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Robust Data-Driven Neuro-Adaptive Observers
With Lipschitz Activation Functions

Ankush Chakrabarty†�, Ali Zemouche‡, Rajesh Rajamani?, and Mouhacine Benosman†

Abstract—While the use of neural networks for learning has
gained traction in control and system identification problems,
their use in data-driven estimator design is not as prevalent.
Prior art on neuro-adaptive observers limit the type of acti-
vation functions to radial basis function networks and provide
conservative bounds on the resulting observer estimation error
because they leverage boundedness of the activation functions
rather than exploiting their underlying structure. This paper
proposes the use of Lipschitz activation functions in the neuro-
adaptive observer: utilizing the Lipschitz constants of these
activations simplifies the data-driven observer design procedure
via recently discovered LMI conditions. Furthermore, in spite
of measurement noise and approximation error, pre-computable
robust stability guarantees are provided on the resulting state
estimation error.

Index Terms—Data-driven; machine learning; neural net-
works; adaptive systems; nonlinear systems; linear matrix
inequalities; function approximation.

I. INTRODUCTION

Function approximators such as neural networks have been
widely used in control engineering. While the most common
applications of neural nets are in identifying dynamical
systems from measurement data [1], [2] or adapting with data
to generate optimal control policies online [3]–[6], the utility
of neural nets for state estimation in systems with unmodeled
dynamics remains relatively unexplored.

Some early investigations into neuro-observers, for exam-
ple, in [7] assume model availability. However, the current
wave of data-driven control has demonstrated the effective-
ness of approximators in controlling systems in a model-
free manner. Neuro-observers in the model-free setting were
explored almost two decades ago in [8], where the authors
proposed an adaptation rule for learning the weights of a
linear-in-parameter neural network (LPNN) that results in
uniformly ultimately bounded estimation error dynamics.
Although this work has been adopted in multiple applications
such as robot control [9], [10], rotors [11], and more recently,
wind turbines [12], the inherent assumptions and theory have
hardly evolved. In most of these methodologies, the activation
functions are considered to be radial basis functions, there
is no measurement noise, and the theoretical guarantees of
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learning performance remain the same; an exception is [12]
where the authors investigate input-to-state stability (ISS)
observers for the known component of the model, but the
learner performance is not ISS, and the learner’s weights
require extensive manual tuning.

This paper leverages recent work on observer design
for nonlinear systems which are based on exploiting the
structures of nonlinearities to formulate convex programs that
can be solved to systematically generate observer gains [13]–
[16]. The major contributions of this paper are as follows: (i)
we propose the use of Lipschitz activation functions that are
linear-in-parameter and formulate linear matrix inequalities,
which, if solved, result in neuro-adaptive observers with
guaranteed estimation performance with less conservative
bounds than those presented in the literature; (ii) instead of
adaptation gains obtained by backpropagation, we propose
using adaptation laws as in [17] to incorporate robustness
into data-driven observers design against measurement dis-
turbances and approximation error. Our proposed observer
is referred to as neuro-adaptive observer because the learner
(i.e. adaptive element) is a neural network approximator.

The rest of the paper is organized as follows. The problem
statement and proposed neuro-adaptive observer structure,
along with assumptions made in the paper are provided in
Section II. Sufficient conditions for guaranteeing the perfor-
mance of the proposed observer and details of the observer
design via linear matrix inequalities (LMIs) is provided in
Section III.

