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Abstract
Naive estimation of horizontal wind velocity over complex terrain using measurements from
a single wind-LiDAR introduces a bias due to the assumption of uniform velocity in any
horizontal plane. While Computational Fluid Dynamics (CFD)-based methods have been
proposed for bias removal, there exist several issues in the implementation. For instance,
the upstream atmospheric boundary layer thickness or direction are unknown. Conventional
CFD-based corrections use trial and error to estimate the bias. Such approaches not only
become numerically intractable for complicated flows, e.g. when the number of unknowns
is large, but they also suffer from the fact that there is no guarantee for optimally of the
obtained results. We propose a direct-adjoint-loop (DAL) optimization based framework to
estimate such unknown parameters in a systematic way. For the validation of the method,
we performed an experimental study using DIABREZZA LiDAR on a complex terrain for
two wind directions of northwesterly (NW) and southeasterly (SE). The slope error improved
from -0.09 to -0.02 for SE and from -0.09 to +0.04 for NW.
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Abstract. Näıve estimation of horizontal wind velocity over complex terrain using
measurements from a single wind-LiDAR introduces a bias due to the assumption of uniform
velocity in any horizontal plane. While Computational Fluid Dynamics (CFD)-based methods
have been proposed for bias removal, there exist several issues in the implementation. For
instance, the upstream atmospheric boundary layer thickness or direction are unknown.
Conventional CFD-based corrections use trial and error to estimate the bias. Such approaches
not only become numerically intractable for complicated flows, e.g. when the number of
unknowns is large, but they also suffer from the fact that there is no guarantee for optimally
of the obtained results. We propose a direct-adjoint-loop (DAL) optimization based framework
to estimate such unknown parameters in a systematic way. For the validation of the method,
we performed an experimental study using DIABREZZA LiDAR on a complex terrain for two
wind directions of northwesterly (NW) and southeasterly (SE). The slope error improved from
-0.09 to -0.02 for SE and from -0.09 to +0.04 for NW.

1. Introduction
The vertical wind profiling LiDARs retrieve the horizontal velocity, Vh , by processing the line-
of-sight (LOS) velocities at each height assuming homogeneous Vh over the sampled volume. In
order to retrieve the wind velocity vector at a given height, it is assumed that the flow remains
homogeneous over the sampled volume at a given height. Using such assumption, the three
components of the wind vector velocity are reconstructed using trigonometric relations from the
radial LOS velocities given by LiDAR as written below



vLx =
LOS2 − LOS4

2sinϕ
,

vLy =
LOS1 − LOS3

2sinϕ
,

w = LOS0,

V L
h =

√
(vLx )2 + (vLy )2

(1)

where the definition of homogeneous velocity components vLx , v
L
y , w, azimuth angle θ, elevation

angle ϕ are given in Fig. 1. Also shown in Fig. 1 is the direction of transmitted beams from
the LiDAR along which LOS velocities are measured.

The excellent performance of a single LiDAR such as DIABREZZA is demonstrated on a flat
terrain in terms of regression error and LiDAR availability when Eq. 1 is used [1]. However,
on a complex terrain, the bias due to the homogeneous assumption may increase [2]. The error
is due to the variation of vertical velocity, w. In this case, the un-biased velocity components
vx, vy to the first order, at each height are given by

vx = vLx − z
dw

dx
,

vy = vLy − z
dw

dy
,

Vh =
√

(vx)2 + (vy)2

(2)

As indicated by Eq. 2, the corrected components of wind vector velocity can be retrieved from
the ones that are evaluated based on homogeneous assumption minus the gradients of vertical
velocity at each direction multiplied by the elevation. The main challenge for the correction of
the LiDAR measurements in case of distortions in the wind vector, e.g. flow over a complex
terrain, is that it is not feasible to compute the vertical velocity gradients solely based on the
LOS data. Instead, other fluid models such as computational fluid dynamics (CFD) should be
used to estimate dw

dx and dw
dy at each height above the LiDAR, z.

