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Abstract
We propose an adaptive nonlinear model predictive control (NMPC) for vehicle tracking
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that is only indirectly observed from the effects of the tire forces determining the vehicle
dynamics. Learning the entire tire model from data would require driving in the unstable
region of the vehicle dynamics with a prediction model that has not yet converged. Instead,
our approach combines NMPC with a noise-adaptive particle filter for vehicle state and tire
stiffness estimation and a pre-determined library of tire models. The stiffness estimator
determines the linear component of the tire model during normal vehicle driving, and the
control strategy exploits a relation between the tire stiffness and the nonlinear part of the
tire force to select the appropriate full tire model from the library, which is then used in
the NMPC prediction model. We validate the approach in simulation using real vehicle
parameters, demonstrate the real-time feasibility in automotive-grade processors using a rapid
prototyping unit, and report preliminary results of experimental validation on a snow-covered
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ABSTRACT
We propose an adaptive nonlinear model predictive control (NMPC) for vehicle
tracking control. The controller learns in real time a tire force model to adapt to
a varying road surface that is only indirectly observed from the effects of the tire
forces determining the vehicle dynamics. Learning the entire tire model from data
would require driving in the unstable region of the vehicle dynamics with a predic-
tion model that has not yet converged. Instead, our approach combines NMPC with
a noise-adaptive particle filter for vehicle state and tire stiffness estimation and a
pre-determined library of tire models. The stiffness estimator determines the linear
component of the tire model during normal vehicle driving, and the control strategy
exploits a relation between the tire stiffness and the nonlinear part of the tire force
to select the appropriate full tire model from the library, which is then used in the
NMPC prediction model. We validate the approach in simulation using real vehi-
cle parameters, demonstrate the real-time feasibility in automotive-grade processors
using a rapid prototyping unit, and report preliminary results of experimental vali-
dation on a snow-covered test track.
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1. Introduction

As the automotive industry progresses towards autonomous vehicles, significant atten-
tion is devoted to technologies for enabling automated driving (AD) which can also be
possibly used in a more recent future in advanced driving assistance systems (ADAS).
One example are technologies for trajectory tracking, that are reliable, i.e., consistent,
and robust to changes in the environment, such as road and weather conditions.

Because predictive information is available in automated driving, due to sensors
detecting the road ahead for several meters and the path planner generating desired
vehicle motion for several seconds in the future, model predictive control (MPC) [1] is
expected to hold significant promises for these applications [2,3]. Several MPC meth-
ods have been applied to vehicle steering, for both cornering and stability control and
trajectory following, see e.g., [4–7], and references therein. As MPC exploits a vehi-
cle model to perform predictions in its optimal control problem (OCP), for achieving
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Figure 1. Left: Examples of lateral force as a function of slip angle α for asphalt, loose snow, and ice. Right:

A schematic of the single-track vehicle model and related notation.

performance and robustness the model must adequately represent the current vehicle
behavior. While the vehicle equation of motion in standard conditions can be described
by first principles with few parameters measured on test benches, the vehicle dynam-
ics are also affected by the surrounding environment that is continuously changing,
in particular the road and the weather. Thus, a key issue in applying MPC to ve-
hicle tracking control is its combination with estimation algorithms that can adjust
the prediction model to the current environmental conditions, rapidly and using a
reduced amount of data from noisy sensors. For instance, in [7] we showed that in
challenging maneuvers it is imperative to have a well-informed guess about the road
surface on which the car is driving, since this affects the the forces driving the vehicle
motion.Knowing at least the approximate curve of the function describing the vehicle
driving forces can be crucial for achieving an effective and safe vehicle operation.

In this work, we consider the specific case of adapting a Nonlinear MPC (NMPC)
for vehicle control to different conditions of the road surface, i.e., to changes in the
tire force functions. The driving forces due to the interaction between tire and road
are described by functions that are highly nonlinear, see e.g., [8,9], and vary heavily
between different surfaces. Fig. 1 shows examples of the function relating the lateral
tire force to the tire side slip angle, for different surfaces. Such tire force function is
approximately linear for small slip values, which are the ranges that are commonly
excited when driving in normal conditions, such as highway driving on well paved and
dry roads. However, when driving close to the adhesion limits, which may happen in
emergency maneuvers, on unpaved road, or on wet and icy roads, the nonlinear part
of the tire force function may be excited, and hence the full tire curve shape must
be considered. Thus, when driving over different surfaces the time varying tire force
curve needs to be identified in real time, rapidly and using noisy on-board sensors.

A complicating factor in identifying nonlinear functions is that the entire range of
the function should be excited to generate data for identification. In case of the tire
force function, obtaining data for the nonlinear part is challenging as it requires to
drive the vehicle to the limits of its performance envelope and, usually, this is not
done unless an emergency maneuver is needed or a particularly challenging surface is
encountered. Furthermore, driving in the nonlinear region of the tire force function
before a reliable model of the same is obtained is challenging and possibly dangerous.
If the controller approaches the nonlinear region of the force curve without having a
reliable model, this may cause control errors possibly leading to vehicle instability.

To avoid these issues, in this paper we leverage the dependence between the slope of
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the tire force curve for small slip values, the so called tire stiffness, and the entire force
function. While normally the tire stiffness can be used directly in ADAS [5,6] only for
normal, i.e., linear, driving conditions, or to classify surface types for road-condition
monitoring [8,10], here we combine the estimates with model knowledge to achieve
reliable operation at the vehicle limits. In particular, we use a library of precomputed
tire models for different road surfaces and switch between the tire models according
to the current tire stiffness. The tire stiffness is estimated by a recently developed
estimator [11] based on particle filtering. Our tire-stiffness estimator operates under
normal driving conditions, i.e., when the slip values are small, and hence does not
require the vehicle to operate at the limit of performance while the force curve is being
identified. Using the estimated stiffness to discriminate the current model among the
ones in the library allows us to obtain information on the entire tire force curve while
using only data from the linear region.

