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Abstract—In this paper, we address the problem of jointly
determining the energy bid submitted to the wholesale electricity
market (WEM) and the energy price charged in the retailed
electricity market (REM) for a load serving entity (LSE). The
joint bidding and pricing problem is formulated as a Markov
decision process (MDP) with continuous state and action spaces,
in which the energy bid and the energy price are two actions
that share a common objective. We apply the deep deterministic
policy gradient (DDPG) algorithm to solve this MDP for the
optimal bidding and pricing policies. Yet, the DDPG algorithm
typically requires a significant number of state transition samples,
which is costly in this application. To this end, we apply neural
networks to learn dynamical bid and price response functions
from historical data to model the WEM and the collective
behavior of the EUCs, respectively. These response functions
explicitly capture the inter-temporal correlations of the WEM
clearing results and the EUC responses, and can be utilized
to generate state transition samples without any cost. More
importantly, the response functions also inform the choice of
states in the MDP formulation. Numerical simulations illustrated
the effectiveness of the proposed methodology.

Index Terms—electricity market, bidding, pricing, load serving
entity, demand response, deep reinforcement learning.

I. INTRODUCTION

N a restructured power system industry, a load serving

entity (LSE) needs to submit bids for electricity/energy in a
wholesale electricity market (WEM), which is operated by an
independent system operator (ISO), so as to meet the demand
from its end use customers (EUCs). Conventionally, the LSE
charges the EUCs for electricity/energy a fixed tariff that is
regulated by the government. Therefore, the decision making
process of the LSE involves only the bidding problem—the
determination of the energy bids, which will typically rely on
the forecast of the relatively inflexible EUC demand. However,
due to the rapid development of smart grid technologies,
demand-side management becomes feasible through demand
response programs such as real-time pricing [1], [2]. An LSE
may determine a real-time energy price in the retail electricity
market (REM) it operates to incentivize the EUCs changing
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their energy consumption behaviors in a way that benefits the
LSE. In this context, in addition to the bidding problem, the
LSE is also faced with the pricing problem—the determination
of the energy price that is charged to the EUCs [3].

Existing works are mostly concerned with either the bid-
ding/offering problem [4]—[7] or the pricing problem [8]-[12].
In regards of the bidding problem, optimal bidding functions
are developed for price-sensitive and price-insensitive demands
in [5]. A genetic algorithm based method is proposed for
finding the optimal bidding strategy in a two-settlement energy
market in [6]. The strategic bidding problem of LSEs has
also been formulated as a bi-level programing problem in [7],
where the upper level problem is to maximize the LSE’s net
revenue and the lower level problem is the ISO’s economic
dispatch. For the pricing problem, optimization algorithms
(see, e.g., [8]-[10]) have been applied to dynamically price
the energy in the REM. Similar to optimization based bidding
algorithms, optimization based pricing algorithms typically
resort to bi-level programing techniques and thus require
specific models of the demand-side resources. For example,
constraints in the lower level problem need to be linear in
order to transform the bi-level programing problem into a
solvable mixed integer linear programing (MILP) problem.
Moreover, all model parameters need to be known in order to
solve the optimization problem, which may be impractical in
reality. The Q-learning algorithm—a mode-free reinforcement
learning (RL) algorithm—has also been applied to solving
the pricing problem [11]. While it does not require model
parameters and can handle nonlinear constraints in the EUCs,
discretization of the state and action spaces are required,
which may lead to a problem referred to as the “curse of
dimensionality” [13] and thus limit its applicability.

The bidding problem and the pricing problem are inherently
coupled, since the energy purchased in the WEM and that sold
in the REM must balance, and the profit earned by the LSE
is dependent on the results in both markets. Therefore, it is
indeed more desirable to solve the bidding problem and the
pricing problem jointly. Yet, methodologies that solve the joint
bidding and pricing problem have been rarely studied. The
few existing works on this topic such as [3] model the joint
bidding and pricing problem as a bi-level programing problem,
which is solved using MILP techniques. However, existing
solutions typically assume all market participants are myopic,
the parameters of all models, including all market participants
in the WEM and all EUCs in the REM, are completely
known to the LSE, and more importantly, all the models
are linear. These assumptions, however, are very constraining



and impractical. Therefore, effective methodologies that can
address the joint bidding and pricing problem in a more
general setting, specifically, in a setting in which parameters
of the potentially nonlinear model are not known, the states
and actions are continuous, and the LSE may be far-sighted,
are still to be investigated.