Notation: We denote by R the set of real numbers, R+

as the set of positive reals, and N as the set of natural
numbers. For every v ∈ Rn, we denote ‖v‖ =

√
v>v,

where v> is the transpose of v. The sup-norm is defined
as ‖v‖∞ , supt∈R ‖v(t)‖. We denote by σ(P ) and σ(P ) as
the smallest and largest singular value of a square, symmetric
matrix P , respectively. The (i, j)th element of P is denoted
Pij ≡ Pi,j . The symbol � (≺) indicates positive (negative)
definiteness and A � B implies A − B � 0 for A,B of
appropriate dimensions. Similarly, � (�) implies positive
(negative) semi-definiteness. The operator norm is denoted
‖P‖ and is defined as the maximum singular value of P ,
vec(P ) denotes the column-wise vectorization of P , that is,

vec




a>1
a>2
...
a>n


 =


a1

a2

...
an

 ,



and ⊗ denotes the Kronecker product. Ip denotes a p × p
identity matrix, 1p denotes a column vector of p elements, all
set to one, and δp(m) denotes a column vector of p elements,
where the mth element is one; m ≤ p. The notation 0p
denotes a column vector of p zeros, and 0p×n denotes a zero
matrix of dimension p×n; the symbol 0 without decorations
may denote a matrix or scalar depending on the context.

II. PROBLEM STATEMENT

A. System description and assumptions

We consider nonlinear systems that have the state-space
representation

ẋ = Ax+ ϕ(x, u) (1a)
y = Cx+Dv (1b)

where x ≡ x(t) ∈ Rn represents the state of the system,
u ≡ u(t) ∈ Rnu represents the control input, y ≡ y(t) ∈
Rny represents the measured outputs, and v ≡ v(t) ∈ Rnv

denotes measurement noise. The nonlinearity ϕ(x) : Rn →
Rn represents the unmodeled dynamics of the system and
is unknown. The matrices A, C, and D are constant with
appropriate dimensions, and we require the pair (A,C) to be
observable.

We make the following assumptions on our system.

Assumption 1. The state x ∈ L∞ and the measurement
noise v ∈ L∞.

Assumption 1 is satisfied, for example, when the sys-
tem (1) is open-loop stable, which is a standard assumption
in identification of dynamical systems. Since Assumption 1
implies that x lies in a compact subset of Rn, one can invoke
neural network approximability results reported in [18] to
represent the unknown nonlinearity as

ϕ(x, u) =

N∑
i=1

BiW
?
i +W ?σ(x, u) + ε(x, u). (2)

Here, W ? ∈ Rn×N is a constant but unknown matrix of
weights in the output layer of a neural approximator with
N neurons, W ?

i is the ith column of W ?, and Bi ∈ Rn×n
is a known matrix whose role is discussed in Remark 1. In
addition, σ(·, ·) : Rn × Rnu → RN denotes the vector of
activation functions, that is

σ(x, u) =
[
σ1(H1x, u) · · · σN (HNx, u)

]>
,

where Hi ∈ Rsi×n. Note that the choice of the activation
function σ rests on the designer, and therefore, the exact form
of σ is completely known (although its argument x is to be
estimated). In the ensuing discussion, we will provide some
guidelines for choosing σ to ensure performance guarantees.
The quantity ε(·, ·) : Rn × Rnu → Rn represents the neural
network approximation error, which is bounded [18].

We make the following assumption on the neural approx-
imator.

Assumption 2. There exist positive scalars ρW , ρε, and ρσ
such that

‖W?‖ ≤ ρW , ‖ε(·, ·)‖L∞ ≤ ρε, and ‖σ(·, ·)‖L∞ ≤ ρσ.

The activation functions are absolutely continuous on Rn and
satisfy

−∞ < σ̌ij ≤
∂σi
∂qij

(qj , u) ≤ σ̂ij ≤ ∞, (3)

for every qj ∈ Rsi where the derivative exists, with qj =
Hjx, and qij being the i-th component of qj .

Traditional activation functions such as sigmoids and hy-
perbolic tangents satisfy Assumption 2. Modern activation
functions that have gained traction in training deeper neural
networks such as rectified linear units (ReLU) and their
variants (Leaky ReLUs, scaled exponential linear units, expo-
nential linear units) naturally satisfy the condition (3) except
at zero, where they are typically non-differentiable, although
their smoothened versions such as the softplus activation
function satisfy these conditions everywhere. However, these
activations are unbounded. In order to design data-driven
observers using our proposed approach, one needs to ensure
boundedness. A simple and common method to bound the
activation function is through clipping. Clipped ReLU func-
tions have demonstrated effectiveness in learning from time
series data via deep nets [19].