There are examples in the literature [3, 4, 5, 6] in which linear models or CFD simulations
were used to correct the LiDAR measurements to retrieve Vh using an approach similar to
employing Eq. 2 on a complex terrain; however, as we see in the next section, there are non-
trivial challenges for performing the numerical simulation in such cases. For instance, Hofsäß
et al. [6], which proposed an extension of Eq. 2, assumed a linear model to relate the gradient
of the wind vector velocity to the known variables. They demonstrated that the use of the
gradient of velocity for LiDAR retrieval improves the reconstruction accuracy. However, the
linear model uses many assumptions and is not as accurate as CFD models. In this paper,
we propose the use of direct-adjoint-looping (DAL) optimization method [7] to overcome the
difficulties of CFD simulations when the operating conditions, e.g. the inlet velocity profile, are
unknown. Adjoint method gives the gradient of the cost function, which is used for estimation
and data-assimilation, with a computational cost comparable to that of a single CFD simulation
regardless of the number of unknowns.

The rest of the paper is organized as follows. In Section 2, we first discuss the governing
equations and the numerical method for the CFD simulation. We then formulate the continuous
adjoint equations used in the DAL method and discuss the implementation for atmospheric flows
for LiDAR correction. In Section 3, the experimental campaign is described. In Section 4, we
discuss the results of CFD-based optimization and correction on LiDAR retrieval in terms of
regression error and uncertainty percentage . In Section 5, we provide the concluding remarks.



Figure 1. Five beam directions (0-4) of the LiDAR and definition of azimuth angle θ and
elevation angle ϕ. The radial beams are along the LOS velocities. Also shown are the wind
velocity components vx,vy, and w with respect to their orientation to North (N), East (E), South
(S) and West (W) directions.

2. Correction method
2.1. Governing equations
The flow is governed by steady-state incompressible Navier-Stokes equations described below
(using Einstein notation)

∂vj
∂xj

= 0,

∂vivj
∂xj

+
∂pi
∂xi
− ∂

∂xj
(νeff

∂vi
∂xj

) = 0

(3)

with v, p as time-averaged velocity and pressure and νeff is the effective viscosity. In this
study, we use two-equation turbulence model with Reynolds Averaged-Navier-Stokes (RANS)
formulation to calculate νeff and flow field variables.

Boundary conditions are as follows: at the surface of the terrain the no-slip boundary
condition is used i.e. v = 0. For the outlet, we use the zero Nuemann boundary condition
i.e. we set the normal gradient of velocity to be zero (ni∂/∂xi)vi = 0 with n as the normal unit
vector. Consistent with various studies dealing with CFD simulation of airflow in the complex
terrain [8], we use the standard log-profile model for boundary condition at inlet, which is given
below

vin =
v∗

κ
ln
(z − zg + z0

z0

)
,

v∗ = κ
vref

ln
zref+z0

z0

(4)

with κ = 0.41 as von Karman’s constant, v∗ as friction velocity, vref ,zref as some reference
velocity and height, z0 as surface roughness height, and zg as ground height.

In Eq. 4, vref needs to be determined at a certain elevation such that the inlet velocity profile
becomes determined. Thus, a major challenge in solution of equations 3 and 4 over complex
terrain is that the value for vref is unknown and needs to be estimated. Our approach is to
take advantage of the fact that LOS velocities are available. Hence, one can use such data and



Figure 2. A typical simulation of airflow over a complex terrain. Velocity vectors are denoted
by black vectors. The location of LiDAR is highlighted at the tip of the upsides down cone.

assimilate it into Navier-Stokes equations for the best estimation of the unknown parameters. In
this paper, we propose an optimization-based solution for LiDAR data-assimilation to estimate
such unknowns.

