
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Near-optimal control of motor drives via approximate
dynamic programming

Wang, Y.; Chakrabarty, A.; Zhou, M.; Zhang, J.

TR2019-116 October 18, 2019

Abstract
Data-driven methods for learning near-optimal control policies through approximate dynamic
programming (ADP) have garnered widespread attention. In this paper, we investigate how
data-driven control methods can be leveraged to imbue near-optimal performance in a core
component in modern factory systems: the electric motor drive. We apply policy iteration-
based ADP on an induction motor model in order to construct a state feedback control policy
for a given cost functional. Approximate error convergence properties of policy iteration
methods imply that the learned control policy is near-optimal. We demonstrate that carefully
selecting a cost functional and initial control policy yields a near-optimal control policy that
outperforms both a baseline nonlinear control policy based on backstepping, as well as the
initial control policy.

IEEE International Conference on Systems, Man, and Cybernetics

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2019
201 Broadway, Cambridge, Massachusetts 02139





Near-optimal control of motor drives via approximate dynamic
programming

Yebin Wang1, Senior Member, IEEE, Ankush Chakrabarty1, Member, IEEE, Meng-Chu Zhou2, Fellow, IEEE,
Jinyun Zhang1, Fellow, IEEE

Abstract—Data-driven methods for learning near-optimal
control policies through approximate dynamic programming
(ADP) have garnered widespread attention. In this paper, we
investigate how data-driven control methods can be leveraged
to imbue near-optimal performance in a core component in
modern factory systems: the electric motor drive. We apply
policy iteration-based ADP on an induction motor model in
order to construct a state feedback control policy for a given
cost functional. Approximate error convergence properties of
policy iteration methods imply that the learned control policy
is near-optimal. We demonstrate that carefully selecting a cost
functional and initial control policy yields a near-optimal control
policy that outperforms both a baseline nonlinear control policy
based on backstepping, as well as the initial control policy.

I. INTRODUCTION

Induction motors (IMs) have been limited to low and
mid-end industrial applications due to their inferior perfor-
mance compared to permanent magnetic motors. Therefore,
improving the operational efficiency of IMs is expected to
greatly expand their market share. Largely, existing control
designs such as sliding mode or nonlinear control [1], [2]
focus on guaranteeing system stability without ensuring
high-performance and adaptation mechanisms or ‘machine
intelligence’. Until recently, most researchers focused on
optimizing transient performance of IMs. For example, [5]
utilized model predictive control for torque regulation, where
both the active voltage vector and the duty cycle were
optimized in a receding horizon manner. The authors in [6]
proposed to replace current-loop controllers in conventional
vector control [7] with two neural approximations of optimal
control policies. Also, [8] devised optimal flux references to
minimize the net energy loss of the motor during operation.

This work investigates the state feedback optimal control
design for IMs operating at a constant operation point, for
example: constant speed, flux, and load torque. This problem
serves as a good starting point and can be extended to more
involved scenarios such as output feedback and torque regu-
lation, with or without full knowledge of the IM model. Since
the IM dynamics are nonlinear, it is extremely challenging
to synthesize a state-feedback optimal control policy. This
is owing to the fact that constructing optimal controllers

1Y. Wang, A. Chakrabarty and J. Zhang are with Mitsubishi
Electric Research Laboratories, Cambridge, MA 02139, USA. Email:
{yebinwang,chakrabarty,jzhang}@merl.com.

2M. C. Zhou is with Department of Electrical and Computer Engineering,
New Jersey Institute of Technology, Newark, NJ 07102, USA. Email:
zhou@njit.edu.

for nonlinear systems involves solving the Hamilton-Jacobi-
Bellman (HJB) equations, given by

∂V ∗(x, t)

∂t
= min

u∈U

{
L(x, u) +

∂V ∗(x, t)

∂x
f(x, u)

}
, (1)

where x ∈ Rn denotes the system state, u ∈ U ⊂ Rm
denotes the control action in the admissible control set U ,
V ∗(x) denotes a value function, L(x, u) is a stage cost, and
f(x, u) is the vector field appearing in the system dynamics;
that is, ẋ = f(x, u).