To address the aforementioned issues, we formulate the joint
bidding and pricing problem as a Markov decision process
(MDP), in which the energy bid and the energy price are two
actions that share a common objective. To solve this MDP
without the necessity to knowing the WEM and EUC models,
the deep deterministic policy gradient (DDPG) algorithm, a
policy-based deep RL (DRL) algorithm, is applied to learn
the bidding and pricing policies, which determine the optimal
action from the state. We note that RL/DRL has proven to
be successful in many tasks such as playing games [14],
control [15], robotic manipulation [16], as well as many others
[17]. RL/DRL algorithms have also been widely applied in
power systems, such as generation offer construction [18],
demand response [19], [20], and voltage control [21], [22].
We refer interested readers to [13] for a comprehensive review
on existing and potential applications of RL/DRL in power
systems.

DRL algorithms typically require a large number of state
transition samples. Yet, it is costly to obtain such samples
from the actual environment. Moreover, it is also infeasible
to generate samples from models since the models of other
market participants in the WEM and all EUCs in the REM are
not known in advance. To this end, neural networks are applied
to learn a bid response function and a price response function
from historical data to model the WEM and the collective
behavior of the EUCs, respectively, from the perspective of the
LSE. These response functions can explicitly capture the inter-
temporal correlations of the WEM clearing results and the
EUC responses, and can be utilized to generate state transition
samples without any cost. More importantly, they also inform
the choice of the states in the MDP formulation.

To the best of our knowledge, this is the first paper that
applies DRL to solve the joint bidding and pricing problem of
an LSE. The major contributions of this paper lie specifically
in the following three aspects:

1) the formulation of the joint bidding and pricing problem
as an MDP, which allows the consideration of an accu-
mulative profit of the LSE in the long-term;

2) the development of dynamical bid and price response
functions that model the WEM and the REM using histor-
ical data, which captures the inter-temporal correlations
and informs the choice of states in the MDP formulation;

3) the application of a state-of-the-art DRL algorithm—the
DDPG algorithm—to solve the MDP while taking into
account its structural characteristics.

The remainder of this paper is organized as follows. Section
IT introduces the hierarchical market model. Section III pro-
poses the bid and price response functions, defines the bidding
and pricing policies, and formulates the joint bidding and
pricing problem as an MDP. Learning algorithms for response
functions and the bidding and pricing policies are presented in
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Fig. 1. Timeline of actions in the real-time market for interval ¢.

Section IV, and the application of the proposed methodology
is illustrated in Section V. Section VI concludes the paper.

II. HIERARCHICAL MARKET MODEL

In this section, we present a hierarchical market model that
consists of a WEM operated by an ISO, a REM managed by
a LSE, and a set of EUCs. Throughout this paper, all vectors
and matrices are in bold and italics. A subscript ¢ indicates
the value of a variable at time interval ¢.

A. Overview

Assume one day is decomposed into 7' time intervals
indexed by the elements in the set 7 = {0,--- , 7 — 1}. Let
t index the time intervals; then ¢t mod T' € T, where mod
denotes the modulo operation. The problem setting considered
in this paper is described as follows. Priori to time interval ¢,
each market participants, including the sellers and buyers, need
to submit energy offers/bids for time interval ¢. Then, a WEM
is cleared to yield a wholesale energy price, as well as the
energy sales and purchases that are successfully cleared for
each seller and buyer, respectively. In the meantime, the LSE,
which is a buyer in the WEM, also determines a retail energy
price (simply referred to as the price) for time interval ¢, at
which it resells the energy to its customers, i.e., the EUCs,
in the REM. During time interval ¢, the EUCs respond to the
price signal by adjusting their energy consumptions. The LSE
needs to make payments to the ISO for the energy consumed
by the EUCs; meanwhile, it also collect payments from the
EUCs. The total amount of profit resulted from energy trading
in these two markets can be evaluated after time interval ¢. The
sequence of actions taken by different parties in the real-time
market is illustrated in Fig. 1. This process is repeated for all
the time intervals.

B. Wholesale Market Model

Let G = {g1, - ,9c} denote the set of the sellers, and
B = {b1,--- ,bp} the set of buyers. Each seller g € G submits
an offer, denoted by f/(-), which specifies the minimum price
at which it is willing to sell energy during time interval t.
Specifically, f7(qf) is the minimum price at which seller g is
willing to sell energy during time interval ¢ with a quantity
of ¢/. Similarly, each buyer b € B submits a bid, denoted by
f2(-), that specifies the maximum price at which it is willing
to buy energy during time interval t. Specifically, f2(¢?) is
the maximum price at which a buyer is willing to buy energy
during time interval ¢ with a quantity of ¢?.