2.2. Details of Numerical Solver
We use OpenFOAM [9] for CFD simulations, which is based on a finite-volume method with a
collocated grid arrangement and offers object-oriented implementations that suit the employed
continuous adjoint formulation used for optimization as well as simulation of atmospheric flows
on a complex terrain. Pressure and velocity are decoupled using the SIMPLE algorithm
technique in the state/adjoint equations. For the convection terms, second order Gaussian
integration is used with the Sweby limiter [10] for numerical stability of external flows
while maintaining the accuracy. For diffusion, Gaussian integration with central-differencing-
interpolation is used. A steady-state and incompressible solver with k − ε Reynolds-averaged
Navier Stokes (RANS) turbulence closure model was employed on discretized domain comprising
of 4.2 million nodes mapping a terrain swathe of 1.6km 2.5 km 2.5 km. Fig. 2 shows a typical
snapshot of the solution on the numerical domain used in this study.

It should be noted that rough wall-functions for the atmospheric boundary layer (ABL) is
used in OpenFOAM to be consistent with formulation of [8]. OpenFOAM and RANS turbulence
closure models have been tested for complex terrain simulations in numerous examples (see for
instance [11, 12]).

2.3. Optimization using continuous adjoint method
As discussed in Section 2.1., in order to carry out a correct CFD simulation on a complex terrain,
the inlet boundary conditions need to be estimated, since the values of vref can greatly impact
the solution of equations 3. Conventional methods use trial and error for such a purpose. But
they lack any optimally guarantee for the results and also the computational cost is greatly
larger. In this study, we propose an optimization algorithm to estimate the unknowns for CFD
simulation in a systematic way. The optimization problem is formulated as



min
vref

J =

N∑
i

γi(LOSi − LOSCFD,i)
2,

s.t. R(v, p,vref ) = 0,

(5)

where coefficients γi are the weighting factors in the cost function and R denotes the constraints
arising from the state governing equations, i.e. Navier-Stokes Eq. 3 and the inlet boundary
condition 4. Inspired by Eq. 2, we set γi to be proportional to the height above the LiDAR.
Moreover, N is the total number of the measurements. As shown in Fig. 1, for each elevation
there are 5 LOS measurements. Hence, the total number of available data is 5 times the number
of ranges over which LOS is measured. In this study, at 20 elevations data is measured so
in overall N = 100. LOS, as depicted in Fig. 1, is the radial line-of-sigh-velocity. We hence
define the cost function J as the square of difference between LOS values measured by LiDAR
and CFD simulations at each measurement point. The unknown parameters, i.e. vref at inlet
of the domain, are determined as minimizers of such cost function defined in the constrained
optimization problem of Eq. 5. We use a direct-adjoint-looping (DAL) method [7], breifly
explained below, to solve the optimization problem and estimate the CFD unknowns.

In order to solve the optimization problem, we define Lagrangian L to enforce the Navier-
Stoke equations and log-profile boundary conditions, as

min
vref

L = J + 〈P,R〉, (6)

where P = (u, pa) is the vector of adjoint variables, u as adjoint velocity, and pa as adjoint
pressure. We use the notation 〈f, g〉 =

∫
D fgdV with D as the whole domain. The adjoint

variables are interpreted as Lagrange multipliers to enforce the state equations Eq. 3 and 4.
To ensure (at least locally) the optimality of the solution, we enforce δL = δvref

L+ δv,pL = 0,
where δ denotes variation of a dependent variable. We choose the adjoint variables such that
δv,pL = 0. The sensitivity equations with respect to unknown parameter is then obtained as
δL = δvref

L. This idea is the core of the adjoint method (please refer to appendix A of [7] for
details of our derivation).

By enforcing that first order variations with respect to the state variables vanish at optimal
solutions, i.e., δv,pL = 0, we obtain the adjoint equations

∂uj
∂xj

= 0,

uj
∂vj
∂xi
− vj

∂ui
∂xj
− ∂

∂xj
(νeff

∂ui
∂xj

) +
∂pa
∂xi

+
∂J
∂v

= 0

(7)

The adjoint boundary conditions are

inlet : u = 0, (ni∂/∂xi)pa = 0,

outlet : vnut + νeff (ni∂/∂xi)u
t = 0,

pa = vnun + νeff (ni∂/∂xi)(u
n),

terrain : u = 0, (ni∂/∂xi)pa = 0,

(8)

where un and ut are the normal and tangential component of adjoint velocity, respectively.
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Figure 3. Flow chart for the Direct-Adjoint-Looping method.