Motivated by recent progress on data-driven (near-)optimal
control theory, we investigate the potential of implementing
approximate dynamic programming (ADP) [9], [10] to ensure
high-performance in induction motor drives. Two common
algorithms used in ADP are policy iteration (PI) and value
iteration. Both policy and value iteration leverage operational
data obtained from different scenarios to construct near-
optimal control policies via function approximators. Policy
and value iteration have been particularly lauded for linear
time-invariant (LTI) systems, for example, as demonstrated
in [11]–[13], [16]. For nonlinear systems, the application of
ADP has been largely limited to the state feedback case [10],
[14], [17]–[19], with a recent exception being [20].

To the best of our knowledge, this work constitutes the
first study on optimal feedback control of IMs via ADP.
Although restricting ourselves to a seemingly straightforward
case: assuming state feedback and exact knowledge of the
IM model, we expose challenging hurdles that need to
be surmounted in order to incorporate ADP into practical
applications. One of our major findings is that the choice
of the initial stabilizing control policy greatly affects the
convergence of policy iteration algorithm; and there is a
necessity to estimate the region of attraction associated with a
control policy. Indeed, loss of guaranteed convergence may
occur unless each consequent control policy has a domain
of attraction that is a strict subset of the previous one.
Although this study is at a preliminary stage, it identifies
major challenges before ADP can contest standard control
algorithms such as model predictive control and PID in
industrial settings.

The remainder of this paper is organized as follows. In
section II, we formulate a speed regulation problem and
present preliminaries on data-driven optimal control. Sec-
tion III describes our policy iteration-based state feedback
optimal control synthesis based on a well-known IM state-
space model. The results of our control policy are reported



in Section IV. Concluding remarks and future work are
consigned to Section V.

II. PRELIMINARIES

A. Problem statement and design objective
A typical IM model consists of five states: two stator

currents (or fluxes), two rotor fluxes, and a rotor speed. The
representation of the state dynamics depends on the reference
frame we choose. Consider a reference frame rotating at an
angular velocity ω1. Consequently, the IM state-space model
is given by

i̇ds = −γids + ω1iqs + β(αφdr + ωφqr) +
uds
σ

(2a)

i̇qs = −ω1ids − γiqs + β(αφqr − ωφdr) +
uqs
σ

(2b)

φ̇dr = −αφdr + (ω1 − ω)φqr + αLmids (2c)

φ̇qr = −αφqr − (ω1 − ω)φdr + αLmiqs (2d)

ω̇ =
µ

J
(φdriqs − φqrids)−

Tl
J
, (2e)

where notation is reported in Table I.

TABLE I
DESCRIPTION OF STATES AND PARAMETERS OF THE IM MODEL

Notation Description
ids, iqs stator currents in d- and q-axis
φdr, φqr rotor fluxes in d- and q-axis
ω, ω∗ rotor angular speed and its reference
uds, uqs stator voltages in d- and q-axis
ω1 angular speed of a rotating reference frame
φ∗ rotor flux amplitude reference

i∗ds, i
∗
qs references of stator currents in d- and q-axis

Tl, T
∗
l load torque and its reference

J moment of inertia
Ls, Lm, Lr stator, mutual, and rotor inductances
Rs, Rr stator and rotor resistances

σ
LsLr−L2

m
Lr

α Rr/Lr
β Lm/(σLr)
γ Rs/σ + αβLm
µ pLm/Lr
p number of pole pairs

For a reference frame rotating at an angular velocity
ω1 = ω + αLmiqs/φdr, we know that the q-axis rotor
flux vanishes. That is, φqr = 0. The horizontal axis of
such a rotating reference frame is always aligned with the
rotor flux vector, which is why it is commonly referred
to as the ‘field-oriented’ frame. This frame is of particular
interest for controller design because the motor operates at
constant speed, flux, and torque, implying the existence of
an equilibrium state. This enables us to pose the controller
design as a classical state-feedback stabilization problem.