Then, assuming the bulk power system is lossless and
congestion-free, the ISO clears the WEM by solving the
following social welfare maximization problem:

maxumzeZ/ ft )dg — Z/ 2 (q)dq, (1a)
R’}

¢ beB €g
qt 5" B g
subject to
Yt => af =0 N, (1b)
beB 9€g
(qfl7"'7qtgca(IfI7”'7QfB)€Qt7 (IC)

where (1b) is the power balance equation, \; is the dual
variable associated with constraint (1b), Q; is the feasible set
of the decision variables, which may depend on the market
clearing results in the previous time interval. For convenience,
denote the total cleared energy sales/purchases by ¢, i.e.,
Ut = pen q; = deg qi.

The solution to (1) gives cleared energy sales and purchases,
as well as the wholesale energy price for each market par-
ticipant. In a uniform pricing market, all market participants
receive a uniform price that equals to A\;. When the WEM is
competitive, a single market participant typically does not have
the capability to influence the clearing price and the chances
that it is the marginal unit are low. In such a setting, given
At, the cleared energy purchase for the buyer b when it is
non-marginal, can be computed as follows:

¢ = arg max \fb by A, - )

C. Retail Market Model

In the WEM, the LSE participates as a buyer that purchases
energy through bidding. Without loss of generality, assume the
LSE under consideration is buyer b in the WEM. The LSE
resells the purchased energy to a set of EUCs in the REM
and charges them at a typically regulated price that it needs
to determine. Let 14 denote the price at time interval ¢, and ¢?
the energy purchased from the WEM.

Let C = {c1, -+ ,cc} denote the set of the EUCs in the
REM served by this LSE. For EUC ¢ € C, it will respond
to the price v; by adjusting its energy consumption, denoted
by df. Denote the aggregate energy consumption of all EUCs
measured at the substation during time interval ¢ by d,, i.e.,
di = Y .ccds. Then, the objective of the LSE considered
here is to maximize its profit earned from time interval ¢ and
onwards, subject to the energy balance constraint, which can
be mathematically express as follows:
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where E denotes expectation operation, y € [0, 1) is a discount
factor that discounts the future profit, ¢ (-, -) is a non-negative
scalar function, ¥ and 7 are the minimum and maximum
prices, respectively. Note that A, and ¢¥ are determined by
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the WEM through(1), while d. is determined by the EUCs
through (4) that is to be detailed in Section II-D. The objective
consists of two components, of which the first is the profit
earned from energy trading by the LSE, and the second is the
cost incurred when the aggregate energy consumption deviates
from the energy purchase. Note that the actual aggregate
energy consumption d, is used when computing both the
payment made to the WEM and that collected from the EUCs.

We emphasize that this objective function is general enough
to reflect payment structure in various market schemes since
there is no constraint on the form of the function ¢. In
addition, while the objective of the LSE under consideration
is maximizing its profit, the methodology proposed in this
paper also extends directly to LSEs with other objectives, for
example, LSEs that aim to maximize the overall benefit of all
EUCs.

D. End Use Customer Model

At the beginning of each time interval ¢, EUC ¢, ¢ € C,
receives a price v, from the LSE, it will then optimize its
energy consumption so as to maximize its overall benefit.
We next present a generic EUC model that is agnostic to the
underlying components. Let ef denote the energy need of EUC
c at time interval ¢. Similar concepts are adopted in works such
as [9], [11]. A myopic EUC finds its optimal action via solving
the following utility maximization problem:

C C 4
mz;gel%lclze BE(ef,dy) — wds, (4a)
subject to
et+1 = e; +n;(ef —df) + &, (4b)

where (3°(-) is the benefit function, which gives the benefit
of the EUC at certain energy need and energy consumption,

¢ €10, 1] is the backlog rate that represents the percentage of
unmet energy need that is carried over to the next time interval,
&7 is a random variable that models that newly generated
incremental energy need, Dy is the feasible set of the energy
consumption.

III. PROBLEM FORMULATION

In this section, we first introduce dynamical bid and price
response functions, followed by the bidding and pricing
policies. Then, we formulate the joint bidding and pricing
problem faced by the LSE as an MDP. Figure 2 illustrates
the interaction between the LSE, the ISO, and the EUCs.