The resulting method that combines data-based and model-based techniques is ef-
ficient in terms of both data requirements and computational requirements, which is
appealing for automotive applications where the sensing and computational resources
are limited. Since we use data only to discriminate between models and we operate an
NMPC which is a feedback algorithm and hence naturally compensate for prediction
model errors, few data points are enough to obtain an effective and safe behavior of
the closed-loop system. Furthermore, we are identifying a limited number of parame-
ters, i.e., the tire stiffnesses, with an efficient implementation of a particle filter [11],
and we have developed an efficient block-sparse QP solver [12] for use within the RTI
framework of nonlinear optimal control. Therefore, our adaptive NMPC algorithm is
real-time feasible for current automotive micro-controllers, as demonstrated here by
implementing it on a dSPACE MicroAutoBox-II rapid prototyping unit.

Outline: The rest of the paper is organized as follows. Sec. 2 describes the vehicle
model, the considered sensor, actuator, and computational platform setup, and the
problem definition. Sec. 3 introduces the NMPC formulation, and Sec. 4 describes
the particle filter algorithm for estimating the tire stiffness. The method for adapting
the NMPC model based on the estimated tire stiffness and the library of models is
described in Sec. 5, which is followed by a simulation study, the assessment of real-
time feasibility, and some preliminary results of in-vehicle experiments, in Sec. 6. Our
conclusions are summarized in Sec. 7.

Notation: the notation is standard, with only few exceptions. R(a) denotes the 2D
rotation matrix of angle a. Vectors are shown in bold, x, we denote the stacking of two
vectors a, b by (a, b), and constraints between vectors are intended componentwise.
We denote a family of functions parametrized by the parameter vector θ as fθ. The
symbol ≈ reads as approximately equals, e.g., to a first order, while ∝ denotes equality
up to a constant scaling coefficient. We denote a Gaussian distribution with mean m
covariance P by N (m,P ), and a random variable y distributed according to such
distribution as y ∼ N(m,P ), while p(y), p(y|x) denote the (generic) probability
density function of y, and the (generic) probability density function of y conditional
to x. For a continuous-time signal x(t) sampled with period Ts, xk denotes the kth

sample, i.e., xk = x(kTs) and xk+h|k is the value of x predicted h steps ahead from
k, i.e., the predicted value of x((k + h)Ts) based on x(kTs).

2. Modeling and Problem Description
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First, we describe the model of the vehicle which is later used to derive the estimator
model and the prediction model of the NMPC. Then, we discuss the problem definition
and the physical platform considered, in term of sensors, actuators, and computational
capabilities, and we describe the problem that our control system addresses.

2.1. Vehicle Model Dynamics

The vehicle model is composed of a chassis model describing the motion of the rigid
body due to the forces generated at the tires, a tire model describing what forces the
tires generate depending on the chassis and wheels velocities, and a wheel model de-
scribing how the wheel speed changes as function of the acceleration/braking torques.

For the chassis, we consider the standard single-track model, where the left and
right track of the car are lumped into a single centered track, shown in Fig. 1. Hence,
only a single front and a single rear tire are considered, and roll and pitch dynamics are
ignored, resulting in two translational and one rotational degrees of freedom. While
for performance driving it may be advantageous to use a double-track chassis model,
which includes lateral and longitudinal load transfer [13], in [7,13] the single-track
model was shown to be sufficiently accurate for regular driving conditions, including
when tire forces are in the nonlinear region, because in such conditions the roll and
pitch angles remain relatively small. Similarly, the single track model seems sufficient
in most evasive maneuvers, because the focus of such maneuvers is on preserving
safety rather than achieving optimality, and hence a high precision model is often
unnecessary. On the other hand, the single-track model results in a reduced computing
load, which is always desirable in automotive applications [3], particularly for evasive
maneuvers.

Taking the longitudinal and lateral velocities in the vehicle frame, vX , vY , and the
yaw rate, ψ̇, as states, the single-track model is described by

v̇X − vY ψ̇ =
1

m
(F xf cos(δf ) + F xr − F

y
f sin(δf )), (1a)

v̇Y + vX ψ̇ =
1

m
(F yf cos(δf ) + F yr + F xf sin(δf )), (1b)

Izzψ̈ = lfF
y
f cos(δf )− lrF yr + lfF

x
f sin(δf ), (1c)

where F xi , F yi are the total longitudinal/lateral forces in the tire frame for the lumped
left and right tires, and the subscripts i = f, r indicate front and rear, respectively, m
is the vehicle mass, Izz is the vehicle inertia about the vertical axis, and δf is the front
wheel (road) steering angle. The vehicle position in global coordinates p = (pX, pY) is
obtained from the kinematic equation[

ṗX

ṗY

]
= R(ψ)

[
vX

vY

]
. (2)

The response from wheel angle command δcmd
f to wheel angle actuated by the steering

mechanism is modeled as a first order system with time constant τs

δ̇f = − 1

τs

(
δf − δcmd

f

)
. (3)

The tire model describes how the tire forces F xi and F yi in (1) are generated. The
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nominal tire forces F x0,i and F y0,i, i.e., the forces under pure longitudinal or lateral slip

conditions, can be described using the Magic Formula model [14],

F x0,i = µxi F
z
i sin (Cxi arctan(Bx

i (1− Exi )λi + Exi arctan(Bx
i λi))) ,

F y0,i = µyiF
z
i sin (Cyi arctan(By

i (1− Eyi )αi + Eyi arctan(By
i αi))) ,

(4)

where αi are the slip angles, λi are the slip ratios, F zi are the normal forces resting
on the wheels, µxi and µyi are the friction coefficients, and Bh

i , Chi and Ehi , i ∈ {f, r},
h ∈ {x, y}, are the stiffness, shape, and curvature factor, respectively. In what follows,

we use the short-hand notation θ = {µhi , Bh
i , C

h
i , E

h
i }

h=x,y
i=f,r to denote the set tire/road

parameters, with values that vary with external conditions, such as, among others,
road type, temperature, weather, tire pressure, so that θ is not exactly known. In (4),
the normal forces resting on lumped front/rear wheels F zi , i ∈ {f, r}, are F zf = mglr/l,

F zr = mglf/l, where g is the gravity acceleration, lf , lr are the distances of front and
rear axles from the center of gravity, and l = lf + lr is the vehicle wheel base.