Remark 1. As discussed in [17], one can assume σ̌ij = 0
in (3) without loss of generality because the negative compo-
nents can be translated using the linear component

∑
BiW

?
i .

Replacing ϕ(x, u) in (1) with the neural network basis
representation (2), we get

ẋ = Ax+

N∑
i=1

BiW
?
i +W ?σ(x, u) + ε(x, u). (4)

B. Proposed neuro-adaptive observer

In order to estimate the state of the system (1), we propose
a data-driven neuro-adaptive observer of the form

˙̂x = Ax̂+

N∑
i=1

BiŴi + Ŵ σ̄(x̂, u) + L0

(
y − Cx̂

)
, (5a)

˙̂
Wij = Lk

(
y − Cx̂

)
, (5b)

for i = 1, . . . , n, j = 1, . . . , N , and k = 1, . . . , nN . Here,

σ̄(x̂, u) =

 σ1 (H1x̂+K1(y − Cx̂), u)
...

σN (HN x̂+KN (y − Cx̂), u)

 , (6)

x̂ ≡ x̂(t) is the estimated state of the plant (1), Ŵ denotes the
vector of estimated weight parameters whose (i, j)th element
is Ŵij , L0 ∈ Rn×ny , Lk ∈ R1×ny for k = 1, . . . , nN , and
Ki ∈ Rsi×ny for i = 1, . . . , N are observer gain matrices.



C. Observer error dynamics

Let x̃ := x− x̂ denote the state estimation error and

w̃ := vec(W ?)− vec(Ŵ ) ∈ RnN

denote the parameter estimation error, and let the total
disturbance input and the augmented error state be

d :=

[
ε
v

]
and z̃ :=

[
x̃
w̃

]
, (7)

respectively. Therefore, y − Cx̂ = Cx̃+Dv.
Furthermore, we write the nonlinear term as

W ?σ(x, u) = BψΨ(ϑ, u)

and
Ŵ σ̄(x, u) = BψΨ(ϑ̂, u),

where

Bψ = In ⊗ 1>N , ϑ =

[
x

vec(W ?)

]
, ϑ̂ =

[
x̂

vec(Ŵ )

]
,

Ψ(ϑ, u) =



W ?
11σ1(H1 x, u)

...
W ?

1NσN (HN x, u)
W ?
k1σ1(H1 x, u)

...
W ?
kNσN (HN x, u)

...
W ?
n1σ1(H1 x, u)

...
W ?
nNσN (HN x, u)



,

and

Ψ(ϑ̂, u) =



Ŵ11 σ1(H1 x̂+K1Cx̃+K1Dv, u)
...

Ŵ1N σN (HN x̂+KNCx̃+KNDv, u)

Ŵk1 σ1(H1 x̂+K1Cx̃+K1Dv, u)
...

ŴkN σN (HN x̂+KNCx̃+KNDv, u)
...

Ŵn1 σ1(H1 x̂+K1Cx̃+K1Dv, u)
...

ŴnN σN (HN x̂+KNCx̃+KNDv, u)



.

In the following result, we demonstrate a useful property
of the nonlinearity Ψ.

Lemma 1. Assumptions 1 and 2 hold. There exist functions
ψij , ψij(ϑ, ϑ̂) : R(N+1)n×R(N+1)n → R, scalars ψ̌ij and
ψ̂ij such that

Ψ(ϑ̂, u)−Ψ(ϑ, u) =

Nn∑
i=1

(N+1)n∑
j=1

ψij∆ij

(
ϑ̂− ϑ

)

for any ϑ̂, ϑ ∈ R(N+1)n, where

ψ̌ij ≤ ψij ≤ ψ̂ij and ∆ij = δNn(i)δ>(N+1)n(j).

