the outputs of the en-765

coders are fed into an LSTM-based decoder to generate an answer. The766

dialog history consists of encodings of QA pairs plus (optionally) an encod-767

ing of the video script. This is a simplified version of Hori et al. (2018a), in768

which multimodal fusion is performed without attention between modalities769

such as audio and video features. Figure 5 shows the architecture of the mul-770

timodal attention-based fusion. The baseline system does not have modality771

attention weights β. The full set of test data was used in Hori et al. (2018a),772

while the AVSD challenge at DSTC7 used 2,000 responses selected from the773

full set.774
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Figure 5: Attentional multimodal fusion-based video scene-aware dialog system Hori et al.
(2018a)
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4.5. Data Processing775

4.5.1. Video Processing776

We adopted the state-of-the-art I3D features Carreira and Zisserman777

(2017), spatiotemporal features that were developed for action recognition.778

The I3D model inflates the 2D filters and pooling kernels in the Inception V3779

network along their temporal dimension, building 3D spatiotemporal ones.780

We used the output from the ”Mixed 5c” layer of the I3D network to be781

used as video features in our framework. As a pre-processing step, we nor-782

malized all the video features to have zero mean and unit norm; the mean783

was computed over all the sequences in the training set for the respective784

feature.785

In the experiments in this paper, we treated I3D-rgb (I3D features com-786

puted on a stack of 16 video frame images) and I3D-flow (I3D features com-787

puted on a stack of 16 frames of optical flow fields) as two separate modalities788

that are input to our multimodal attention model. To emphasize this, we789

refer to I3D in the results tables as I3D (rgb-flow).790

4.5.2. Audio Processing791

In this track, we used features extracted using a new state-of-the-art792

model, Audio Set VGGish (Hershey et al., 2017). Inspired by the VGG793

image classification architecture (Configuration A without the last group of794

convolutional/pooling layers), the Audio Set VGGish model operates on 0.96795

sec log Mel spectrogram patches extracted from 16 kHz audio, and outputs796

a 128-dimensional embedding vector. The model was trained to predict an797

ontology of labels from only the audio tracks of millions of YouTube videos.798

In this work, we overlap frames of input to the VGGish network by 50%,799

meaning an Audio Set VGGish feature vector is output every 0.48 sec.800

4.6. Submitted Systems801

We received 32 sets of system outputs for the AVSD task, from 9 teams,802

and eight system description papers were accepted (Sanabria et al., 2019;803

Nguyen et al., 2019; Pasunuru and Bansal, 2019; Yeh et al., 2019; Zhuang804

et al., 2019; Kumar et al., 2019; Lin et al., 2019; Le et al., 2019). Table 9 shows805

the baseline and submitted systems with their brief specifications including806

Encoder-decoder Model type, Multimodal fusion type, and Additional tech-807

niques, models, and data sets. Most systems employed an LSTM, Bi-LSTM,808

or GRU encoder/decoder. Some systems used hierarchical and attention809
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frameworks. Furthermore, several additional techniques were introduced to810

improve the response quality, such as MMI and Episodic Memory Module.811

4.7. Results812

The best system applied “Hierarchical Attention mechanisms to combine813

text and video,” which was proposed in Hori et al. (2018a). Table 10 shows814

the evaluation results for the baseline and all systems. Figures 6–8 show the815

human ratings for each system in several ways. The systems are shown in816

the same order on the x-axis for all three figures. Figure 6 shows the mean817

and the standard deviation of the human ratings for each system (across all818

responses and all raters for that system). Figure 7 shows the distributions819

of the mean human rating score for each sentence for each system. Figure 8820

shows the distribution of all human rating scores for each system across all821

sentences. In this Figure, the area for each score of the violin plot shows a822

count of the number of scores of each level on the Likert scale. The ratings of823

the reference system (labeled “Ref,” at the far left of each figure) are ratings824

for the ground truth sentences extracted from the original QA data of the825

AVSD dataset. The baseline system is labeled ”Base.” The Reference system826

(“Ref”) had the best human ratings: it had the highest mean rating in Fig. 6,827

the highest median sentence rating in Fig. 7 and the most sentences rated as828

level 5 (”Very good”) in Fig. 8. The worst system (at the right) had a much829

lower mean rating and a long tail of poorly rated sentences.830

Figure 6: Mean and standard deviation of human rating score.