In deriving Eqs. 7 and 8, we use the ‘frozen turbulence’ hypothesis; that is we ignore the
variation of turbulent eddies while solving the adjoint equations [13]. An assessment of the
validity of this assumption can be done for a given problem by comparing adjoint sensitivities to
those computed using a finite-difference method. For the range of Reynolds number considered
in this study, we realized such an assumption is indeed an appropriate one.

After computation of the adjoint field we obtain the sensitivity of the cost function with
respect to inlet velocity and temperature, i.e. the design variables, as follows

∇vref
J = pa|inn− νeff (n.∇)va|in, (9)

Please note that Eq. 9 is a vector equation that deals with all components of vref . Once the
value of the gradient is known, we can use the gradient descent approach to find the minimizer
of Eq. 5, which gives the value of unknown parameters required for Eq. 4.

2.4. DAL algorithm and implementation
We illustrate the iterative solution procedure schematically in Fig. 3. Determination of a solution
begins with an initial guess for the the direction and magnitude of vref . The set of ‘direct’ state
and adjoint equations are solved in a loop and the subsequent sensitivity calculation is used to
obtain the next guess for the optimal values of the unknowns, i.e. the inlet boundary condition.
This process is repeated until the convergence criterion for the cost functional is satisfied, i.e.
|J n+1 − J n| ≤ ε, with n as the number of iterations.

3. Description of Experiments
The measurements were obtained in complex terrain as shown in Fig 4. A reference mast with
cup anemometers was erected nearby to serve as the ground truth for the LiDAR measurements.
The data were filtered using the concept of automatic adapting parameters function to maximize
the signal-to-noise ratio for various atmospheric condition [1]. The averaging period was set at
10-min intervals.



Figure 4. a) Field test site and device, b) site map, c) terrain profile. The measurement period
is 3 months.

Figure 5. Comparison of coefficients of correlation. a) NW, b) SE wind. Before CFD correction:
blue, after CFD correction: black.

4. Results and Discussion
We first summarize the LiDAR horizontal velocity correction and validation as follows:

• We employ Eq. 1 over the course of 10-minutes to find the averaged values of vLx , vLy .

• We use the DAL algorithm of the form described in Fig. 3. To do so, we use the LOS
measurement given by LiDAR (determined in previous step) to evaluate the cost function
5. The outcome of DAL algorithm is the inlet velocity profile given by Eq. 4 such that the
CFD problem of Eq. 3 is fully determined.

• We then extract the values of the vertical velocity gradient i.e. dw
dx and dw

dy at each height.

• We then use Eq. 2 to find the un-baised components of the velocity.

• For each 10-minutes interval we compare the horizontal velocity obtained by the correction
method with that of the anemometer.

Fig 5 illustrates LiDAR to cup horizontal wind speed correlation at 57m altitude on a
complex terrain before and after CFD-correction based on optimization. As shown for both
wind directions of NW and SE, before correction a large under-estimation is observed. Such
bias, which is due to homogeneous assumption, is removed significantly after the correction.

The improvement after correction for both slope and total average uncertainty, using IEC
61400-12-1, is apparent as also confirmed by results of Table 1. In the analysis, the uncertainty
on the non-homogeneous flow is assumed to be neglected owing to the CFD correction but 2%
uncertainty caused by complex flow is considered for the uncertainty of the cup anemometer



instead. The slope error improved from -0.09 to -0.02 for SE and from -0.09 to +0.04 for NW
and the total average uncertainty decreased from 12.37% to 4.77%.

5. Conclusions
We demonstrated the CFD- correction based on optimization could significantly reduce the
under-estimation between LiDAR and cup anemometer by accessing vertical wind variations
from simulations with data assimilation. Validation is carried out for a complex terrain campaign
data. Promising results were achieved in terms of the regression slope and the total average
uncertainty.
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