The motor dynamics in the field-oriented frame are repre-
sented as follows:

i̇ds = −γids +

(
ω +

αLmiqs
φdr

)
iqs + βαφdr +

uds
σ

(3a)

i̇qs = −
(
ω +

αLmiqs
φdr

)
ids − γiqs − βωφdr +

uqs
σ

(3b)

φ̇dr = −αφdr + αLmids (3c)

φ̇qr = 0 (3d)

ω̇ =
µ

J
φdriqs −

Tl
J
, (3e)

For simplicity, we refer to the states in both models (2)
and (3) using the same notation (albeit, with abuse of
notation).

Suppose that the equilibrium induced by the rotating
reference frame results in the IM operating at a constant
speed ω∗, a constant rotor flux φ∗, and a constant load torque
T ∗l . Accordingly, the equilibrium state corresponding to these
constant operational modes can be written as:

xe =
[
ieds ieqs φedr φeqs ωe

]>
=
[
φ∗

Lm

T∗
l

µφ∗ φ∗ 0 ω∗
]>

. (4)

The corresponding equilibrium control action associated with
xe is given by

ue =

[
ueds
ueqs

]
= σ

 γ ieds − (ω∗ +
αLmi

e
qs

φ∗

)
ieqs − βαφ∗(

ω∗ +
αLmi

e
qs

φ∗

)
ieds + γ ieqs + βω∗φ∗

 .
(5)

Our objective is to design a state-feedback control policy
to ensure optimal IM performance during the transient and
subsequent regulation of the equilibrium xe, based on a given
cost function. Concretely, for a control policy uds and uqs, we
employ the following cost functional to evaluate the transient
performance:

C(u) =

∫ ∞
0

(
y>Qy + u>Ru

)
dt, (6)

where

y =

ids − iedsiqs − ieqs
ω − ωe

 , u =

[
uds − ueds
uqs − ueqs

]
,

and Q = Q> and R = R> are positive definite matrices that
weight the output tracking and control costs, respectively.

B. Policy iteration for optimal state-feedback stabilization

Designing optimal state feedback control policies for non-
linear systems is extremely challenging. In this work, we
propose the use of ADP [9] to tackle this problem. The main
steps involved in ADP is described below to make this paper
self-contained.

In the most general setting, we consider a class of nonlin-
ear systems modeled by

ẋ = f(x, u), x(0) = x0, (7)

where x ∈ Ωx ⊂ Rn is the vector of system state, Ωx a
compact set containing the origin in its interior, u ∈ Rm
is a vector of control inputs, and f : Rn × Rm → Rn is a
locally Lipschitz vector field in x and u to ensure uniqueness
and existence of solutions to the differential equation, and
f(0, 0) = 0. ADP is employed to compute a state-feedback



control policy u?(x) that minimizes a general cost functional

CL(u) =

∫ ∞
0

L(x, u) dt, (8)

where L(x, u) is positive definite for all x and u and
L(0, 0) = 0.

One embodiment of ADP is policy iteration [9], [21]–[23],
which involves iteratively improving an initial admissible
control policy using operational data until convergence to
the optimal policy. A prerequisite of policy iteration is the
availability of an initial admissible control policy u0(x). By
admissible, we mean that the control policy u0(x) stabilizes
the system (7) and incurs a finite cost CL < ∞. Typical
implementations of policy iteration involve policy evaluation
and policy improvement, which are discussed next.

1) Policy evaluation: Let i ∈ N ∪ {0}. Policy evaluation
involves solving for a positive definite Lyapunov (or reward)
function Vi(x) satisfying

∇Vi(x)f
(
x, ui(x)

)
+ L

(
x, ui(x)

)
= 0, (9)

for every x ∈ Ωx, where ∇Vi(x) = ∂Vi(x)/∂x is a row
vector.

