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different surfaces. Knowledge of the tire friction is important for real-time vehicle control,
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We illustrate the efficacy of the method using several experimental data sets obtained on a
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Bayesian Learning of Tire Friction with Automotive-Grade Sensors by
Gaussian-Process State-Space Models

Karl Berntorp1 and Kitano Hiroaki2

Abstract— The friction dependence between tire and road is
highly nonlinear and varies heavily between different surfaces.
Knowledge of the tire friction is important for real-time vehicle
control, but difficult to estimate with automotive-grade sensors.
Based on recent advances in particle filtering and Markov
chain Monte-Carlo methods, we propose a batch method for
identifying the tire friction as a function of the wheel slip.
The unknown function mapping the wheel slip to tire friction
is modeled as a Gaussian process (GP) that is included in a
dynamic vehicle model relating the GP to the vehicle state.
The method is able to efficiently learn the tire friction using
only wheel-speed, steering-wheel angle, and inertial automotive-
grade sensors. We illustrate the efficacy of the method using
several experimental data sets obtained on a snow-covered road.

I. INTRODUCTION

Various tire models describing the tire friction as a func-
tion of wheel slip have been reported in literature [1]–[4].
Fig. 1 shows the typical tire-friction curves generated by
the Pacejka (Magic formula) tire model [1]. Knowing the
tire friction over a range of slip values extending into the
saturated region of the tire-friction function is important for
AD and ADAS [5]. The vehicle states involved in the tire-
friction estimation are not directly measured in production
vehicles, so indirect methods are needed. The identification
approaches in literature typically estimate parameters of
specific models. Examples are batch nonlinear optimization
methods for identifying the parameters of the Brush model
[3], unscented Kalman filter (UKF) for estimating the Pace-
jka parameters [6], recursive least-squares for estimating
the cornering stiffness [7], [8], and nonlinear observer for
estimating the peak friction coefficient using the Brush tire
model [9]. A difficulty when addressing the tire friction
estimation problem using automotive-grade sensors is that
the amount of sensors is limited, and they are relatively low
grade [10]. Moreover, not only do the sensors only provide
indirect measurements of the friction, they do not even
measure the vehicle state, which is nonlinearly dependent
on the tire friction and must therefore be known for learning
the tire friction. Also, it is worth pointing out that few
approaches so far, if any, target the estimation of the full
tire-friction curve using only production-grade sensors.

We recently proposed a Bayesian approach for identifying
the friction-slip dependence [11], where we formulated a
nonparametric approach modeling the unknown function
describing the tire friction as a Gaussian process [12], which
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Fig. 1. Illustrations of lateral tire friction µy as a function of slip angle
α for surfaces corresponding to asphalt, loose snow, and ice. The peak of
the respective curve is called the (peak) friction coefficient.

combined with particle filtering (PF) [13] and Markov chain
Monte-Carlo (MCMC) methods [14] results in a method for
estimating the posterior density function (PDF) of the tire
friction, given the measurement data. In [11], the method was
evaluated in simulation using multiple step-steer maneuvers.

This paper extends the method in [11] by discussing and
implementing ways to improve computational efficiency, and
we verify the method using several experimental data sets ob-
tained on a snow-covered road, realying only on production-
grade sensors. Since the method is nonparametric, it is not
subject to specific modeling constraints that various tire
models impose. Still, the method is insensitive to overfitting
to the data. As a consequence, the method can be used for
extracting parameters for specific tire models, valid for the
full range of possible data even when the data used for
learning is very limited. We provide an example of this,
where we extract the Pacejka tire parameters [1] from the
identified tire friction function.

Notation: With p(x0:t|y0:t), we mean the posterior den-
sity function of the state trajectory x0:t from time in-
dex 0 to time index t given the measurement sequence
y0:t := {y0, . . . ,yt}. We define ft := f(xt) for a function
f . Throughout, for a vector x, x ∼ N (µ,Σ) indicates that
x is Gaussian distributed with mean µ and covariance Σ and
xn denotes the nth component of x. Matrices are indicated in
capital bold font as X , and the element on row i and column
j is denoted with Xij . The notation f ∼ GP(0,κθ,f (x,x′))
means that the function f(x) is a realization from a GP
prior with a given covariance function κθ,f (x,x′) subject
to hyperparameters θ, and IW(ν,Λ) is the inverse-Wishart
distribution with degree of freedom ν and scale matrix Λ.
Similarly,MN (M ,Q,V ) is the Matrix-Normal distribution
with mean M , right covariance Q, and left precision V .