Proof. (Sketch) Without loss of generality, suppose Hk = In
and Kk = 0 for all k = 1, . . . , N . We begin by demonstrating
that Ψ is locally Lipschitz in its first argument on the compact
subset of Rn where the neural approximation holds. To this
end, consider

‖Ψ(ϑ̂, u)−Ψ(ϑ, u)‖ =

∥∥∥∥∥
Nn∑
k=1

δNn(k)
(

Ψk(ϑ̂, u)−Ψk(ϑ, u)
)∥∥∥∥∥

≤
Nn∑
k=1

‖Ψk(ϑ̂, u)−Ψk(ϑ, u)‖

≤
Nn∑
k=1

‖wkσk(x, u)− ŵkσk(x̂, u)‖,

with abuse of notation to avoid complicated index sets for
the matrices W ? or Ŵ . Note that Ψk is the k-th component
of Ψ.

Therefore, ‖Ψ(ϑ̂, u)−Ψ(ϑ, u)‖

≤
Nn∑
k=1

‖wk(σk(x, u)− σk(x̂, u)) + (wk − ŵk)σk(x̂, u)‖

≤
Nn∑
k=1

ρWLσ‖x− x̂‖+ ρσ‖wk − ŵk‖.

Due to the equivalence of norms in compact subsets of finite-
dimensional vector spaces, and after some developments, the
final inequality implies that there is a scalar LΨ large enough,
depending on n,N, ρW , and ρσ , to satisfy

‖Ψ(ϑ̂, u)−Ψ(ϑ, u)‖ ≤ LΨ‖ϑ̂− ϑ‖,

which affirms Ψ is Lipschitz. Using the result of [15,
Lemma 2], we conclude the proof.

As in (3), without loss of generality, we assume that
Lemma 1 gives ψ̌ij = 0. Otherwise, we proceed as in [17,
Remark 1].

Based on the abvoe discussion, the augmented error dy-
namics of the neural observer are given by

˙̃z = (Az − LCz)z̃ +Bz∆Ψ + (Bd − LDd)d, (8)

where

Az =

A B1 . . . BN
...

...
. . .

...
0 0 . . . 0

 , L =


L0

L1

...
LNn

 ,
Bz =

[
Bψ

0Nn×Nn

]
, Bd =

[
In 0n×nv

0nN×n 0nN×nv

]
,

Cz =
[
C 0>Nn

]
, Dd =

[
0>n D

]
,

and

∆Ψ = Ψ(ϑ, u)−Ψ(ϑ̂, u)

=

Nn∑
i=1

(N+1)n∑
j=1

ψij(ϑ, ϑ̂)∆ij (H̄iz̃ − K̄iDdd), (9)



where
K̄i =

[
Ki

0Nn×ny

]
and

H̄i =

[
Hi 0si×Nn
0>n δ>Nn(i)

]
− K̄iCz.

D. Objective of the paper
To formally state our objective, we require the following

definition from [14].
Let µ be a non-negative scalar and

yz = Fz z̃ (10)

be a performance output of the error system (8).

Definition 1. The input-output system (8) with performance
output (10) is globally uniformly L∞-stable with perfor-
mance level µ if it has the following properties.
(P1) Global uniform exponential stability with zero input.

The zero-input system (d ≡ 0) is globally uniformly
exponentially stable about the origin.

(P2) Global uniform boundedness of the error state. For
every initial condition z̃(t0) = z̃0, and every bounded
exogenous input d(·), there exists a non-negative upper
bound β(z̃0, ‖d(·)‖∞) such that

‖z̃(t)‖ ≤ β(z̃0, ‖d(·)‖∞)

for all t ≥ t0.
(P3) Output response for zero initial error state. For zero

initial error, δ(t0) = 0, and every bounded exogenous
input d(·), we have

‖yz(t)‖ ≤ µ‖d(·)‖∞
for all t ≥ t0.