Under combined slip conditions, i.e., when both λ and α are nonzero, the coupling
between longitudinal and lateral forces may be represented by the friction ellipse (FE)

F yi = F y0,i

√
1−

(
F x0,i
µxi F

z
i

)2

, i ∈ {f, r}. (5)

Even though in (5) the longitudinal force does not explicitly depend on the lateral slip
so that more accurate could be used, see, e.g., [14,15], the FE model is desirable for its
simplicity, and it has been proven satisfactory for the purposes pursued in this paper.

The slip angles αi and slip ratios λi in (4) are defined as [14],

α̇i
σ

vxi
+ αi = − arctan

(
vyi
vxi

)
, (6)

λi =
Rwωi − vxi

vxi
, i ∈ {f, r}, (7)

where σ is the relaxation length, Rw is the wheel radius, ωi is the wheel angular
velocity for wheel i, and vxi and vyi are the longitudinal and lateral wheel velocities for
wheel i in the coordinate system of the wheel. Given the velocity vector at the center
of mass, v = [vX vY ]>, the velocity vectors at the wheels are[

vxi
vyi

]
= R(δi)

>
[

vX

vY + ciψ̇

]
, i ∈ {f, r}, cf = lf , cr = −lr. (8)

Finally, the wheel dynamics are given by

Ti − Iwω̇i − F xi Rw = 0 , i ∈ {f, r}, (9)

where Iw is the wheel inertia and Ti = T ei − T bi is the torque on wheel i ∈ {f, r}, due
to the engine,T ei , and brake T bi . We model the engine torque response from a torque

command T e,cmd
i as a first order system [16] with time constant τe > 0

Ṫ ei = − 1

τe
(T ei − T

e,cmd
i ), i ∈ {f, r}. (10)
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Since T ei is the net torque, it can take negative values due to friction, losses and
auxiliary loads on the engine [16], thus providing engine braking. On the other hand,
since the brake actuation tends to be significantly faster than the engine, we model the
brake torque T bi as instantaneous, thus ignoring the brake circuit pressure dynamics.
Different powertrain and braking system configurations may be modeled by adding
constraints on the commands for engine and brake torques on each single wheels.

2.2. Measurements, Controls, and Problem Definition

In this paper, we consider a production-like sensor setup where we measure the vehicle
position (pX, pY) and the yaw (heading) ψ by GPS, the individual wheel speeds ωi,j ,
i ∈ {f, r}, where j ∈ {l, r} denotes left and right tires, by wheel encoders, which are
used to determine also the vehicle speed, approximated equal to vX . We measure the
vehicle longitudinal, aX = v̇X − vY ψ̇, and lateral, aY = v̇Y + vX ψ̇, acceleration and
the yaw rate ψ̇ by an automotive grade inertial measurement unit and the front road
wheel steering angle δf by a relative encoder. The control inputs are the front road
wheel steering angle command δcmd

f and the command for the front wheel torque from

engine T e,cmd
f , and possibly the brake torques T bi , i ∈ {f, r}.

We target for implementation automotive micro-controllers, which, due to harsh
operating conditions, hard real-time requirements, and cost considerations, are signif-
icantly less capable of desktop computers [3] in terms of memory and speed.

Under the above conditions, the objective of this paper is to design a control
strategy that makes the vehicle motion follow a time-dependent reference trajectory
(pXref(·), pYref(·), ψref(·), vXref(·)), possibly generated in real time with an adequate pre-
view, while operating over different surfaces and environmental conditions. Since some
of the vehicle states, e.g., vY , are not directly measured and the tire parameters θ are
not exactly known and change over time, the control strategy needs to estimate the
vehicle state and the tire parameters as the controller operates. The entire control
strategy must be able to operate in real time on computational platforms with capa-
bilities similar to today’s automotive micro-controllers, and hence we aim at limiting
the amount of computations and data storage needed by our approach.

The proposed control strategy is schematically depicted in Fig. 2, where the esti-
mator (PF) uses vehicle measurements (y) to estimate the vehicle state (x) and the
tire stiffness (C), and provides the former to the vehicle controller, and the latter to
the library (LIB) of tire models for selecting the tire model parameters (θ). The con-
troller (NMPC) uses the tire model together with the vehicle model and the vehicle
state to determine the control actions (u) that are actuated at the vehicle (VS). The
three blocks in the control strategy are described in the next three sections.

3. Nonlinear MPC for Real-Time Vehicle Control

Since our NMPC must track a time varying reference trajectory, for correctly for-
mulating the optimal control problem we first define as decision variable the rate
of change of steering command δ̇cmd

f . Based on the chassis model, tire model, wheel

model, and actuator response (1)–(10), we can write the complete model as a compact
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Figure 2. Architecture for the adaptive control system proposed in this paper.

set of ordinary differential equations as follows

ẋ(t) = fθ(x(t),u(t)), ∀t ∈ [0, T ], (11)

where the vehicle dynamics are parameterized by the set of estimated tire parameters

θ = {µhi , Bh
i , C

h
i , E

h
i }

h=x,y
i=f,r according to Eq. (4), and for every parameter vector θ, the

function fθ : Rnx×Rnu → Rnx is twice continuously differentiable in all its arguments.
For the purpose of the NMPC formulation, the state and control vector read as

x(t) :=
[
pX, pY, ψ, vX , vY , ψ̇, δf , ωf , ωr, αf , αr, δ

cmd
f , T ef , T

e
r , τ

]>
,

u(t) :=
[
δ̇cmd
f , T e,cmd

f , T e,cmd
r , τ̇ , s

]
∈ Rnu ,

(12)

such that nx = 15 and nu = 5, and in which τ denotes a path variable to parameterize
the reference trajectory [17] as will be described further. The dynamic equation for
this path variable reads as dτ

dt = τ̇ , in which τ̇ is an additional control variable in
the NMPC problem formulation. We then introduce the tracking-type optimal control
problem formulation in continuous time,

min
x(·),u(·)