2) Policy improvement: Policy improvement leverages the
updated reward function Vi in order to obtain an improved
control policy according to

ui+1(x)=arg min
u∈U
{L(x, u) +∇Vif(x, u)}, (10)

for every x ∈ Ωx, where U ⊂ Rm is the set of all admissible
control policies.

The ith control policy ui(x) and reward function Vi(x)
depend only on the state to be stabilized. Herein, we omit the
argument x to simplify notations. The policy evaluation step
solves (9) to compute a reward function Vi or its gradient
∇Vi corresponding to the current control policy ui. As a
system of first-order linear partial differential equations, a
closed-form solution of (9) is difficult to obtain, and typically,
an approximate solution is more practical to compute and
yields satisfactory performance. By properly parameterizing
the functional forms of ui and Vi (for example, via basis
function representations or neural approximators), one can
reduce (9) to a finite number of algebraic equations, enabling
the computation of an approximate solution. Specifically,
with linear parameterizations of Vi, for a sampled state x ∈
Ωx, the equation (9) is reduced to a linear algebraic equation.
The two steps (9)-(10) are repeated until convergence.

Remark 1. If control policy ui globally stabilizes a closed-
loop system, an exact solution Vi of (9) is always positive
definite. This is because a) it satisfies V̇i = −L(x, ui)
and thus Vi(x(t)) = Vi(∞) +

∫∞
t
L(x, ui)dt; b) given ui

stabilizing the system, x(∞) = 0 and Vi(∞) = 0. One
can further verify that Vi is also a Lyapunov function of
the closed-loop system with control policy ui+1. Eventually,
we conclude that starting with a stabilizing control policy u0,
policy iteration will produce a sequence of stabilizing control
policies {ui+1}, i ∈ N ∪ {0}.

Remark 2. The values of the cost functional (8) associated

with the sequence of control policies {ui}, i ∈ N ∪ {0}
monotonically decrease. In other words, the cost of the
closed-loop system with improved control policy ui+1 is no
greater than that associated with control policy ui.

Remark 3. The above discussion motivates why these types
of controllers are sometimes referred to as ‘near-optimal’
controllers [3], [4] or ‘approximate optimal’ [14], [15], since
optimality properties are a consequence of an infinite number
of basis functions used in the parameterization and the class
of functions being approximated.

We know that policy iteration algorithms exhibit the fol-
lowing convergence property [11].

Theorem 1. Consider system (7) and cost functional (8).
Suppose that u0(x) ∈ U is an admissible initial control
policy, and a positive definite solution Vi of (9) exists for
every i = 0, 1, · · · . Then,

1) ui+1 ∈ U for i ≥ 0;
2) CL(ui+1) ≤ CL(ui) for i ≥ 0;
3) limi→∞ CL(ui) = C∗L with C∗L ∈ [0,∞).

III. OPTIMAL STATE FEEDBACK CONTROL SYNTHESIS

This section discusses how to obtain initial admissible
control policies, effective parameterizations of reward func-
tions and control policies, along with implementation details
specific to the induction motor problem.

A. Constructing initial admissible control policies

1) Local linear quadratic regulator policy: Policy iter-
ation is used to synthesize a feedback control policy that
stabilizes the origin x = 0 of nonlinear systems of the
form (7). The induction motor speed control problem is to
regulate its outputs to certain values (ω∗, φ∗, T ∗l ), which, as
discussed in (4) and (5), is tantamount to stabilizing the
system (3) the equilibrium pair (xe, ue). To this end, we
formulate the tracking error dynamics

ė = f(e, xe) + g(u+ ue), (11)

where e := x − xe =
[
eid eiq eφd

eφq
eω
]>

, ue is
defined in (5), and f(e, xe) = [f1, . . . , f5]> with

f1 = −γ(eid + ieds) + βα(eφd
+ φ∗) +

eiq + ieqs
eφd

+ φ∗

×
(
Lmαeiq + Lmαi

e
qs + eφd

eω + eφd
ω∗ + eωφ

∗ + ω∗φ∗
)

f2 = −γ(eiq + ieqs)− β(eω + ω∗)(eφd
+ φ∗)− eid + ieds

eφd
+ φ∗

× (Lmαeiq + Lmαi
e
qs + eφd

eω + eφd
ω∗ + eωφ

∗ + ω∗φ∗)

f3 = Lmαeid + Lmαi
e
ds − αeφd

− αφ∗

f4 = 0

f5 =
1

J
(eiqeφd

µ+ eiqµφ
∗ + eφd

ieqsµ+ ieqsµφ
∗ − T ∗l ),

and g = (1/σ)
[
I2×2 02×3

]>
.