II. MODELING AND PROBLEM FORMULATION

In this section we briefly summarize the different models
used by the proposed learning method. For details about



the used model, see [11]. We use a single-track chassis
model that includes the lateral velocity vY and the yaw
rate ψ̇. Consequently, in this paper we focus on the lateral
dynamics, but the method extends straightforwardly to also
handle longitudinal dynamics. Hence, the state vector is x =
[vY ψ̇]T ∈ R2. A single-track model is sufficiently accurate
for purposes where the tire friction reaches the nonlinear
region but the maneuvers are not aggressive enough to result
in large roll angles [5]. The presented framework can be
extended to handle a double-track model, but it increases
computation time and modeling complexity. The single-track
model lumps together the left and right wheel on each axle,
and roll and pitch dynamics are neglected. Thus, the model

The tire friction components µyi , i ∈ {f, r} are modeled
as static functions of the slip quantities,

µyi = fyi (αi(x)), (1)

α is the slip angle. The lateral velocity is estimated in
the proposed method, whereas the longitudinal velocity is
determined from the measured wheel-speeds {ωi}4i=1. For
brevity, we define the vector α = [αf αr]

T. We write (1) as

µ =
[
fyf fyr

]T
, (2)

and model the friction vector as a realization from a zero-
mean Gaussian process prior

µ(α) ∼ GP(0,κθ,µ(α,α′)), (3)

where the covariance function κθ,µ(α,α′) is chosen in
advance. In this work the hyperparameters θ are determined
a priori but can also be included in the learning process [15].

A. Estimation Model

After discretization with sampling period Ts and using
u = [δ vX ]T as the known input vector, the complete vehicle
model can be written as

xt+1 = a(xt,ut) +G(xt,ut)µ(αt), (4)

where a and G are the (known) parts of the vehicle model,
and µ is the unknown function we want to estimate.

Our measurement model is based on a setup commonly
available in production cars, namely the lateral acceleration
aYm and the yaw rate ψ̇m, forming the measurement vector
y = [aYm ψ̇m]T. The yaw-rate measurement is directly related
to the yaw rate state, but the lateral acceleration depends
on the vehicle model. We model the measurement noise et
as zero-mean Gaussian distributed noise with covariance R
according to et ∼ N (0,R). The measurement model can be
written as

yt = h(xt,ut) +D(xt,ut)µ(αt) + et. (5)

The measurement model (5) is decomposed into known parts
of the dynamics, h and D, and an unknown part, µ. The
measurement covariance R is assumed known a priori. This
is reasonable, since the measurement noise can oftentimes
be determined from prior experiments and data sheets.

The estimation model consisting of (4) and (5) is a GP-
SSM where the tire friction is a GP. The reason for modeling

the tire friction as a GP is its ability to model the inherent
uncertainty stemming from the measurement data, not only
the uncertainty from the stochastic noise term et, which
affects the estimation quality, but also that the measurement
data may contain few measurements in certain regions of the
state space.

B. Problem Formulation

We want to estimate the nonlinear function µ describing
the tire friction. We approach this problem as follows. Given
the system model (4), (5), and a Gaussian process prior (3)
on the tire friction, we want to infer the posterior distribution
of µ(α) given a set of measurement data y0:T ,

p(µ|y0:T ). (6)

Since the tire-friction estimate will depend on the vehicle
state, we solve for (6) by approximating the joint posterior
p(µ,x0:T |y0:T ) and performing the marginalization step

p(µ|y0:T ) =

∫
p(µ,x0:T |y0:T ) dx0:T

=

∫
p(µ|x0:T ,y0:T )p(x0:T |y0:T ) dx0:T . (7)

III. REDUCED-RANK GP-SSMS AND PARTICLE
FILTERING

In this section we briefly review background material on
GP-SSMs and PF necessary for understanding the proposed
learning method described in Sec. IV.