∫ T

0
‖F (x(t),u(t))− yref(t)‖2 dt (13a)

s.t. x(0) = x̂0, (13b)

ẋ(t) = fθ(x(t),u(t)), ∀t ∈ [0, T ], (13c)

0 ≥ h(x(t),u(t)), ∀t ∈ [0, T ], (13d)

0 ≥ r(x(T )). (13e)

The tracking objective in Eq. (13a) consists of a nonlinear least-squares type Lagrange
term. For simplicity, T denotes both the control and prediction horizon length. The
parametric optimization problem (13) depends on the current state estimate x̂ through
Eq. (13b). Eqs. (13d) and (13e) denote the path and terminal inequality constraints,
respectively. The tire parameter vector θ in Eq. (13c) is estimated as described later,
and the estimated value is kept constant for the entire control horizon t ∈ [0, T ].
In order for the NMPC controller to achieve offset-free tracking under constant dis-
turbances and model mismatch [1], and possibly compensating for a steering system
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offset, Eq. (3) in the front wheel angle dynamics (13c) is adjusted to

δ̇f = − 1

τs

(
δf − (δcmd

f + δofff )
)
, (14)

where δofff is an input additive offset value that is estimated online.

3.1. Objective Function and Inequality Constraints

The cost function in (13a) allows us to formulate any standard tracking-type objective.
In our optimal control problem formulation, the nonlinear least squares cost function
consists of three terms∫ T

0

(
‖Fref(x(t))− yref(τ,d)‖2W + ‖x(t)‖2Q + ‖u(t)‖2R + rs s(t)

)
dt, (15)

including a term for tracking a reference motion plan and two regularization terms for
penalizing state and control variables, where Q ∈ Rnx×nx and R ∈ Rnu×nu are the
corresponding positive definite weighting matrices on the outputs, from which the state
is observable. The reference motion plan is provided by a smooth function yref(τ,d)
that depends on the path variable τ as well as on additional parameters d. By using this
parametric formulation, a continuous time approximation can be constructed based
on a sequence of discrete time sample points. We define the tracking function in the
objective based on a polynomial approximation of the reference trajectories

Fref(x(t))− yref(τ,d) =


eY(t, τ,d)

pX(t)− pXref(τ,dX)
pY(t)− pYref(τ,dY )
ψ(t)− ψref(τ,dψ)
vX(t)− vXref(τ,dv)

 =


eY(t, τ,dX ,dY ,dψ)
pX(t)−

∑nX
i=0 d

i
Xτ

i

pY(t)−
∑nY

i=0 d
i
Y τ

i

ψ(t)−
∑nψ

i=0 d
i
ψτ

i

vX(t)−
∑nv

i=0 d
i
vτ
i

 , (16)

where the path error eY(·) = cos(ψref(τ,dψ))
(
pY − pYref(τ,dY )

)
−

sin(ψref(τ,dψ))
(
pX − pXref(τ,dX)

)
is the orthogonal distance to the parameter-

ized reference trajectory. The prediction model state is observable through the output
function Fref , whose components are also weighted with a positive definite matrix
W ∈ R5×5. The dependence of the reference trajectory on the path variable τ(t),
instead of the time variable t, is quite standard in path following MPC [17]. This for-
mulation results in an additional degree of freedom for the NMPC controller to result
in an improved tracking performance. More specifically, tracking a time-dependent
motion plan can sometimes lead to large tracking errors even when the resulting path
closely corresponds to the planned path, e.g., caused by the vehicle slowing down or
speeding up relative to the reference motion.

The path constraints in the NMPC problem formulation consist of geometric and
physical limitations of the system, such as constraints on the distance of the vehicle
position to the parameterized reference trajectory. In practice, it is important to re-
formulate these requirements as soft constraints, based on the slack variable s, since
otherwise the problem may become infeasible due to unknown disturbances and mod-
eling errors, and the controller will cease operating. Thus, the path constraints in (13d)
include the soft bounds on distance to the reference, on the front wheel angle and on
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the lateral acceleration aY = (F yf cos(δf ) + F yr + F xf sin(δf ))/m

−ēY ≤ eY + s, −δ̄f ≤ δf + s, −āY ≤ aY + s, (17a)

eY − s ≤ ēY , δf − s ≤ δ̄f , aY − s ≤ āY . (17b)

In addition, these path constraints (13d) include the following hard constraints on
control input variables and on the path variable derivative to ensure that the vehicle
does not deviate excessively from the reference path

T e,cmd
f ≤ T e,cmd

f ≤ T̄ e,cmd
f , T e,cmd

r ≤ T e,cmd
r ≤ T̄ e,cmd

r , (18a)

−¯̇
δcmd
f ≤ δ̇cmd

f ≤ ¯̇
δcmd
f , 1−∆τ̄ ≤ τ̇ ≤ 1 + ∆τ̄ , 0 ≤ s. (18b)

Defining soft constraints as in (17) allows for penalizing in the cost function the L1
norm, i.e., rs |s(t)| = rs s(t) in (15) given that s(t) ≥ 0, which is an exact penalty
function and does not add nonlinearities [18].

The terminal constraints and the corresponding terminal cost can be designed to
ensure closed-loop stability properties as discussed in [1]. Instead, here we rely on
selecting a horizon long enough with respect to the system dynamics, which, under
reasonable assumptions on the NMPC value function and on the equilibrium being in
the interior of the feasible region of the OCP, ensures asymptotic stability and some
degrees of robustness to the closed-loop system [19].

3.2. Online NMPC Algorithm and Software Implementation

In order to solve (13) we transform the infinite dimensional OCP into a nonlinear
program (NLP) by control and state parameterization using direct multiple shoot-
ing [20]. We discretize in time using an integration scheme to simulate the differential
equations (11) on each of N shooting intervals that are defined by a grid of consec-
utive equidistant time points ti for i = 0, . . . , N , ti+1 − ti = T

N , and we enforce a
piecewise constant control u(t) = ui for t ∈ [ti, ti+1). The discrete-time dynamics
xi+1 = Fi(xi,ui) are defined for each shooting interval [ti, ti+1], by an explicit or
implicit integration formula [21]. Implicit integration schemes are typically preferred
because of improved accuracy and numerical stability properties.