At the tracking equilibrium state (e, u) = 0, the tracking
error dynamics satisfy f(0, xe) + gue = 0. The control
objective is to stabilize the zero solution of the tracking



Ae =


−γ 2Lmαi

e
qs+ω

∗φ∗

φ∗ −α(Lm(ieqs)
2−β(φ∗)2)

(φ∗)2 ieqs

−Lmαi
e
qs+ω

∗φ∗

φ∗ −γ − Lmαi
e
ds

φ∗
Lmαi

e
dsi

e
qs−βω

∗(φ∗)2

(φ∗)2 −βφ∗ − ieds
Lmα 0 −α 0

0 µφ∗

J

ieqsµ

J
0

 . (13)

error dynamics, that is, e = 0. We observe that f(e, xe) is
nonlinear in e, and f(e, xe) does not possess any structure
that can easily be exploited for control synthesis. Both facts
pose challenges to design a global state feedback control
policy u(e) to stabilize the tracking error dynamics (11).

To proceed, we linearize the tracking error dynamics at
e = 0 and u = 0, and calculate the linear quadratic regu-
lator (LQR) policy based on the linearized error dynamics.
Linearization of (11) around (e, u) = 0 gives the following
linear system

ė = Aee+ g u, (12)

where Ae is described in (13). LQR design for (12) gives
a linear control policy uLQR

0 (e) = Ke by solving the
continuous-time algebraic Riccati equation.

2) Nonlinear state-feedback control policy: A common
shortcoming of linear control, when used to stabilize nonlin-
ear systems, is that it renders a limited region of attraction.
Since policy iteration has to be carried out within the region
of attraction, one has to construct the region of attraction
for every control policy ui, i = 0, 1, · · · . This is not only
very difficult to ensure, but also an undesirable property of
a control policy, limiting its usefulness in practical systems.
One way of mitigating this issue is to use a global control
policy as described in [2] via backstepping which results
in closed-loop tracking error dynamics that are globally
exponentially stable. We proceed as follows.

The speed control policy is given by

i∗qs =
1

µφdr
(−kωeω + T ∗l ) , (14)

where kω is constant, and eω = ω − ω∗. Without loss of
generality, we do not introduce flux control to regulate φdr
to φ∗. Instead, we regulate ids to i∗ds = φ∗/Lm, which
necessarily implies φdr(t) → φ∗ as t → ∞. With reference
currents given as i∗qs, i

∗
ds, the current control policy is derived

as follows

uds = σ
[
−kdeid − ω1iqs − αβφdr + γi∗ds + i̇∗ds

]
uqs = σ

[
−kqeiq + ω1ids + βωφdr + γi∗qs + i̇∗qs

]
,

(15)

where kd and kq are constant, and eid = ids − i∗ds and
eiq = iqs − i∗qs are the tracking errors of stator currents,
respectively. The control policy (14)-(15) consists of feed-
forward and feedback terms. Since policy iteration needs
an initial control policy in the form of u(e), we need to
reparameterize (14)-(15) as a function of the tracking errors.
Redefining the tracking error as

e = (eid, eiq, eφd
, eφq , eω)

= (ids − i∗ds, iqs − i∗qs, φdr − φ∗, 0, ω − ω∗),
(16)

we derive its dynamics

ė = fe(x, i̇
∗
ds, i̇

∗
qs) + ge

[
uds
uqs

]
, (17)

where fe = f(x)−[i̇∗ds, i̇
∗
qs, 0, 0, 0]> and ge = g. To facilitate

policy iteration, we need to represent fe and uds, uqs as
functions of e and i∗ds, i