A. Bid and Price Response Functions

From the perspective of the LSE, it has to determine a bid
fP—the bidding problem, as well as a price v—the pricing
problem, for time interval ¢. Assume ft is characterized by
a parameter vector wy. Let {\,, ¢}~ n1 denote the set of
WEM clearing results from time interval ¢ —n; to ¢t — 1. Then,
pursuing the a similar idea as in our earlier work in [23], we
model the interaction between the LSE and the WEM defined
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Fig. 2. Interaction between the ISO, the LSE, and the EUCs.

through (1) using a mp-order bid response function, denoted
by 9(+), as follows:

(Aty%) = ¢({/\T7QT

where (t mod T') is included to model the time dependence.
The cleared energy purchase can be computed using (2). In
the special case when n; = 0, the WEM clearing results
only depend on the bid from the LSE at the current time
interval. For a perfectly competitive WEM, w; has negligible
impacts on the clearing results, and (5) essentially models the
dynamics of the clearing results. From the perspective of the
LSE, the WEM clearing results will evolve to Ay, g, qf from
previous WEM clearing results, given its bid w;. The impacts
from other market participants’ actions are included in this bid
response function. Therefore, when n; is large enough, the n-
order bid response function can well capture the dynamics in
the WEM.

In the meantime, the LSE may only have information on
the aggregate energy consumption d; in real time, rather than
complete parameters in (4). Therefore, instead of adopting the
complete EUC model in (4), we use a ny-order price response
function, denoted by ¢(-), to characterize the collective be-
havior of all EUCs defined through the set of problems in (4),
as follows:

t—1
t—nq

wi, t mod T), (5)

di = p({d,, VT}EZ,}m,I/t, t mod T). (6)

In the special case when ny = 0, the aggregate EUC demand
only depends on the price at the current time interval. The
core idea behind the price response function is similar to that
of the bid response function. Compared to the complete WEM
model and EUC models, the response functions are easier to
learn from the data that are available to the LSE.

B. Bidding and Pricing Policies

The objective of the joint bidding and pricing problem to
be solved by the LSE is to determine the bid and the price
based on available information. As discussed earlier, prior
to time interval ¢, the information related to the WEM that
is available to the LSE includes w,, A;, ¢-, V7 < t — 1.
In the meantime, the information related to the REM that
is available to the LSE includes v,, d,, V7 < t — 1. Let
i1 = {wr, A\, ¢, vr,dr, Y7 < ¢ — 1} denote the set of

information available to the LSE before the WEM for time
interval t is cleared. Then, the joint bidding and pricing
problem for time interval ¢ is to determine the bid w; and
the price v, from Z;_;. The bidding problem and the pricing
problem are inherently coupled, and thus need to be considered
jointly. While it is feasible to define a joint bidding and pricing
policy that maps Z;_; to w, and v, yet, we will show next that
in a competitive uniform pricing market, it is more desirable to
define a bidding policy and a pricing policy separately since
this allows more efficient utilization of the information for
decision-making.

In a uniform pricing market, the LSE’s bid will get cleared
as long as its bid price is no smaller than \;. Meanwhile, to
minimize the cost incurred due to the mismatch of the energy
purchase and aggregate energy consumption, it is indeed
desirable to bid for the amount of energy that equals to the
aggregate energy consumption. In fact, when J\; is not affected
by w;, which is the case in a competitive uniform pricing
market, for any v;, the optimal bid w; that maximizes the
profit defined in (3) is the one that gives q? = d.. Essentially,
we only need to find the optimal price v; for the REM, and
then construct the bid from v;.

Define a deterministic pricing policy, denoted by =(:), as
the following function that maps Z,_; to the price v;:

Vy = W(It_l). (7)

Also, define a deterministic bidding policy, denoted by u(-),
as the following function that maps Z;_; and 1, to a bid w;:

wi = p(Zi—1,14). ¥

Assume the bid w; consists of two components, a bid price w?
in $/MWh and a bid quantity w? in MWh. Then, the optimal
bidding policy wp* is such that w! is set to v and w{ is set
to the estimated aggregate energy consumption obtained using
the price response function . Therefore, there is no additional
parameter in g that needs to be learned beyond those in .

C. Markov Decision Process Formulation

We next formulate the joint bidding and pricing problem
as an MDP. An MDP consists of a state space, an action
space, a reward function, and a transition probability function
that satisfies the Markov property [24], i.e., given the current
state and action, the next state is independent of all states and
actions in the past.

Specifically, in the joint bidding and pricing prob-
lem, define the state at time interval ¢ to be s; =
({A . ar Y2h,  {dr, v 121, t mod T). Define the action for
time interval ¢ to be a; = v;. As discussed in the previous
section, w; can be constructed from 1, through a set of
deterministic procedures. Both the state and action spaces are
continuous. Given s; and a;, syy1 is determined through (5)
and (6). Therefore, the Markov property is satisfied. However,
the transition probability function is determined by all the
market participants in the WEM as well all EUCs in the REM,
and is unknown to the LSE.