We solve the NLP at each control time step by a tailored implementation of sequen-
tial quadratic programming (SQP) known as the real-time iterations (RTI) scheme [22]
using the open-source ACADO code generation tool [21]. RTI performs one SQP itera-
tion per control time step, and uses a continuation-based warm starting of the state
and control trajectories from one time step to the next. The stability of the resulting
closed-loop system can be guaranteed also in presence of inaccuracies and external
disturbances under reasonable assumptions [22]. RTI may not approximate well the
NLP if the problem is linearized far from a local minimum. However, in our view of
the autonomous driving system [23], the MPC tracks a trajectory generated by a mo-
tion planner to be a suitable reference for linearization, e.g., kinematically feasible and
constraint aware. Thus, RTI seems a suitable approach for this application. We use the
QP solver PRESAS [12,24], which applies block-structured factorization techniques with
low-rank updates to preconditioning of an iterative solver within a primal active-set
algorithm with tailored initialization methods. This results in a simple, efficient and
reliable QP solver suitable for embedded control hardware.
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To compensate [3] for a time delay Td due to vehicle network communication and
actuator interface at time t, we define x̂0 as equal to the predicted state value x̂(t+Td),
computed from the current state estimate x̂(t) and past input signals u(·), which
are stored in a buffer. Such time-delay compensation has been proven important for
maintaining both robustness and high control performance.

4. Particle Filter for Stiffness Estimation

In this section we present our method for real-time estimation of the tire stiffnesses,
which are subsequently used in Sec. 5 for selecting the tire parameters in (13) using a
library of tire models. From Fig. 2, (13), and hence its solution, depends on the tire
parameters in the Pacejka model through (13c), which includes (4). The tire-stiffness
estimator (i.e., the estimator of the initial slope of the tire-force curve in Fig. 1) is
based on a recently developed adaptive particle-filter approach. Here, we briefly outline
the formulation, see [11] for a complete discussion.

4.1. Estimation Model

The method employs the single-track vehicle model (1) and a linear approximation of
the front and rear tire forces,

F x ≈ Cxs,iλi, F y ≈ Cys,iαi, i ∈ {f, r}, (19)

where Cxs,i and Cys,i are the longitudinal and lateral stiffness for the front and rear

wheel, respectively. The slip ratios are defined as in (7), but unlike (6) the slip angles
are assumed to be small such that they can be approximated by

αf ≈ δf −
vY + lf ψ̇

vX
, αr ≈

lrψ̇ − vY

vX
. (20)

The small-angle approximations (20) are not necessary, but they simplify the estima-
tion problem and are valid when the tire forces remain in the linear region.

In (19) the stiffnesses are decomposed into a nominal part and an unknown part,

Cxs = Cxs,n + ∆Cxs , Cys = Cys,n + ∆Cys , (21)

where Cs,n is the nominal, known, value of the stiffness, for example, a priori deter-
mined on a nominal surface, and ∆Cs is a time-varying, unknown part. We include
the unknown stiffness components into the vector wk ∈ Rnw , which we model as ran-
dom process noise acting on the otherwise deterministic system. The noise term wk is
assumed Gaussian distributed according to wk ∼ N (Ck,Σk), where Ck and Σk are
the unknown, usually time varying, mean and covariance. Inserting (19)–(21) into (1)
and discretizing with sampling period Ts gives the discrete-time dynamics as

xk+1 = f(xk,uk) + g(xk,uk)wk, (22)

where x = [vX vY ψ̇]> is the vehicle state and u = [ωi,j δf ]>, i ∈ {f, r}, j ∈ {l, r} are
the inputs to the estimator.
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The tire stiffness parameters affect the vehicle state, which is only partially (and
indirectly) observed through the inertial sensors. Hence, to estimate the tire stiffness we
must also estimate the vehicle state. To this end, we are interested in estimating both
the state xk and the parameters Ck,Σk, being the mean and variance of the process
noise wk. One interpretation of the parameters is that the mean models the stiffness
variations based on the surface type, such as asphalt or snow, and the variance models
the uncertainty due to either variations on a surface, such as road unevenness, patches
of loose snow, road in mixed conditions, or other unmodeled effects. The estimator uses
the acceleration, aX , aY , and yaw-rate measurements ψ̇ as measurements, forming the
measurement vector yk = [aX aY ψ̇]> ∈ Rny , with ny = 3. Note that aX and aY can be
extracted from the right-hand sides of (1a) and (1b), and the last measurements is the
yaw rate. Automotive-grade inertial sensors usually have a slowly time-varying bias,
which must be modeled for any realistic implementation. We model the bias bk ∈ Rnb ,
nb = 3, of the inertial measurements as a random walk, which results in

yk = h(xk,uk) + bk + d(xk,uk)wk + ek, (23)

where the measurement noise is modeled as Gaussian noise with zero mean and co-
variance R, ek ∼ N (0,R).

Thus, the estimation problem consists of estimating the vehicle state xk and stiffness
parameters Ck, Σk using the estimation model (22) and (23). Note that because of
the inertial sensor measurements, the stiffness components enter both in the vehicle
model and the measurement model through wk, which implies that the estimation
model has a dependence between the process and measurement noise [11].

Remark 1. Because of the approximation (19), the tire-stiffness estimator per-
forms under the assumption of moderate steering angles and sufficiently small driv-
ing/braking torques. Thus, in the implementation the estimator is activated only when
the estimated slip angles are such that (20) holds within some predefined threshold.

4.2. Formulation of Joint State and Tire-Stiffness Estimation

The considered estimation problem is in general hard to solve for multiple reasons.
First, the estimation quality of the vehicle state affects the identification of the noise
statistics, and vice versa. Second, the measurements from the inertial sensors are
biased and significantly noisy. Third, the estimation model for our target application
shows dependence between the process and measurement noises. The result is a highly
non-Gaussian estimation problem.