A. Reduced-Rank GP-SSMs

We rely on GP priors for learning the tire friction function,
where the covariance function κ(x,x′) encodes the prior
assumptions. A bottleneck in some of the proposed GP-
SSM methods is the computational load. In this paper
we use the computationally efficient reduced-rank GP-SSM
framework presented in [15], [16]. For a thorough derivation
and convergence proofs, see [16]. Following the notation in
[16], isotropic covariance functions (that only depend on the
Euclidean norm ‖x−x′‖) can be approximated in terms of
Laplace operators on the form:

κθ(x,x
′) ≈

m∑
j1,...,jd=1

Sθ(λj1,...,jd)φj1,...,jd(x)φj1,...,jd(x′),

(8)
where we for simplicity assume m basis functions for each
state dimension. In (8), Sθ is the spectral density of κθ and

λj1,...,jd =

d∑
n=1

(
πjn
2Ln

)2

, (9a)

φj1,...,jd =

d∏
n=1

1√
Ln

sin

(
πjn(xn + Ln)

2Ln

)
, (9b)

are the Laplace operator eigenvalues and eigenfunctions,
respectively, defined on the intervals [−Ln, Ln]. For brevity,
we will in the rest of the paper denote j1, . . . , jd with j.
Note that according to (8), (9), only the spectral density
depends on the hyperparameters θ. Furthermore, (8) can be



interpreted as an optimal parametric expansion with respect
to the covariance function in the GP prior [15].

From the approximation (8) using Laplace operators, [16]
provides a relation between basis function expansions of a
function f and GPs based on the Karhunen-Loeve expansion.
With the basis functions chosen as (9b),

f(x) ∼ GP(0, κ(x,x′))⇔ f(x) ≈
∑
j

γjφj(x), (10)

with
γj ∼ N (0, S(λj). (11)

For a state-space model xt+1 = f(xt) + wt, (10) implies
the reduced-rank GP-SSM

xt+1 =

γ
1
1 · · · γm1
...

...
γ1d · · · γmd


φ

1(xt)
...

φm(xt)

+wt, (12)

where γjn are the weights to be learned, m is the total number
of basis functions (i.e., md in (8)), and wt is zero-mean
Gaussian distributed noise with covariance Q. In Sec. IV,
(12) in combination with PF forms the basis for learning the
tire friction.

Remark 1: In this paper we have the state dimension
d = 2. However, when more complicated vehicle models
are used, the state dimension can be much larger. This will
render exponential growth of m with the state dimension.
There are ways to alleviate this, some of which are discussed
in [15]. This is not pursued further here because of the small
state dimension used for the results in this paper.

B. Sequential Monte Carlo and Particle Filtering

Sequential Monte-Carlo (SMC) methods, such as PFs,
constitute a class of techniques that estimate the posterior
distribution in SSMs, and SMCs have recently emerged as a
useful tool in learning of SSMs (e.g., [15]). PFs approximate
the posterior density p(xt|y0:t) by a set of N weighted state
trajectories as

p(xt|y0:t) ≈
N∑
i=1

qitδxi
t
(xt), (13)

where qit is the importance weight of the ith particle xit and
δ(·) is the Dirac delta mass. The PF recursively estimates
(13) by repeated application of Bayes’ rule, where the states
are sampled according to a proposal density π(xt|xt−1,yt)),
which in the simplest case is the dynamical model. This
yields the state samples at each time step as

xit ∼ p(xt|xit−1), i ∈ {1, . . . , N}. (14)

The importance weights are updated using the likelihood as

qit ∝ qit−1p(yt|xit). (15)

The PF algorithm iterates between (14) and (15), combined
with a resampling step that removes particles with low
weights and replaces them with more likely particles.

In this paper, we adapt a conditional PF with ancestor sam-
pling (CPF-AS) [14] to generate the state trajectories needed

to learn the function µ describing the tire friction. CPF-
AS generates the state trajectories by a procedure similar
to the standard PF, except for that the PF is conditioned on
one prespecified reference trajectory x′0:T , which is retained
throughout the procedure. When used within an MCMC
procedure [17], it can be shown that after a burn-in period,
the state trajectories generated by CPF-AS are samples drawn
from the smoothing distribution p(x0:T |y0:T ) for any finite
N > 1 [14], [18], that is, the second distribution on the
right-hand side of (7).

IV. LEARNING THE TIRE FRICTION BY GP-SSMS

The objective is to infer the posterior distribution (6) of
the unknown function µ. In the presentation of the method
we focus on the lateral dynamics, that is, we learn the lateral
tire friction of front and rear wheels. However, the extension
to the longitudinal case is analogous.