Then, the pricing policy can equivalently become

Ve = 71'(8,5), (9)



and the bidding policy can be equivalently written as:

wy = p(se,vy). (10)

The objective of the joint bidding and pricing problem is to
maximize the profit of the LSE; therefore, we define the reward
for time interval ¢ to be the profit earned by the LSE as follows:

re = (v — M)de — de(dy, q). (11)

The cumulative discounted reward from time interval ¢ and
onwards, denoted by R; and referred to as the return, is Ry =
> A"y, where v € [0, 1) is a discount factor. The action
value function, also referred to as the Q function, under pricing
policy 7 and bidding policy g , at action a and state s, denoted
by Q™*(s,a), is the expected return defined as

Q™ (8¢, a:) = E[Ry|st, a;m, p] -
The Q function under optimal pricing policy 7* and optimal
bidding policy p*, denoted by Q*(-,-), satisfies the Bellman
optimality equation:
@ (100 =Bl +7 [ P{sat]si,ar) maxqQ(si-1.0)
S a
(13)

(12)

where P {s;,1]st,a:} is the probability that the state transit
into s;4; conditioning on sy, a;.

Since p* does not need to be learned once we have ¢, the
joint bidding and pricing problem essentially becomes finding
« that maximize the following performance function [25]:

J(m) = E[Ry;m, '], (14)

which gives the expected return under given bidding and
pricing policies. For ease of notation, we write Q™ (-, -)
simply as Q(-, -). The MDP problem can be solved leveraging
a RL algorithm be detailed in Section IV.

We emphasize that although learning a joint bidding and
pricing policy is reduced to learning a pricing policy, this prob-
lem is different from a pricing problem alone in the following
aspects. First of all, the bidding problem and the pricing prob-
lem are addressed simultaneously, and their mutual impacts are
implicitly captured in the proposed formulation. In addition,
the bidding policy is constructed from the pricing policy 7 and
the price response function , which are important components
in the proposed methodology.

IV. LEARNING ALGORITHMS

In this section, we first present learning methods for the
response functions. Particularly, the optimal bidding policy is
derived from the bid response function. Then, we apply the
DDPG algorithm to finding the optimal pricing policy.

A. Response Function Learning

In RL algorithms, transitions (s, a,,r;, Sr+1) are critical
for learning a good policy. Typically, a large number of
transition samples are needed in order to learn a good policy.
One approach to obtain the transitions is to sample from the
actual environment online, i.e., to get samples from directly
interacting with the ISO and the EUC:s, till adequate samples

are acquired. This approach, however, does not utilize the
samples in an efficient manner. In addition, this may incur
significant cost for the LSE during action exploration.

Alternatively, we can learn the bid response function 1 and
the price response function ¢ from historical data and use
the learned response functions as a substitute to the actual
environment. The learned response functions can generalize
the transition samples to new transitions, and if accurate
enough, would allow the learning of good bidding and pricing
policies without incurring any cost.

The response function learning problems can be cast as
supervised learning problems. When learning the bid response
function, the inputs are ({\;,q};_» ,ws, t mod T') and the
outputs are (A, g:). When learning the price response function,
the inputs are ({d,, VT}i;lw,ut,t mod T') and the output is
dy. The objective of the learning algorithm is to minimize
the mean squared error between the predicted values and the
actual values of the outputs. Then, the response functions can
be represented using neural networks, the parameters of which
can be learned using the backpropagation algorithm [26].

B. Policy Learning

We next introduce the learning algorithms for pricing policy
7. Note that no additional parameter in the bidding policy
p needs to be learned beyond those in ¢. Assume 7 is
parameterized by a vector 7. Then, finding the optimal
pricing policy is essentially finding the optimal value for
0™. One type of RL algorithms that can find (sub-optimal)
values for 8™ is the policy gradient methods, which update
the parameter vector in the direction that maximizes J (7). The
gradient of J can be computed according to the Deterministic
Policy Gradient Theorem [25]. Specifically, the gradient of J
with respect to 8™, referred to as the action gradient, is as
follows:

VeorJ =E[V.Q(s,a)Verm(s)]. (15)

Note that the gradient of the performance function J depends
on the action value function (), which is not known and needs
to be estimated.

In the DDPG algorithm proposed by authors in [15], the
actor-critic architecture is adopted, in which a critic is used
to estimate the Q function, and an actor is used to estimate
the policy. Neural networks as adopted to approximate these
functions. Specific to the joint bidding and pricing problem,
we represent the Q function by a neural network—referred to
as the critic network—with a parameter vector 9. The pa-
rameters of the critic network can be estimated using methods
such as temporal-difference learning. Meanwhile, the pricing
policy is represented by a neural network—referred to as
the pricing policy network—with a parameter vector 7. The
bidding policy is also represented by a neural network, which
consists of the learned bid response function. The bidding and
pricing policy networks are collectively referred to as the actor
networks. The parameters of the pricing policy network can
be estimated using the policy gradient method.