In Hori et al. (2018b), the reported human ratings of end-to-end con-831

versation models for Twitter customer service data were distributed fairly832
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Figure 7: Distribution of human scores averaged sentence-by-sentence.

Figure 8: Distribution of human rating score for each level of scores.

smoothly in the range from 1 to 5. In contrast, the human ratings of re-833

sponses in this AVSD track were more bimodal, tending to be either very834

low or very high (more like a binary split into “good” and “bad” answers).835

This is because the quality of the answers depends on the answer correctness836

in response to the questions, and incorrect answers result in drastically lower837

human rating scores. The best system generated mostly correct answers, and838

the worst system generated mostly incorrect answers.839

4.8. Summary and Discussion840

We introduced a new challenge task and dataset for Audio Visual Scene-841

Aware Dialog (AVSD) in DSTC7. This is the first attempt to combine end-to-842

end conversation and end-to-end multimodal video description models into a843

single end-to-end differentiable network to build scene-aware dialog systems.844
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The best system applied hierarchical attention mechanisms to combine text845

and visual information, improving by 22% over the human ratings of the846

baseline system. The language models trained from QA (without video or847

audio) are still strong approaches.848

After the AVSD challenge at DSTC7, Alamri et al. (2019) reported the849

performance of sentence selection (as opposed to sentence generation, which850

was used in this AVSD challenge) using the AVSD dataset. In the paper,851

Question (Q), V (Video), Dialog History (DH), and Audio (A) were fused.852

The addition of audio features generally improves model performance (Q+V to853

Q+V+A being the exception). Interestingly, the model performance improves854

even more when combined with dialog history and video features (Q+DH+V+A)855

for some metrics, indicating that audio signals still provide complementary856

knowledge to the video signals despite their close relationship.857

Further, it is found that the best performance is achieved when including858

text features extracted from the available summary (video script). Surpris-859

ingly, systems that use such manual descriptions enable performance close860

to the best system, even without using the audio-visual features. However,861

such summaries are unavailable in the real world, posing challenges during862

deployment. Recently, Hori et al. (2019b) proposed an approach to transfer863

the power of the teacher model trained using summaries to a student model864

that does not need the summary features.865

5. Conclusion and Future Directions866

In this paper, we have described the seventh dialog system technology867

challenge (DSTC7) and the three selected tasks: sentence selection, sentence868

generation, and audio visual scene-aware dialog. The sentence selection track869

targeted the process of determining the best response given several possible870

answers or detecting when none candidate was suitable over two different871

datasets. The sentence generation track provided a testbed for knowledge-872

grounded response generation, with the aim of creating more controllable873

generators. The audio visual scene-aware dialog track raised a new prob-874

lem in which dialog is generated about a given video, targeting multimodal875

approaches and extending the capabilities of the dialog systems to combine876

information from different sources.877

All of the data described in this paper are provided as a large-scale bench-878

mark of dialog systems from several viewpoints to support future dialog sys-879

tem research. Although submitted systems improved in all cases the base-880
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line results, several major challenges for dialog systems still remain. For881

example, transferring models trained on large-scale data-sets to a variety882

of domains that do not have enough data is a known issue for dialog sys-883

tems, as mentioned in DSTC3. Unfortunately, end-to-end systems do not884

address completely this issue, which would require expanding to a larger885

variety of domains and to consider applying transfer-learning approaches886

(Ruder et al. (2019)). Other problems are related with the capabilities of the887

dialog systems is to identify success and better managing of errors, handle888

task complexity in a scalable way, and the integration of multiple sources of889

information.890

As following the raised problems in DSTC7, four tasks are proposed as891

the eighth edition of the dialog system technology challenge (DSTC8). Sen-892

tence selection task, track 1 in DSTC7, was extended not only a next ut-893

terance selection task but also predicting a task success and a conversation894

disentanglement. Audio visual scene aware dialog, track 3 in DSTC7, was895

also continued in the next challenge to explore a fusion between vision and896

dialog. Other two tasks, multi-domain task completion and scheme based di-897

alog state tracking, were proposed as new challenges in DSTC8. Both tracks898

aim to build accurate task-oriented dialog systems on different approaches.899

Multi-domain task completion track focuses on dialog complexity and scaling900

to new domains as we previously focused on DSTC3. Scheme guided dialog901

state tracking focuses on dialog state tracking itself, even if the state space902

is new for the trained state tracker.903

We expect to continue the challenge in the future, providing new testbeds904

that work towards the remaining open problems of dialog system research,905

while being complementary to other challenges like Alexa Prize (Khatri et al.906

(2018)), ConvAI (Dinan et al. (2019)), or Dialog Breakdown Detection Chal-907

lenge (Higashinaka et al. (2019)).908
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Model External Used Raw Val in
Team Type Data Use Advising Train Model Details