Since both the dynamic model (22) and measurement model (23) include stochastic
disturbances, we formulate the problem in a Bayesian framework as a joint state and
parameter estimation problem, and use a previously developed computationally effi-
cient particle filter-based approach that accounts for the aforementioned bias and noise
dependence [11]. In a Bayesian framework, the joint state and tire-stiffness estimation
can be formulated as approximating the joint density

p(bk,Ck,Σk,x0:k|y0:k), (24)

i.e., the posterior density function of the variables of interest given the measurement
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history y0:k = {y0, . . . ,yk}. We decompose (24) as

p(bk,Ck,Σk,x0:k|y0:k) = p(bk|Ck,Σk,x0:k,y0:k)p(Ck,Σk|x0:k,y0:k)p(x0:k|y0:k).
(25)

The three densities at the right-hand side of (25) are estimated recursively. The key
idea is that given the state trajectory, we can update the sufficient statistics of the
unknown tire-stiffness parameters. Given the parameters and the state trajectory, the
bias estimation consists of applying a Kalman filter conditioned on the state trajectory
and tire-stiffness parameters (cf. [11]). From the particles, we extract estimates of both
vehicle state xk, stiffness estimate Ck, and associated covariance Σk.

5. Adaptation of NMPC via Particle Filter and Model Library

Our approach exploits a pre-stored library of M sets {θj}Mj=1 of predetermined tire
parameters defining the tire model (4), which are used in the NMPC, see Fig. 2. Such
tire parameters can be determined using a testbench or from field tests. Determining
the tire parameters for every combination of tire and vehicle and then during runtime
distinguishing between tire parameters for different setups would be ideal, since in
general there are several different parameter sets for the same surface that lead to
similar tire-force curves. However, this is intractable with the sensor setup in current
production vehicles. A further complicating factor is that the correspondence between
the tire stiffness and the peak friction is not one-to-one, as there are experimental data
indicating that wet asphalt can have a larger initial slope but a smaller peak friction
coefficient, due to that the peak is obtained at smaller slip values [8].

However, for our purposes where the final objective is to maintain good reference-
tracking performance, the key element is to have a nominal parameter set that distin-
guishes between surfaces. The tire stiffness can be used for such a differentiation [8,9].
For instance, the optimal vehicle behavior can fundamentally differ between snow and
asphalt, but typically it is less important whether the asphalt is dry or wet [13,15].
Thus, loosely speaking, we can use the stiffness to differentiate among the pre-stored
models, such that we capture the tire behavior precisely enough. Then, we can rely
on the, appropriately calibrated, feedback control system to provide robustness to the
remaining parameter uncertainties caused by different vehicle and tire combinations.

We use the estimates Ĉx,ys of the tire stiffness in the following way. From a lineariza-
tion of the Pacejka tire model (4), we get for the lateral tire force

F y ≈ µyiF
z
i C

y
i B

y
i αi, (26)

and similarly for the longitudinal direction. Ignoring higher order terms, i.e., set-
ting (19) equal to (26), results in

µyiF
z
i C

y
i B

y
i = Ĉys,i. (27)

The vertical force in (27) is given by the vehicle parameters and the right-hand side is
given by the estimated value from the stiffness estimator. To select the tire parameter
set θj to be used in the NMPC, we determine the set of parameters that fits best to
the estimated stiffness value. A straightforward optimization criterion that minimize
the difference between the estimated tire stiffness and stiffness computed from the
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library of tire parameters is

θ∗ = arg min
j∈{1,M}

|µyi,jF
z
i C

y
i,jB

y
i,j − Ĉ

y
s,i|. (28)

However, (28) does not take into account the uncertainty of the estimate and would
also lead to a symmetry when choosing between two surfaces. Instead, in terms of
vehicle stability, it is typically worse to overestimate the available friction than to
underestimate it [7]. In determining the parameter set θ∗, we therefore propose two
alternative approaches that account for the desired asymmetry in determining the tire
parameters and incorporate the uncertainty of the estimates.

In the first approach, we order the parameter sets with increasing peak friction
coefficient, starting with the parameters corresponding to the lowest-friction surface,
θ1. We use the normalized residual,

εk = Σ
−1/2
k (µyi,1F

z
i C

y
i,1B

y
i,1 − Ĉ

y
s,i) ∼ N (0, I) (29)

and the test statistic

T (µyi,1F
z
i C

y
i,1B

y
i,1) =

(µyi,1F
z
i C

y
i,1B

y
i,1 − Ĉ

y
s,i)

2

Σi,k
, (30)

where Σi,k is the ith diagonal element of Σk corresponding to the front or rear lateral
stiffness. Then, approximately [25],

T (µyi,1F
z
i C

y
i,1B

y
i,1) ∼ χ2

η(1) (31)

where χ2
η(1) is the Chi-squared distribution with one degree of freedom and η is the

significance level. We choose the parameters θ1 corresponding to the lowest-friction
surface as the parameters if

T (µyi,1F
z
i C

y
i,1B

y
i,1) > χ2

η(1). (32)

Otherwise, we proceed for increasing peak friction until a parameter set is found.
The selection (32) based on outlier detection will always choose the parameter set

corresponding to the lower-friction surface. While this is good from a vehicle-stability
control perspective, it may be conservative. An approach that is not so heavily biased
but still accounts for the uncertainty in the stiffness estimation is to maximize the
likelihood. This results in the selection criteria

θ∗ = arg max
j∈{1,M}

N (µyi,jF
z
i C

y
i,jB

y
i,j |Ck,Σk). (33)

Algorithm 1 summarizes the proposed control strategy.

Remark 2. We have focused on the lateral forces for determining the parameter
set. The case for the longitudinal forces is analogous. We have focused on the lateral
vehicle dynamics, hence the parameters associated with the lateral forces, because
usually these are the most critical and challenging for vehicle stability and ADAS.