∗
qs, φ

∗, ω∗. It is clear that i̇∗ds = 0.
Reparametrizing ω1 with e yields

ω1 = eω + ω∗ + αLm
eiq + i∗qs
eφd

+ φ∗
. (18)

Substituting (18) into (15), we represent fe in terms of
(ids, iqs, φdr, ω, i

∗
ds, i

∗
qs, φ

∗, ω∗, i̇∗qs). Considering the follow-
ing formula

iqs = eiq + i∗qs, i∗qs =
−kωeω + T ∗l
µ(eφd

+ φ∗)
,

ids = eid + i∗ds, φdr = eφd
+ φ∗, ω = eω + ω∗,

we express fe as a function of e and (i∗ds, i
∗
qs, φ

∗, ω∗, i̇∗qs).
Similarly, we reparameterize the nonlinear control policy

uds(e) = σ (γi∗ds − kdeid − αβ(eφd
+ φ∗) + ρd)

uqs(e) = σ

(
γ
−kωeω + T ∗l
µ(eφd

+ φ∗)
+ i̇∗qs − kqeiq

+β(eω + ω∗)(eφd
+ φ∗) + ρq) ,

(19)

where

ρd =
(eiqeφd

µ+ eiqµφ
∗ − kωeω + T ∗l )

µ2(eφd
+ φ∗)3

(−Lmαeiqeφd
µ

−Lmαeiqµφ∗ + kωLmαeω − e2φd
eωµ− e2φd

µω∗

−2eφd
eωµφ

∗ − 2eφd
µω∗φ∗ − eωµ(φ∗)2 − µω∗(φ∗)2

−LmT ∗l α)

ρq =
−(eid + i∗ds)

µ(eφd
+ φ∗)2

(−Lmαeiqeφd
µ− Lmαeiqµφ∗

+kωLmαeω − e2φd
eωµ− e2φd

µω∗ − 2eφd
eωµφ

∗

−2eφd
µω∗φ∗ − eωµ(φ∗)2 − µω∗(φ∗)2 − LmT ∗l α

)
.

Remark 4. Even though i∗qs is a function of e, we treat it as
a known time-varying signal to simplify the aforementioned
derivation of u(e). Tracking error (16) is different from that
used in the derivation of LQR. For the LQR case, e = x−xe
and the tracking error dynamics do not involve ẋe.

Note that the control policy (19), which depends on the
tracking error e and the reference (ω∗, φ∗, T ∗l ), does not
vanish at e = 0. Therefore, the cost functional (6) with
control policy (19) is not finite. Hence, (19) cannot be the
initial control policy of policy iteration. To eliminate this
issue, we remove the non-zero feedforward term from the



control policy. Rewriting (19), we get

uds(e) = uvds + ucds (20a)
uqs(e) = uvds + ucqs, (20b)

where uvds and uvqs vanish as e→ 0, and ucds and ucqs include
terms independent from e. Therefore, we can use uvds and uvqs
as the initial control policy of policy iteration.

B. Selecting the reward function and learned control policies

Essentially, policy iteration involves solving the partial dif-
ferential equation (9). A computationally efficient method of
solving this involves parameterizing the i-th reward function
Vi and i-th control policy ui via basis function expansions.
To this end, let {ϕj(x)}Nj=1 with ϕj(·) : Rn → R and
{ψj(x)}qj=1 with ψj(·) : Rn → Rm be two sets of linearly
independent, continuously differentiable functions and vector
fields, respectively. In addition, we assume that ϕj(0) = 0,
∀ 1 ≤ j ≤ N and ψj(0) = 0, ∀ 1 ≤ j ≤ q.

Assumption 1. Given ui(x) ∈ U and

ui(x) ∈ span{ψ1(x), · · · , ψq(x)},

assume that

Vi(x) ∈ span{ϕ1(x), · · · , ϕN (x)},
ui+1(x) ∈ span{ψ1(x), · · · , ψq(x)},

where Vi(x) and ui+1(x) are obtained from (9) and (10).