(P4) Global ultimate output response. For every initial con-
dition, z̃(t0) = z̃0, and every bounded exogenous input
d(·), we have

lim sup
t→∞

‖yz(t)‖ ≤ µ‖d(·)‖∞.

Moreover, convergence is uniform with respect to t0.

Our objective is to design gains {Li}nNi=0 and {Ki}Ni=1 of
the neural observer such that the augmented error system is
L∞-stable with a prescribed performance level µ.

III. PERFORMANCE ANALYSIS OF THE DATA-DRIVEN
OBSERVER

A. Sufficient conditions for L∞-stability
The following lemma describes conditions requires to

guarantee that the augmented error system (8) is L∞-stable
with a performance level µ.

Lemma 2 ([14]). If there exists a matrix P = P> � 0 and
scalars β, µ > 0 such that

V̇ + 2βV − 2β‖d‖2 ≤ 0 (11a)

‖Fz z̃‖2 ≤ µ2V, (11b)

where V = z̃>P z̃, then the augmented error system (8) is
L∞-stable with performance level µ, with β denoting the
exponential decay term.

B. A design theorem

The following result enables us to design the neural
observer using convex programming by solving a set of linear
matrix inequalities.

Theorem 1. For a non-negative scalar µ, if there exist
matrices P = P> � 0, R, Ki of appropriate dimensions
and a fixed scalar β > 0 such that

Ξ � 0, (12a)[
P ?
Fz µ2I

]
� 0, (12b)

where

Ξ :=


Ξ11 PBd −RDd PBzΣ1 + Σ2 −PBzΣ1

? −2βIn+nv
0 Σ3

? ? −Λ 0
? ? ? −Λ


with

Ξ11 = A>z P + PAz −RCz − C>z R> + 2βP

Σ1 =
[
∆11 · · · ∆1,n(N+1) ∆21 · · ·∆Nn,(N+1)n

]
,

Σ2 =
[
1>(N+1)n ⊗ H̄>1 · · · 1>(N+1)n ⊗ H̄>Nn

]
,

Σ3 =
[
1>(N+1)n ⊗ (K̄1Dd)

> · · · 1>(N+1)n ⊗ (K̄NnDd)
>] ,

Λ = diag
([

2

ψ̂11
· · · 2

ψ̂1,(N+1)n

2

ψ̂21
· · · 2

ψ̂Nn,(N+1)n

])
,

then the augmented error system (8) with observer gains
L = P−1R is L∞-stable with performance level µ.

Proof. Let V = z̃>P z̃. Taking the time derivative of V along
the trajectories of the augmented error dynamics, we get

V̇ = z̃>((Az − LCz)>P + P (Az − LCz)z̃
+ 2z̃>P (Bd − LDd)d+ 2z̃>PBz∆Ψ.

Exploiting the structure of the nonlinearity via (9) yields

V̇ = z̃>((Az − LCz)>P + P (Az − LCz)z̃
+ 2z̃>P (Bd − LDd)d

+ 2

Nn∑
i=1

(N+1)n∑
j=1

ψij z̃
>PBz∆ijH̄iz̃

− 2

Nn∑
i=1

(N+1)n∑
j=1

ψij z̃
>PBz∆ijK̄iDd d (13)

= z̃>(Ξ11 − I)z̃ + 2z̃>(PBd −RDd)d

+ 2z̃>(PBzΣ1)ζ1 + 2z̃>(PBzΣ1)ζ2, (14)

where

ζ1 =



ψ11H̄1z̃
...

ψ1,N(n+1)H̄1z̃
ψ21H̄2z̃

...
ψNn,(N+1)nH̄Nnz̃


and ζ2 =



ψ11K̄1Dd d
...