13



Algorithm 1 Proposed NMPC with Friction Adaptation

1: for k ← 0 to T do
2: Estimate state vector x̂k, tire stiffness mean Ĉk and covariance Σk using

the approach in [11].
3: Determine parameter set θ∗ using (28), (32), or (33).
4: Solve NMPC problem (13) using parameter set θ∗ and state estimate x̂k.
5: end for

6. Friction-Adaptive NMPC Closed-Loop Simulation Results

Next, we validate the proposed method of friction-adaptive NMPC for tracking con-
trol in simulation, in a real-time computing environment, and in preliminary vehicle
experiments. For our simulation studies, we consider a sequence of double lane-change
maneuvers similar to the standardized ISO 3888 − 2 double lane-change maneuver,
commonly used in vehicle stability assessment (also known as Moose Test). Unlike
some previous work [26], the computational timing results are obtained in a dSPACE
MicroAutoBox-II equipped IBM PPC 900 MHz processor and with 16 MB main mem-
ory, which closely resemble the capabilities of current and near future embedded mi-
crocontrollers for automotive applications.
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Figure 3. Stiffness estimates (red), standard deviation (green), and true stiffness (black) for multiple double

lane-change maneuvers (upper two rows, front and rear, respectively) and true surface changes (lowest row).
The estimates are normalized to the largest estimated value due to confidentiality. The surface detection time

is less than 0.5 s. Left: steering inputs are small enough for the linear-slope assumption to hold. Right: The
linear-slope assumption is violated at times (see Fig. 4), which results in slightly worse performance.

The vehicle parameters are from a mid-size SUV, and the tire parameters for the
different surfaces are taken from [15]. The NMPC prediction model is the nonlinear
single-track model (1) with the Pacejka tire model (4) and the FE (5) modeling the
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combined slip, and the stiffness estimator uses a linear single-track model with the
linear force approximation (19). The controller is simulated in closed-loop with a non-
linear double-track vehicle dynamics model [13,27] that accounts for roll and pitch
dynamics, including load transfer across the four wheels. To emulate more realistic
conditions, we add measurement noise to the sensors and a bias to the steering actu-
ator angle, which is estimated by an extended Kalman filter (see [23]). For simplicity,
the longitudinal velocity reference is set to 10 m/s in all simulations and only the
adaptation of the lateral tire force function is considered. Due to the nature of the

simulations, only the front wheel angle δcmd
f and the wheel engine torque T e,cmd

f are

used as control inputs, while the brake torques on front and rear wheels, T bi , i ∈ {f, r},
are not used in these simulation results.

The tire-stiffness estimator uses N = 100 particles and the inertial sensor measure-
ment noise values are taken from those of a low-cost inertial measurement unit typical
for automotive applications. The initial estimates and the different tuning parameters
in the estimator are fairly generic, and the same as in [11].

6.1. Simulation of Multiple Road Surface Changes

Fig. 3 shows the tire-stiffness estimates for a scenario of multiple double lane-change
maneuvers at small steering amplitudes such that the slip angles are in the linear
region (left column) and excite the nonlinear region (right column), respectively. At
first, the vehicle drives on asphalt. At t = 70 s, the surface abruptly changes to snow,
which is followed by a surface change back to asphalt at t = 140 s. When driving
in the linear region of the tire-force curve (left figure), the stiffness estimator finds
the correct stiffness values with high certainty, indicated by the decreasing standard
deviations in green.

The stiffness estimates for more aggressive steering maneuvers such that the tire
forces reach the nonlinear region, as shown in the right column of Fig. 3, the surface
changes are accurately detected, even though the actual stiffness estimates are slightly
biased because the forces enter the nonlinear region. The bias can be suppressed, or at
least mitigated, by setting the deactivation threshold for the estimator tighter. In any
case, the detection of the road surface conditions appears to be relatively insensitive to
small errors in the stiffness estimates. The corresponding force-slip diagrams showing
the resulting normalized tire forces are in Fig. 4.
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Figure 4. Resulting normalized tire forces for the friction-adaptive NMPC closed-loop simulation results with

multiple double lane-change maneuvers corresponding to the right column in Fig. 3.
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The closed-loop simulation results are shown in Fig. 5, which demonstrate that the
friction-adaptive NMPC scheme handles the multiple double lane-change maneuvers
with relative ease, and that the trajectory is tracked well.
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Figure 5. Friction-adaptive NMPC closed-loop simulation results at 10 m/s for multiple double lane-change

maneuvers with surface changes, corresponding to the stiffness estimates in the right column in Fig. 3. The

upper-most plot shows the lateral position. The steering constraints for the front wheel angle are shown as
gray horizontal lines. The lowest-right plot shows the road surface through the simulation time.

6.2. Comparison with Non-adaptive NMPC

To illustrate the importance of knowing the road conditions, Fig. 6 displays the re-
sulting normalized tire forces in the simulations with non-adaptive NMPC. Both the
front and rear tire forces enter significantly inside the tire saturation region, which is
sharply different from the friction-adaptive NMPC results in Fig. 4.

6.3. Robustness to Tire-Parameter Uncertainty

From Fig. 6, it is obvious that knowing the road conditions is crucial for the NMPC
to work reliably. To demonstrate the robustness of the friction-adaptive NMPC to the
predetermined parameter sets, we execute four closed-loop simulations where in each
we perturb the underlying parameters in the Pacejka tire model (4). The involved
parameters are perturbed by drawing from a uniform distribution with variation of
±30% around the correct parameter values. Fig. 7 shows the results for the lateral
position and rear left slip angle.

Comparing with the results in Fig. 5 where the tire parameters are known, the
tracking performance is slightly worse for some of the simulations. However, the vehicle
maintains stability in all of the simulations, which shows that the key to achieve
vehicle stability is not the exact knowledge of the tire parameters, but rather to have
reasonable estimates of them. In Fig. 7 , the parameters corresponding to the blue
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Figure 6. Resulting normalized tire forces for the non-adaptive NMPC that assumes asphalt parameter values
in closed-loop simulation results with multiple double lane-change maneuvers.

curve are more than 20% from the true values on snow in the friction coefficient µy

and By, for both the front and rear wheels, which is an overestimate of the errors one
would expect from an informed estimation procedure [8,9].
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Figure 7. Friction-adaptive NMPC closed-loop simulation results at 10 m/s for multiple double lane-change

maneuvers with surface changes, where we have perturbed the tire parameters in (4) used in the NMPC. The
four different tire parameter sets are drawn from a uniform distribution around the correct values, with a

variation of ±30%.