In addition to using the neural networks, there are two
more important ideas in the DDPG algorithm. First, target
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Fig. 3. Interaction of components in the joint bidding and pricing algorithm.

networks, the parameters of which slowly track those of the
actor network and the critic network, are used to stabilize
the algorithm. The parameter vector of the target network for
the critic is denoted by 69, and that of the pricing network
network is denoted by 6™ . Second, a replay buffer R is
used to store the transitions of the MDP and at each time
instant, a mini-batch of size m is sampled from the R and
used to estimate the gradients. The interaction between each
component in the algorithm is illustrated in Fig. 3. Note that
in the training stage, response functions are used to substitute
the WEM and EUCs.

The detailed DDPG based RL algorithm for solving the joint
bidding and pricing problem is presented in Algorithm 1. At
each step, 69 is updated in the direction that minimizes the
following loss function:

l= % Z(n +9Q' (841, (8i41)) — Q(si, ai))2'

(16)
K3
The intuition behind this is to actually find a critic network that
satisfy the Bellman optimality equation in (13). Note that the
target networks are used to compute the action value as well
as the next action, i.e., 7'(s;+1). Meanwhile, 8™ is updated
in the direction that maximizes J, specifically, the direction of
action gradient that is approximated using samples as follows:

1

Vord & — Y VaQ(si,7(si))Vern(si).  (17)

m

V. NUMERICAL SIMULATION

In this section, we illustrate the application of the joint
bidding and pricing algorithm through numerical simulations.

A. Simulation Setup

The WEM model is constructed based on the IEEE 300-bus
test system, which has 69 generators, each corresponding to
one seller, and 195 loads, each corresponding to one buyer.
For an illustrative purpose, assume each offer/bid is a pair of
offer/bid price (in $/MWh) and quantity (in MW). Then, w;,
is a two-dimensional vector that consists of a bid price and a
bid quantity. The offer quantities of the sellers are taken from
the generator capacities in test system, and the offer prices are

Algorithm 1: DDPG-based Policy Learning [15]

Input:
1): bid response function
: price response function
«a®: actor learning rate
a®: critic learn rate
M number of episodes
m: mini-batch size
Output:
m: policy
Randomly initialize critic network (s, a) and actor
network (s), with weights 89 and 8™, respectively
Initialize target networks @Q’, and 7/, with weights
09 + 69 and 0™ « 67, respectively
Initialize replay buffer R
for episode = 1,--- ;M do
Initialize a random process ( for price exploration
Receive initial state s
for r=0,---,7—1do
Select a price according to

v =7(8:) + ¢
and a bid according to
wr = p*(sr,vr)
Obtain \,, ¢, from (5) and d from (6)
Compute reward r, according to (11)
Store transition (8, a,,7,, S;4+1) into R
Sample from R a mini-batch of m transitions

(si,a;,7i,8;41) if |R| > m else continue
Update critic network by minimizing ¢ in (16):

0% = 09 — a°Vyo!

Update actor network by maximizing J in (14)
using sampled gradients in (17):

0" =0" +a"Ve-J
Update target networks:
0% — pb% + (1 —p)o?,
0™ «— pO™ + (1 —p)o™

end

end

sampled uniformly from [10,30] $/MWh. The bid quantities
of the buyers are taken from historical loads in PIM in 2017
[27], with their peak values scaled to the nominal loads in
the test case, and the bid prices are sampled uniformly from
[20,40] $/MWh. In addition, an inelastic load, the peak value
of which equals to 50% of the total generator capacity, is also
added. System losses and line congestions are ignored in the
WEM clearing problem, and only generation capacity limits
are considered.

Assume the LSE under study serves 100 EUCs. The backlog
rate 7§ is sampled uniformly from [0, 0.5]. The newly gener-
ated incremental energy need &; is simulated using historical



incremental loads in PJM scaled by a value that is sampled
uniformly from [0.1,2] MW, and added with a zero-mean
Gaussian noise that has a scaled standard deviation (SD) of
0.1. The benefit function takes the following quadratic form:

B(ef, df) = ri(ef — df)* + cfdf,

where xf (in $/MWh?) is sampled from a Gaussian distribution
with a mean of 10 and a SD of 1, and ¢ is sampled
uniformly from [20, 30] $/MWh. The feasible set of the energy
consumption is D§ = {d§ > 0}.