ψ1,N(n+1)K̄1Dd d
ψ21K̄2Dd d

...
ψNn,(N+1)nK̄NnDd d


.

Let
Γ =

[
z̃> d> ζ>1 ζ>2

]>
. (15)



Taking a congruence transformation of (12a) with Γ and
replacing (14) yields

0 ≥ Γ>ΞΓ = V̇ + 2βV − 2β‖d‖2 + ζ, (16)

where

ζ = 2z̃>Σ2ζ1 + 2d>Σ3ζ2 +

Nn∑
i=1

(N+1)n∑
j=1

2

ψ̂ij
ζ>1 ζ1 +

2

ψ̂ij
ζ>2 ζ2

= 2

Nn∑
i=1

(N+1)n∑
j=1

(
(H̄iz̃)

>ζ1 −
1

ψ̂ij
ζ>1 ζ1

)

+ 2

Nn∑
i=1

(N+1)n∑
j=1

(
(K̄id)>ζ2 −

1

ψ̂ij
ζ>2 ζ2

)

= 2

Nn∑
i=1

(N+1)n∑
j=1

(
1

ψij
− 1

ψ̂ij

)
‖ζ1‖2

+ 2

Nn∑
i=1

(N+1)n∑
j=1

(
1

ψij
− 1

ψ̂ij

)
‖ζ2‖2, (17)

because

Nn∑
i=1

(N+1)n∑
j=1

H̄iz̃ =

Nn∑
i=1

(N+1)n∑
j=1

1

ψij
ζ1

and
Nn∑
i=1

(N+1)n∑
j=1

K̄id =

Nn∑
i=1

(N+1)n∑
j=1

1

ψij
ζ2.

Since ψij ≤ ψ̂ij by construction, the right hand side
of (17) is a finite sum of non-negative elements. Therefore,
ζ ≥ 0. Plugging this into (16) yields the inequality (11a).

Taking Schur complements of (12b) and recalling (10)
yields (11b). As both conditions of Lemma 2 are satisfied,
we invoke the lemma and conclude the proof.

Remark 2. One can improve the solution quality by solving
the problem min(µ2) subject to (12a)-(12b). This will result
in the observer gains that reduce the effect of the disturbance
input d by reducing µ.

The term −PBzΣ1 in (12a) forces ψ̂ij to be finite. Some
extra conditions are required in order to ensure that the
observer error dynamics are L∞-stable for nonlinearities with
unbounded derivatives. These conditions are presented in the
following corollary.

Corollary 1. Suppose that ψ̂ij =∞ for some i in the index
set I ⊂ {1, . . . , nN}. If the measurement noise v = 0 and
there exist matrices P = P> � 0, R, Ki of appropriate
dimensions and a fixed scalar β > 0 such thatΞ11 PBd PBzΣ1 + Σ2

? −2βIn 0
? ? −Λ

 � 0, (18a)

PBz∆ij + H̄i = 0 ∀i ∈ I. (18b)

and (12b) for non-negative µ, then the augmented error
system (8) with observer gains L = P−1R is L∞-stable
with performance level µ.

Proof. Since v = 0, the corresponding matrices Dw, Σ3, and
ζ2 vanish. The proof has the same ideas as Theorem 1, with
the exception that

ζ =
∑
i∈I

(N+1)n∑
j=1

(
1

ψij
− 1

ψ̂ij

)
‖ζ1‖2,

since the other terms vanish due to (18b).

Remark 3. In the absence of v, note that the performance is
quantified with respect to the bound on the disturbance input
ε. Previous guarantees provided in neuro-adaptive observer
design with no measurement noise [8]–[10], [12] consider the
disturbance input W ?(σ−σ̂)+ε and performance bounds are
computed based on this disturbance. Since ‖W ?(σ − σ̂) +
ε‖∞ > ρε with non-zero activation functions and weights,
our design is less conservative than the prior art.