A. Adapting the Model for Learning

The Bayesian learning method we leverage assumes dy-
namical systems on the form xt+1 = ft+wt, where the full
state-transition function ft is to be learned. Hence, we need
to adapt the vehicle model (4). Specifically, by manipulation
of (4) and using the basis function expansion approach (10),
the model can be written on the form [11]

ζt+1 =

γ
1
1 · · · γm1
...

...
γ1d · · · γmd


︸ ︷︷ ︸

A

φ
1(αt)

...
φm(αt)


︸ ︷︷ ︸

ϕ(αt)

+wt (16)

for some ζt = [ζ1,t ζ2,t]
T.

B. Tire Friction Learning with GP-SSM

With the reduced-rank GP-SSM (16) in combination with
the measurement model (5), we are now ready to formulate
our learning approach. Using (16), the problem of estimating
the distribution (6) now amounts to infer the distribution of
A and Q, that is, to estimate the distribution

p(A,Q|y0:T ), (17)

where the components in A have a prior Gaussian distribu-
tion according to (11). To estimate the covariance matrix Q,
we impose the additional assumption that the prior of Q is
inverse-Wishart (IW) distributed according to

Q ∼ IW(`Q,ΛQ). (18)

The IW distribution is a distribution over (real) positive
definite matrices, and has the degrees of freedom `Q and
positive definite scale matrix ΛQ as hyperparameters. Letting
an unknown covariance matrix have the IW distribution as
prior distribution is common due to its properties and has
been used in automotive applications before (e.g., [19], [20]).

Due to that the components of the system matrix A in
(17) have a Gaussian prior (11), A is Matrix-Normal (MN )
distributed according to

A ∼MN (0,Q,V ). (19)



With A MN distributed and Q IW distributed, the joint
prior p(A,Q) is MNIW distributed according to [21]

p(A,Q) =MNIW(A,Q|0,V , `Q,ΛQ), (20)

where V has the inverse spectral density of the covariance
function as diagonal entries [15],

V = diag(
[
S−1(λ1) · · · S−1(λm)

]
), (21)

and where diag(·) is the diagonal matrix. To estimate
(17), we need the two densities p(A,Q|x0:T ,y0:T ) and
p(x0:T |y0:T ) similar to the right-hand side in (7).

1) Estimating the State Posterior: The state posterior
p(x0:T |y0:T ) depends on the tire friction through (4), which
implies

p(x0:T |y0:T ) =

∫
p(x0:T |A,Q,y0:T ) dAdQ. (22)

Hence, we need to sample from p(x0:T |A,Q,y0:T ). We use
CPF-AS, outlined in Algorithm 1, which produces samples
that are asymptotically consistent with (22) when encapsu-
lated into an MCMC procedure [14].

Algorithm 1 CPF-AS
Input: x0:T (k), u0:T−1, N , model {a,G,µ,Q,D,R}.
Output Trajectory x0:T (k + 1).

1: Sample xi
0 ∼ p(x0), ∀i ∈ {1, . . . , N − 1}.

2: Set xN
0 = x0(k).

3: for t← 0 to T − 1 do
4: Compute slip angles αi

t ∀i ∈ {1, . . . , N}.
5: Set qit ∝ N (yt|hi

t +D
i
tµ(α

i
t),R), ∀i ∈ {1, . . . , N}.

6: Sample ai
t with P(ai

t = j) ∝ qjt , ∀i ∈ {1, . . . , N}.
7: Sample xi

t+1 ∼ N (xt+1|aai
t

t +G
ai
t

t µ(α
ai
t

t ),Q),
∀i ∈ {1, . . . , N}.

8: Set xN
t+1 = xt+1(k).

9: Sample aN
t P(aN

t = j) ∝ qjtN (xN
t+1|aj

t +G
j
tµ(α

j
t),Q).

10: Set xi
1:t+1 = {xai

t
1:t,x

i
t+1}, ∀i ∈ {1, . . . , N}.

11: end for
12: Draw J with P(i = J) ∝ qiT .
13: Set x0:T (k + 1) = xJ

0:T .