1 CNN - No Yes Combination of CNN for utterance represen-
tation and GRU for modeling the dialogue.

2 LSTM - Yes No ESIM with an aggregation scheme to capture
dialog-specific aspects of the data + ELMo.

3 LSTM Embeddings Yes No ESIM + a filtering stage for subtask 2.

4 LSTM - No No ESIM with (1) enhanced word embeddings to
address OOV issues, (2) an attentive hierar-
chical recurrent encoder, and (3) an additional
layer before the softmax.

6 Ensemble - No No An ensemble of CNNs.

7 LSTM - No Yes LSTM representation of utterances followed
by a convolutional layer.

8 Other - Yes No A multi-level retrieval-based approach that
aggregates similarity measures between the
context and the candidate response on the se-
quence and word levels.

10 LSTM TF-IDF
Extrac-
tion

No No ESIM with matching against similar dialogues
in training, and an extra filtering step for sub-
task 2.

12 RNN TF-IDF
Extrac-
tion

No No BoW over ELMo with context as an RNN.

13 Ensemble Embeddings No No Ensemble approach, combining a Dynamic-
Pooling LSTM, a Recurrent Transformer and
a Hierarchical LSTM.

14 Ensemble - No No An ensemble using voting, combining the
baseline LSTM, a GRU variant, Doc2Vec, TF-
IDF, and LSI.

15 Memory Memory No No Memory network with an LSTM cell.

16 LSTM - No No ESIM with utterance-level attention, plus ad-
ditional features.

17 Memory Memory &
Embed-
dings

Yes No Self-attentive memory network, with external
advising data in memory and external ubuntu
data for embedding training.

18 GRU - No No Stacked Bi-GRU network with attention, ag-
greagting attention across the temporal di-
mension followed by a CNN and softmax.

19 LSTM - No Yes Bidirectional LSTM memory network.

20 CNN - No Yes CNN with attention and a pointer network,
plus a novel top-k attention mechanism.

Table 2: Summary of approaches used by participants for track-1. All teams applied
neural approaches, with ESIM being a popular basis for system development. External
data refers to the man pages for Ubuntu, and course information for Advising. Raw
advising refers to the variant of the training data in which the complete dialogues and
paraphrase sets are provided. Teams 5, 9 and 11 did not provide descriptions of their
approaches. For further details, see the system description papers presented at the DSTC
workshop.
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Ubuntu, Subtask Advising, Subtask
Team 1 2 4 5 1 3 4 5

3 0.819 0.145 0.842 0.822 0.485 0.592 0.537 0.485
4 0.772 - - - 0.451 - - -
17 0.705 - - 0.722 0.434 - - 0.461
13 0.729 - 0.736 0.635 0.458 0.461 0.474 0.390
2 0.672 0.033 0.713 0.672 0.430 0.540 0.479 0.430
10 0.651 0.307 0.696 0.693 0.361 0.434 0.262 0.361
18 0.690 0.000 0.721 0.710 0.287 0.380 0.398 0.326
8 0.641 - 0.527 - 0.310 0.433 0.233 -
16 0.629 0.000 0.683 - 0.280 - 0.370 -
15 0.473 - - 0.478 0.300 - - 0.236
7 0.525 - 0.411 - - - - -
11 - - - - 0.075 0.232 - -
12 0.077 - 0.000 0.077 0.075 0.232 0.000 0.075
1 0.580 - - - 0.239 - - -
6 - - - - 0.245 - - -
9 0.482 - - - - - - -
14 0.008 - 0.072 - - - - -
19 0.265 - - - 0.180 - - -
5 0.076 - - - - - - -
20 0.002 - - - 0.004 - - -

Table 3: Track-1 results, ordered by the average rank of each team across
the sub-tasks they participated in. The top result in each column is in bold.
For these results the metric is the average of MRR and Recall@10.
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Web
page
info

[...] she holds the guinness world record for surviving the highest
fall without a parachute : 10,160 metres ( 33,330 ft ) . [...]
four years later , peter hornung-andersen and pavel theiner ,
two prague-based journalists , claimed that flight 367 had been
mistaken for an enemy aircraft and shot down by the czechoslovak
air force at an altitude of 800 metres ( 2,600 ft ) [...]