C. Improved LMI conditions

Some recent work has exploited a variant of Young’s
inequality and linear parameter-varying systems theory to
improve the LMI conditions proposed above. To this end,
we present the following result [13].

Lemma 3 ( [13]). Let X and Y denote matrices of appropri-
ate dimensions such that X>Y and Y >X can be computed.
Then, for any scalar α ∈ (0, 1) and symmetric matrices
S � 0 and Z � 0 of appropriate dimensions, the following
inequality holds:

X>Y + Y >X � (1− α)

2

(
X + SY

)>
S−1

(
X + SY

)
+
α

2

(
X + ZY

)>
Z−1

(
X + ZY

)
. (19)

Our next result enables the computation of observer gains
using improved LMI conditions.

Theorem 2. For a non-negative scalar µ, if there exist
matrices P = P> � 0, Sij = S>ij � 0, Qij = Q>ij � 0,
R, Ki of appropriate dimensions and fixed scalars β > 0,
πij ∈ (0, 1) for 1 ≤ i ≤ Nn and 1 ≤ j ≤ (N + 1)n, such
that (12b) and

Ξ11 PBd −RDd N 0
? −2βIn+nv

0 −N ′
? ? −Λ1 0
? ? ? −Λ1

 � 0, (20)

where

N =
[
N11 · · · Nij · · · NNn,(N+1)n

]
N ′ =

[
N ′11 · · · N ′ij · · · N ′Nn,(N+1)n

]
with

Nij =
[
PBz∆ij + (H̄i + K̄iCz)Sij ,

PBz∆ij + (H̄i + K̄iCz)Qij
]
,

N ′ij =
[
PBz∆ij + K̄iDdSij PBz∆ij + K̄iDdQij

]
,



and

Λ1 = blkdiag



2
(1−π11)ψ̂11

S11

2
(1−π11)ψ̂11

Q11

...
2

(1−πij)ψ̂ij
Sij

2
(1−πij)ψ̂ij

Qij
...


then the augmented error system (8) with observer gains L =
P−1R is L∞-stable with performance level µ.

Sketch of proof. We proceed as in the proof of Theorem 1
with V = z̃>P z̃, and compute V̇ to be (13).

From the definition of Λ1, it is clear that Λ1 � 0. Then
taking Schur complements of (20) yields[

Ξ11 PBd −RDd

? −2βI

]
+

[
N 0
0 N ′

]> [
Λ−1

1 0
0 Λ−1

1

] [
N 0
0 N ′

]
︸ ︷︷ ︸

T2

� 0. (21)

Using Lemma 3 on the second term T2 implies

T2 � blkdiag


Nn∑
i=1

(N+1)n∑
j=1

ψ̂ijPBz∆ij(H̄i + K̄iCz)

Nn∑
i=1

(N+1)n∑
j=1

ψ̂ijPBz∆ijK̄iDd

 . (22)

Replacing T2 in (21) with the right hand side of (22) and
taking a congruence transform of this inequality with the
vector

[
z̃> d>

]>
, we get

V̇ + 2βV − 2β‖d‖2 ≤ 0,

using similar arguments to the proof of Theorem 1.

Remark 4. As demonstrated in [13], the number of decision
variables can be considerably reduced by selecting a subset
of {1, · · · , Nn} × {1, · · · , (N + 1)n} where the ψ̂ij value
is above a pre-selected threshold, and solving the LMIs (2)
for that smaller subset.

IV. CONCLUSIONS

This paper provides a systematic design methodology to
construct data-driven observers via neural approximators with
bounded Lipschitz activation functions. We extend the current
literature to incorporate L∞-stability in the neural observer
error dynamics by computing observer gains and adaptation
weights via convex programming. Major advantages of our
method include providing robustness to the approximation
error and measurement noise explicitly in the observer design
methodology, as well as learning the nonlinearity that can be
used as part of a predictive model for subsequent control
systems.
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