2) Learning the Tire Friction: To learn the posterior (17),
that is, to learn the PDF of the function describing the
tire friction and process-noise covariance that accounts for
modeling errors, we use Bayes’ rule,

p(A,Q|x0:T ,y0:T ) ∝ p(x0:T ,y0:T |A,Q)p(A,Q). (23)

The likelihood p(x0:T ,y0:T |A,Q) can be written as

p(x0:T ,y0:T |A,Q) =

p(x0)

T−1∏
t=0

p(xt+1|xt,A,Q)︸ ︷︷ ︸
p(x0:T |A,Q)

T∏
t=0

p(yt|xt,A,Q)︸ ︷︷ ︸
p(y0:T |x0:T ,A,Q)

. (24)

Conditioned onA andQ, the vehicle model (4) and measure-
ment model (5) are Gaussian, implying that the two terms
p(x0:T |A,Q) and p(y0:T |x0:T ,A,Q) in (24) are Gaussian.
The density p(x0:T ,y0:T |A,Q) is Gaussian since it is a
product of Gaussians. Therefore, we can utilize the concept

of conjugate priors. If a prior distribution belongs to the same
family as the posterior distribution, the prior is conjugate to
the likelihood. For Gaussian distributed data, an MNIW
distribution is a conjugate prior [22], which results in closed-
form expressions for the update of A and Q [15]. Define

Φ =

T∑
t=0

ζtζ
T
t , (25a)

Ψ =

T∑
t=0

ζtϕ(αt)
T, (25b)

Σ =

T∑
t=0

ϕ(αt)ϕ(αt)
T. (25c)

Then it follows that the joint posterior is

p(A,Q|x0:T ,y0:T ) = p(A|Q,x0:T ,y0:T )p(Q|x0:T ,y0:T ),
(26)

where
p(Q|x0:T ,y0:T ) =

IW(Q|T + `Q,ΛQ + Φ−Ψ(Σ + V )−1ΨT), (27)

p(A|Q,x0:T ,y0:T ) =

MN (A|Ψ(Σ + V )−1,Q, (Σ + V )−1). (28)

Algorithm 2 Proposed method for tire-friction learning
Input: y0:T , u0:T−1, priors (20), (21).
Output K MCMC samples from p(A,Q,x0:T |y0:T )

1: Sample initial guess x0:T (0), Q(0), A(0).
2: for k ← 0 to K − 1 do
3: Sample x0:T (k+1) given Q(k), A(k) using Algorithm 1.
4: Compute slip angle α0:T .
5: Compute ϕ(α0:T ) in (16) using (9b).
6: Compute ζ0:T in (16).
7: Compute Φ, Ψ, Σ using (25).
8: Sample Q(k + 1) given A(k), x0:T (k + 1) using (27).
9: Sample A(k+1) given x0:T (k+1), Q(k+1) using (28).

10: Set µ = A(k + 1)ϕ.
11: end for

V. IMPLEMENTATION ASPECTS

Automotive-grade inertial sensors usually have bias that
affects the estimation performance. Since the proposed
method uses batches of measurement data, it is possible to
remove the constant part of the bias beforehand. If the data
set is longer than a few minutes, such that the time-varying
aspects of the bias dominate, bias estimation can be directly
incorporated into the framework. By modeling the bias
dynamics as a random walk process, bias estimation can be
implemented in a computationally efficient manner by using
a Rao-Blackwellized particle filter (RBPF) in Algorithm 1,
where the bias states are estimated using Kalman filters
constrained on the particle trajectories [23].

Prior knowledge of the tire friction can be used to initialize
the algorithm and therefore possibly improve convergence
speed. The tire friction has a linear dependence on the wheel
slip for small slip angles (the tire stiffness) and there is a
decrease in the slope until, usually but not always, the friction



reaches its peak value (the peak friction) [3]. To leverage this,
we can split up the friction function into two parts,

µ(αt) = µ̃(αt) + ∆µ(αt), (29)

where µ̃(αt) is the prior information. Hence, the estimation
problem of determining the tire friction µ(αt) amounts to
estimating the variation ∆µ(αt) around the initial guess
µ̃(αt), which reduces initial uncertainty.

We rely on inertial sensors to measure the vehicle state.
The yaw rate is directly measured, but the accelerometer only
implicitly measures the velocity. Therefore, the tire friction
enters in both process model and measurement model. Prior
knowledge about the tire friction can be used in the mea-
surement model, by modeling the measurement equation as
a known function for a range of the slip values. For instance,
for slip angles in the range −β ≤ αj ≤ β, j ∈ {f, r} for
a small β (e.g., β = 1deg), we can model the measurement
equation as linear in the slip. Similar to the initialization
(29), it can have significant effect on the convergence speed.