Turn 1 today i learned a woman fell 30,000 feet from an airplane and
survived [URL] .

Turn 2 the page states that a 2009 report found the plane only fell
several hundred meters .

Turn 3 well if she only fell a few hundred meters and survived then i
’m not impressed at all .

Turn 4 still pretty incredible , but quite a bit different that 10,000 me-
ters .

Table 4: Sample of the DSTC7 Sentence Generation data, which combines
Reddit data (Turns 1-4) along with documents (extracted from Common
Crawl) discussed in the conversations. The web page info was truncated for
this figure to fit in a relatively small space. The emphasis was added by us.
The [URL] links to the web page above.
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nist bleu(%) meteor Diversity Avg.
System N-2 N-4 B-2 B-4 D-1 D-2 len

Baselines:
Constant 0.18 0.18 12.8 2.9 7.5 0.1 0.1 8.0
Random Human 1.63 1.64 6.7 0.9 5.9 16.0 64.7 19.2
Seq2Seq 0.91 0.92 14.8 1.8 7.0 1.4 4.8 10.6

TeamA 0.75 0.75 11.8 1.5 5.6 9.6 27.6 10.5
TeamA-c1 0.83 0.83 11.5 1.4 5.7 12.2 30.2 10.9
TeamA-c2 1.12 1.12 9.5 0.8 5.5 9.7 31.9 12.0

TeamB 2.51 2.5 14.4 1.8 8.1 10.9 32.5 15.1
TeamB-c1 1.76 1.77 13.7 1.9 7.6 9.4 26.7 12.8

TeamC 1.51 1.51 10.9 1.3 6.4 5.3 17.1 12.7
TeamC-c1 2.11 2.12 9.9 1.3 6.8 3.8 12.4 16.4
TeamC-c2 1.19 1.20 11.6 1.7 6.2 5.5 16.9 11.7
TeamC-c3 1.73 1.74 8.8 1.2 5.9 3.9 12.2 14.9
TeamC-c4 1.53 1.54 11.5 1.8 6.5 5.6 18.0 12.7

TeamD 2.04 2.05 11.3 1.4 6.7 9.4 33.4 14.4
TeamD-c1 0.02 0.02 6.7 0.3 3.9 2.6 16.1 6.2
TeamD-c2 0.73 0.73 9.3 0.6 5.7 4.9 31.3 10.4
TeamD-c3 0.77 0.77 9.2 0.7 5.6 4.9 30.9 10.5
TeamD-c4 0.55 0.56 8.8 0.8 5.2 6.9 35.2 9.8
TeamD-c5 1.80 1.80 10.7 0.9 6.5 5.8 29.2 13.5
TeamD-c6 1.74 1.75 12.5 1.1 6.7 5.1 20.7 13.1

TeamE 1.51 1.51 10.9 1.3 6.4 5.3 17.1 12.7
TeamE-c1 2.11 2.12 9.9 1.3 6.8 3.8 12.4 16.4
TeamE-c2 1.81 1.82 11.0 1.6 6.5 5.0 15.6 14.0
TeamE-c3 1.92 1.93 10.9 1.5 6.7 4.6 15.2 14.3

TeamF 0.01 0.01 10.2 1.0 4.6 6.4 17.6 5.4
TeamF-c1 0.01 0.01 9.0 1.3 4.1 2.4 7.2 5.1
TeamF-c2 0.04 0.04 11.2 1.4 5.0 8.4 22.4 6.3
TeamG 2.31 2.32 10.6 1.2 7.2 3.4 26.5 16.6
TeamG-c1 2.03 2.04 8.2 1.1 7.5 10.8 44.9 22.3

Human 2.62 2.65 12.4 3.1 8.3 16.7 67.0 18.8

Table 5: Automatic evaluation results for track-2. Participants submitted
primary and contrastive systems, the latter being identified with a -cX suffix
in their names. The primary systems (TeamA, TeamB, . . .) were the ones
selected by the participants for human evaluation (Table 6).
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Relevance Interest Overall
System Mean 95% CI Mean 95% CI Mean 95 % CI