Other parameters are set as follows: T' = 24, i.e., one day
is decomposed into 24 segments, and ¢ (1, x2) = 5|z — 2|,
i.e., the LSE will loss $5 if the aggregate energy consumption
in the REM deviates from purchase energy quantity in the
WEM by 1 MW. We create two scenarios, a winter scenario in
which historical load data from PJM during January to March
in 2017 are used, and a summer scenario in which historical
load data from PJM during June to August in 2017 are used.
In both scenarios, data from the first two months are used for
training, while data for the last month are used for testing.

The neural networks are implemented using TensorFlow
[28]. All hyperparameters, such as the number of layers in
neural networks and the number of neurons in each layer, are
chosen based on common practice recommended by the deep
learning community [26], and are tuned using the training data.

B. Response Functions

The response functions are critical since they replace the
actual environment during the learning process of the bidding
and pricing policy, and also are used to determine the state
in the MDP formulation. To illustrate the application of the
response functions, we first generate a set of historical data
of the WEM, ie., {w:,A;,¢,}, using the WEM model in
(1), and a set of historical data of the REM, i.e., {v,,d;}
using the EUC model in (4). When generating the data of
the WEM, the bid quantities from the LSE under study are
sampled uniformly from [0,80] MW, and the bid prices are
sampled uniformly from [20, 40] $/MWh.

A neural network with 2 hidden layers, each consisting
of 128 neurons are used as the bid response function. An
Ly regularizer with a scale of 0.01 is used. Rectified linear
unit (ReLU) is used as the activation function for the two
hidden layers and the output layer. Adam optimizer with a
learning rate of 0.001 is adopted to train the neural network
for 10000 steps. The performance of the response functions are
measured by the mean and SD of the absolute error between
the actual and predicted responses. Table I shows the mean
and SD of the absolute error in the wholesale energy price
under different orders of the bid response function. The mean
wholesale energy prices of the training data in the winter
scenario and the summer scenario are 22.98 $/MWh and 23.72
$/MWh, respectively, and those of the testing data in the
winter scenario and the summer scenario are 22.63 $/MWh
and 23.40 $/MWh, respectively. Note that a zero-order bid
response function takes only information on the time as well
as the bid when predicting the WEM clearing results. Both
the mean and SD of the absolute error decrease as the order

TABLE I
ABSOLUTE ERROR IN WHOLESALE ENERGY PRICE (IN $/MWH).

winter scenario summer scenario

order 0 1 2 0 1 2
g mean 082 027 026 1.02 026 0.26
& SD 0.77 023 021 073 0.18 0.18
% mean 0.82 026 023 1.03 025 0.25
= SD 0.64 022 020 069 0.18 0.18
TABLE 11

ABSOLUTE ERROR IN AGGREGATE ENERGY CONSUMPTION (IN MW).

winter scenario summer scenario

order 0 1 2 3 0 1 2 3
§ mean 624 315 140 131 840 366 145 141
&= SD 521 241 140 132 622 262 120 1.16
% mean 6.27 321 143 143 807 361 151 148
= SD 478 233 123 122 6.03 257 126 120

of the response function increases. Yet, the decrease is not
significant when the order is great than 1 in both scenarios.
Therefore, an appropriate order of the bid response function
for this case would be n; = 1.

The neural network adopted for the price response function
is similar to that for the bid response function except that the
number of neurons in each hidden layer is 256 and the scale of
the Lo regularizer is 0.001. The neural network is trained with
a learning rate of 0.0002 for 20000 steps. Table II shows the
mean and SD of the absolute error in the aggregate energy
consumption under different orders of the price response
function. The mean aggregate energy consumptions in the
training data in the winter and summer scenarios are 40.75
MW and 50.45 MW, respectively, and those of the testing data
in the winter and summer scenarios are 38.16 MW and 47.08
MW, respectively. A zero-order price response function takes
only information on the time and the price when predicting
the aggregate energy consumption. Similar to the argument
made for the bid response function, an appropriate order for
the price response function would be ne = 2.

We emphasize that the appropriate order of response func-
tions may vary from case to case, and need to be determined
from the historical data following the procedures presented
here. Based on learned response function, the state is

St = (M1, qe—1,di—2,V4—2,dr—1, 41, t mod T).