VI. EXPERIMENTAL RESULTS

We evaluate Algorithm 2 on three data sets obtained on
snow, all roughly 250s long. The data has been recorded
from test drives using a mid-size SUV on multiple loops of
a track. Due to the proximity in time between the test drives,
the road conditions are similar in all of the data sets.

Algorithm 2 is executed for K = 500 iterations, which is
a factor of 20 less than used in [11] and the number of burn-
in samples is Kbi = 100. We use the initialization routines
described in Sec. V for speeding up convergence. We use
a sampling period of Ts = 0.04s for time discretization of
the vehicle dynamics, resulting in (4), and for obtaining the
measurements (5). The chosen sampling period corresponds
to each data set having roughly 6000 measurements. We split
up each of the three data sets into two sets; one set is used
for the actual learning and the other is used for validation.
Hence, the lengths of the data sets used for learning are
about 120s. We use 10 basis functions each for the front and
rear tire, which gives m = 100 basis functions in total. The
underlying particle filter uses N = 500 particles.

Fig. 2 shows the estimated mean of the lateral tire-friction
curve for the front (first row) and rear (second row) tire in
black solid for the three data sets. We do not have ground
truth for the tire friction. However, the shape of the curve and
the peak friction are similar to what has been reported in lit-
erature for snow [3]. For instance, the estimated peak friction
µf,max for the six plots are between 0.25 . µf,max . 0.38,
which is consistent with [3], where peak friction coefficients
between 0.25 . µf,max . 0.45 were reported for a high-
precision test rig, depending on tire pressure, studded/regular
winter tire, and other factors. Although not being ground
truth, it still indicates that the estimates are reasonable.
Fig. 2 also displays the front and rear tire-friction curves
of a fitted Pacejka tire model [1] (black dash-dotted) to the
learned function for all three data sets. We have identified
the Pacejka model by minimizing the norm of the deviation

of the Pacejka tire model to the respective estimate, scaled
with the covariance cov(Aϕ(αi)),

min
µi,Bi,Ci,Ei

∫
1

cov(Aϕ(αi))
‖Âϕ(αi)− Fi(αi)‖dαi, (30)

for i ∈ {f, r}, where µ, B, C, and E are the peak,
stiffness, shape, and curvature factor, respectively. Due to the
weighting with the uncertainty in (30), the estimates where
most data are located are given a higher confidence.

The lowest row in Fig. 2 shows the excitation level of the
underlying data for the range of slip angles. The slip angles
shown are the estimates from the last of the K iterations
of Algorithm 2. We stress that the data in the lowest plots
are not used for learning but are outputs from Algorithm 2.
For learning, we only employ the onboard automotive-grade
wheel-speed sensors for computing the forward velocity,
the steering angle, the yaw rate, and lateral acceleration
measurements. Due to the zero-mean prior of the function
coefficients in (11), the estimates (black solid) do not suffer
from overfitting issues outside of the available data range.
Instead, they smoothly converge to the zero-mean prior.

To validate the accuracy of the learned tire friction func-
tions, Fig. 3 shows the measured yaw rate (red dashed, upper)
and lateral acceleration (red dashed, lower), together with
the predicted quantities (black solid) when simulating the
system using the steering and longitudinal velocity inputs
for a portion of the first of the three data sets. Note that it
is a pure simulation of the vehicle model that has been used
to generate the trajectories, with the average estimate of the
tire friction (i.e., the black solid lines in the two upper left-
most plots in Fig. 2) to predict the forces. The resulting tire
models give accurate prediction capabilities when comparing
to the measured quantities.

VII. CONCLUSION

We presented an experimental evaluation of a novel
method for learning the nonlinear function describing the
dependence between wheel slip and tire friction. The method
is fully Bayesian and is based on recent developments in
particle MCMC and GP-SSMs. A key feature is that the
method only uses inertial, steering-wheel, and wheel-speed
sensors, which are typically installed in production vehicles.

From the experimental results on three data sets obtained
on snow, the proposed method seems capable of learning
the nonlinear tire-friction curve in a Bayesian framework.
We do not have access to ground truth, but the estimates are
consistent with estimates reported in literature.
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