6.4. Real-Time Feasibility for Embedded Implementation

Finally, we assess the real-time computational feasibility of the proposed method. In
Table 1, we show the closed-loop computation times of the friction-adaptive NMPC
on a dSPACE MicroAutoBox-II rapid prototyping unit. The table includes the worst-
case computation time for different values of the control horizon length Nc and the
number of particles NPF in the estimator. From these results, the computation time
for both the NMPC and the tire-stiffness estimator scales linearly and the total time
remains well below the desired sampling time of 50 ms imposed by the considered
vehicle interface. Each QP has been solved until convergence with a tolerance of 10−8

in the PRESAS solver [12].

6.5. Preliminary Results of Experimental Validation

While an exhaustive experimental assessment of the friction-adaptive NMPC con-
troller, including surface transitions, requires special proving grounds that were not

17



Nc = 20, NPF = 500 Nc = 30, NPF = 750

NMPC – QP preparation 7.6 ms 11.3 ms
NMPC – PRESAS solver 6.2 ms 9.3 ms
Particle-filter estimator 4.7 ms 7.1 ms

Total turnaround time 21.1 ms 30.8 ms < 50 ms

Table 1. Worst-case timing results (ms) for closed-loop friction-adaptive NMPC simulations using different
values for the control horizon Nc and number of particles NPF on dSPACE MicroAutoBox-II.

yet available to us, we have been able to obtain some preliminary experimental results
on a snow-covered test track in Hokkaido, Japan. We consider tracking with a tar-
get speed of 40km/h the centerlane of an approximately rectangular test track (450m
×50m), which includes a a sequence of corners emulating the ISO 3888 − 2 double lane
change test. The vehicle used for testing is the same from which the simulation model
for the closed-loop simulations of Sections 6.1–6.3 was derived, and the computing
platform is the same rapid prototyping unit used in Section 6.4.
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Figure 8. Experimental results for a double lane change on snow. First row: Trajectories for the center lane

reference (black, dash), the NMPC controller with asphalt tire model (red, dot), and for the friction-adaptive
NMPC controller that has learned the snow surface (blue, solid). Second row: Time histories of the tracking

error (left) and the steering wheel angle (SWA, right), for the NMPC with asphalt tire model (red, dot), and
the friction-adaptive NMPC controller that has learned the surface (blue, solid). Third row: Time histories
of the vehicle velocity (left) and longitudinal acceleration (right), for the NMPC controller with asphalt tire

model (red, dot), and the friction-adaptive NMPC controller that has learned the surface (blue, solid).

The experimental results of the test are shown in Fig. 8, focusing on the corners
emulating a double lane change turn. As previously, we have compared the results of a
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non-adaptive NMPC controller with an asphalt-type tire model, against the friction-
adaptive NMPC control results. Due to running on the snow-covered test track, the
tire model is learned rapidly. When the vehicle arrives at the corners emulating a
double lane change turn, the model for snow is already in use.

The trajectories are shown in the first row in Fig. 8 for the standard NMPC based
on an asphalt-type tire model, for the friction-adaptive NMPC, and the center lane
reference trajectory that is generated from the track map for the target velocity of
40km/h. While the NMPC is generally robust even when the tire model is incorrect,
due to its feedback action, it is evident that when the prediction is based on a tire
model for asphalt, the controller tries to command large steering inputs that would
be very effective on asphalt to provide high performance tracking. On the other hand,
such steering inputs are excessively large for the snow surface, as they cause the tires
to enter deeply into the saturation region. As a consequence, the tracking error (first
column, second row in Fig. 8) grows large and eventually the controller needs to
sensibly reduce the speed to recover the tracking performance (first column, third row
in Fig. 8). Instead, when the tire model for snow has been learned, the controller
is aware of the limitations imposed by the surface and hence produces more limited
steering actions that avoid excessive tire saturation and as a consequence, this reduces
the peak lateral tracking error maxt |eY (t)| = maxt |pYref(t)−pY(t)| by more than 50%.

7. Conclusions and Future Outlook

This paper presented an NMPC for vehicle trajectory tracking that adapts to the
road surface. To avoid requiring data from the unstable region of the vehicle dynamics
to be collected when the prediction model may still be incorrect model, we combine
data-based adaptation with pre-computed models. Estimation of the initial slope of
the tire-force curve (i.e., the linear region) is used to select the full tire force curve
parameters from a library of models, then used in NMPC.

While the method assumes a set of tire parameters for the surfaces of interest, it is
not necessary to achieve the exact tire parameters for the particular vehicle setup cur-
rently employed. Rather, the tire model should captures the important characteristics,
such as the peak friction coefficient, see, e.g., Fig. 7.

The simulation results demonstrated the validity of the approach, and also the po-
tential vehicle instability if the tire parameters are not adapted to the changing road
conditions. We discussed timing results using a dSPACE MicroAutoBox-II, which in-
dicate that the presented method may be suitable for implementation on automotive
embedded platforms. Finally, we presented preliminary results of an in-vehicle exper-
imental validation on a snow-covered test track.

References

[1] Rawlings J, Mayne D. Model predictive control: Theory and design. Madison, WI: Nob
Hill Publishing, LLC; 2002.

[2] Hrovat D, Di Cairano S, Tseng H, et al. The development of model predictive control in
automotive industry: A survey. In: IEEE Conf. Control Applications; 2012. p. 295–302.

[3] Di Cairano S, Kolmanovsky IV. Real-time optimization and model predictive control for
aerospace and automotive applications. In: Amer. Control Conf.; 2018. p. 2392–2409.

[4] Falcone P, Borrelli F, Asgari J, et al. Predictive active steering control for autonomous
vehicle systems. IEEE Trans Control Sys Technology. 2007;15(3):566–580.

19



[5] Di Cairano S, Tseng H, Bernardini D, et al. Vehicle yaw stability control by coordinated
active front steering and differential braking in the tire sideslip angles domain. IEEE
Trans Control Sys Technology. 2013;21(4):1236–1248.
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