C. Bidding and Pricing Policies

The pricing policy network and the critic network each has
2 hidden layers each with 128 neurons. ReLU is used as the
activation function for all hidden layers. The output layer of
the pricing policy network adopts the tanh function as the
activation function, while that of the critic network does not
use any activation function. An Ly regularizer with a scale of
0.01 is used for the critic network. The learning rates for the
pricing policy network and the critic network are a* = 0.0001
and a¢ = 0.001, respectively. Note that the bidding policy
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network essentially the bid price to v; and the bid quantity
to the estimated aggregate energy consumption obtained using
the price response function . Therefore, there is no parameter
for the bidding part needs to be trained. The minimum price
is v = 20 $/MWh and the maximum price is 7 = 40 $/MWh.
The update rate for the target networks is p = 0.001. The size
of a mini-batch is chosen to be m = 64. The discount rate is
~v = 0.9. The policy is trained over M = 200 episodes.
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Fig. 6. Wholesale and retail energy prices under RL policy during a typical
day.

We benchmark the proposed methodology with a baseline
bidding and pricing policy which sets the price v; to a constant,
and submits a bid price that equals to v, and a bid quantity that
equals to the estimated aggregate energy consumption obtained
using the price response function . Figure 4 presents a box-
plot of the cumulative rewards, i.e., the sum of immediate
rewards during a day, under the policy learned by the DDPG
algorithm—referred to as the RL policy—and the baseline
policies with various constant prices. The mean cumulative
reward under the RL policy is higher than those under baseline
policies in both two scenarios. Specifically, the mean cumu-
lative reward under the RL policy in the winter scenario and
the summer scenario are 7.111 k$ and 8.485 k$, respectively,
while the highest mean cumulative reward under the baseline
policies are 6.914 k$ and 8.041 k$, respectively. Figure 5
shows that impacts of training episodes on cumulative rewards.
As can be seen from Fig. 5, the proposed methodology
achieves good performance after 100 episodes, over which the
performance improvement becomes relatively small.

The wholesale and retail energy prices under the RL policy
during a typical day are shown in Fig. 6. It is obvious from Fig.
6 that the optimal retail energy price has a similar trend as the
wholesale energy price, which makes sense since the cumula-
tive reward depends on the difference of these two prices. The
bid quantities and the aggregate energy consumptions under
the RL policy and the baseline policy with a constant price
of 35 $/MWh during the same day is presented in Figs. 7
and 8, respectively. In addition, results for the case where the
EUCs have direct access to the WEM, i.e., the LSE sets the
retail price equal to the wholesale price (hence, the LSE is
non-profit), are also plotted in Figs. 7 and 8. We make two
observations for this particular simulation setup here. First,
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allowing the profit-seeking behavior of the LSE will lead to
a situation in which the LSE would set a retail price that is
(potentially much) higher than thed wholesale price such that
its profit is maximized yet the total EUC energy consumption
is greatly reduced, compared to the case where the EUCs
have direct access to the WEM. Second, the aggregate energy
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Fig. 9. Impacts of discount factor on cumulative rewards.

consumptions under the RL policy has lower variance than
under the baseline policy, which results into a smoother load
curve. These phenomena are also observed in most of the days.

As discussed earlier, the consideration of the long-term be-
havior is beneficial, compared to the myopic decision making,
in which no future rewards are taken into account. To illustrate
this, we compare the cumulative rewards under the RL policy
with v = 0.9 and those under a myopic policy, or equivalently,
the RL policy with v = 0. Figure 9 shows that the RL policy
with v = 0.9 outperforms the myopic policy in both two
scenarios. This indeed justifies the motivation of modeling the
joint bidding and pricing problem as an MDP.

VI. CONCLUDING REMARKS

In this paper, we developed an MDP formulation for the
joint bidding and pricing problem of the LSE, and applied
a state-of-the-art DRL algorithm—the DDPG algorithm to
solve it. Dynamical bid response and price response functions
represented by neural networks are learned from historical data
to model the WEM and the EUCs, respectively. These response
functions explicitly capture the inter-temporal correlations of
the WEM clearing results and the EUCs, and can be utilized
to generate state transition samples required by the DDPG
algorithm without any cost. Numerical simulation results show
that the LSE can make more profit using the bidding and
pricing policies learned via the proposed methodology, yet the
aggregate energy consumptions may be significantly reduced,
compared to the case where the EUCs have direct access to the
WEM. An interesting phenomenon is that the more profitable
bidding and pricing policies result in smoother aggregate
energy consumptions.

There are several potential directions for future work. The
first is to develop RL algorithms that incorporate risk man-



agement in the decision making process and construct bids
and prices with profit guarantees, The second is to extend
the proposed methodology in a multi-agent setting where
all participants in the WEM, as well as participants in the
REM, i.e., EUCs, also have learning capabilities and they may
compete or cooperate with each other.
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