Baselines:
Constant 2.60 (2.560, 2.644) 2.32 (2.281, 2.364) 2.46 (2.424, 2.500)
Random 2.32 (2.269, 2.371) 2.35 (2.303, 2.401) 2.34 (2.288, 2.384)
Seq2Seq 2.91 (2.858, 2.963) 2.68 (2.632, 2.730) 2.80 (2.748, 2.844)

TeamA 2.32 (2.267, 2.368) 2.30 (2.252, 2.351) 2.31 (2.262, 2.358)
TeamB 2.99 (2.938, 3.042) 2.87 (2.822, 2.922) 2.93 (2.882, 2.979)
TeamC 3.05 (3.009, 3.093) 2.77 (2.735, 2.812) 2.91 (2.875, 2.950)
TeamD 2.69 (2.635, 2.743) 2.58 (2.527, 2.632) 2.63 (2.583, 2.685)
TeamF 2.52 (2.461, 2.572) 2.40 (2.352, 2.457) 2.46 (2.409, 2.512)
TeamG 2.82 (2.771, 2.870) 2.57 (2.525, 2.619) 2.70 (2.650, 2.742)

Human 3.61 (3.554, 3.658) 3.49 (3.434, 3.539) 3.55 (3.497, 3.596)

Table 6: Human evaluation results for track-2. The systems evaluated here
are the same as the primary systems in Table 5. Note that we do not report
the results of TeamE as their primary system was identical to TeamC’s (due
to miss-communication at submission time). The best system according to
human evaluation (TeamB) also obtained the best NIST-4 and METEOR
scores.
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Questioner Answerer

QA1
What kind of room does this appear
to be?

He appears to be in the bedroom.

QA2 How does the video begin? By him entering the room.

QA3 Does he have anything in his hands? He pick up a towel and folds it.

QA4 What does he do with it ?
He just folds them and leaves them
on the chair.

QA5 What does he do next? Nothing much except this activity.

QA6 Does he speak in the video? No he did not speak at all.

QA7 Is there anyone else in room at all? No he appears alone there.

QA8
Can you see or hear any pets in the
video?

No pets to see in this clip.

QA9
Is there any noise in the video of im-
portance?

Not any noise important there.

QA10
Are there any other actions in the
video?

Nothing else important to know.

Table 7: An example dialog from the AVSD dataset.

training validation test
# of dialogs 7,659 1,787 1,710
# of turns 153,180 35,740 13,490
# of words 1,450,754 339,006 110,252

Table 8: The dialog data for the DSTC7 AVSD track. The test videos for this
challenge were selected from the official test data of the Charades challenge.
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Team Encoder-decorder type Multimodal fusion type Additional tech-
niques/data

baseline LSTM Näıve fusion
team 1 Bidirectional Gated Recurrent Units

(GRU) based encode, Conditional Gated
Recurrent Units (CGRU) based decoder

Hierarchical attention ResNeXt, Transfer
learning using How2
dataset

team 2 FiLM Attention Hierarchical Recurrent
Encoder Decoder (FA-HRED), LSTM

Näıve fusion FiLM

team 3 Dual attention LSTM encoder, Cross-attention fusion Similarity matrix
team 4 LSTM/GRU encoder, Top-down Atten-

tion LSTM/GRU decoder
Muti-stage fusion, 1x1 Convo-
lution fusion, Multi-head At-
tention

team 5 Bi-LSTM and LSTM encoder, LSTM de-
coder

Attentional multimodal fusion MMI objective

team 6 LSTM encoder-decoder Attentional multimodal fusion Topic-base Conceptual
model, ConvNet, Acl-
Met

team 7 – – –
team 8 Bi-LSTM/LSTM encoder, Attention-

based GRU encoder, LSTM decoder
Entropy-enhanced Dynamic
Memory Network (DMN)

Episodic Memory
Module

team 9 GRU encoder-decoder Question-to-
Caption/Multimodal attention

+Team 7 did not submit a system description paper to the DSTC7 workshop.

Table 9: Submitted systems to the AVSD Track.
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Table 10: Evaluation results with word-overlapping-based objective measures
based on 6 references and a subjective measure based on 5-level ratings for
the AVSD track. Under this evaluation, the human rating for the original
answers was 3.938.
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