Assumption 1 ensures that one can find three sets of
weights {wi,k}Nk=1, {ci,k}qk=1, and {ci+1,k}qk=1, such that
the current control policy ui(x) =

∑q
j=1 ci,jψj(x), the

current reward function Vi(x) =
∑N
j=1 wi,jϕj(x), and the

improved control policy ui+1(x) =
∑q
j=1 ci+1,jψj(x) can

be adequately represented in the same functional space.

Remark 5. In general, Assumption 1 is difficult to verify,
because it essentially requires to solve the exact solution
of (9). On the other hand, even though Assumption 1 is
not satisfied or not verifiable, the approximation of weights
can still be numerically obtained based on methods, such
as the off-line approximation using Galerkin’s method [24].
In addition, for uncertain nonlinear systems, these weights
can be trained by using approximate-dynamic-programming-
based online learning methods [25], [26]. When approxima-
tion methods are used, the region of attraction Ωx, or Ωe for
tracking error dynamics, is required to be a compact set to
guarantee the boundedness of the approximation error [15].

Remark 6. Intuitively, one expects that a large number of
basis functions ϕi and ψj will be required to offer satisfactory
approximations of an initial control policy, reward function
and subsequent control policies. The selection of approxima-
tors for reward function and control policy emerges as one
of major challenges in the course of applying ADP to motor
drives. This entails deep understanding of partial differential
equations and approximation theory, and is beyond the scope
of this paper. Alternatively, in order to use uvds and uvqs in (20)
as an initial control policy, one can obtain its approximation

by training a neural network, which is consigned to the
journal extension of this work.

In this work, we select polynomial basis functions. Con-
cretely, for reward function approximation, we choose the
basis

{ϕj(e)} := {e2i , eiej , e4i , e2i e2j , 1 ≤ i, j ≤ 5}.

For the policy improvement step, the policy basis functions
are selected as

{ψj(e)} := {ei, e3i , eie2j , 1 ≤ i, j ≤ 5}.

Note that since g is constant, the basis functions required
to express any solution of the policy improvement step will
be a linear combination of the derivatives of Vi. Therefore,
selecting {ψj} to be derivatives of {ϕj(e)} ensures that the
improved policy is the exact (not approximated) optimum
induced by the approximate reward function Vi.

Even though the vanishing control policy uvds(e), u
v
qs(e)

defined in (20) can be used as an initial control policy,
its parameterization over polynomial basis functions ψ(e)
is difficult to obtain. For the ease of implementation, we
take further simplification and extract the linear portion of
nonlinear control policy (19) as an initial control policy, i.e.,

ulds = −kdeid −Kd2eiq +Kd3eφd
+Kd5eω

ulqs = Kq1eid −Kq2eiq +Kq3eφd
+Kq5eω,

(21)

where

Kd2 =
µω∗(φ∗)2 + 2LmT ∗

l α

µ(φ∗)2
,

Kd3 =
−αβµ2(φ∗)4 + T ∗

l µω
∗(φ∗)2 + 3Lm(T ∗

l )2α

µ2(φ∗)4
,

Kd5 =
kωµω∗(φ∗)2 + 2kωLmT ∗

l α− T
∗
l µ(φ∗)2

µ2(φ∗)3
,

Kq1 =
µω∗(φ∗)2 + LmT ∗

l α

µ(φ∗)2
, Kq2 =

kqφ∗ − Lmαi∗ds
φ∗

,

Kq3 = −
−βµω∗(φ∗)3 + 2LmT ∗

l αi
∗
ds + T ∗

l γφ
∗

µ(φ∗)3
,

Kq5 = βφ∗ −
γkω

µφ∗
−

(kωLmα− µ(φ∗)2)i∗ds
µ(φ∗)2

.

The control policy (19) can be locally approximated by a
summation of the linearized control policy (21) and

ucds
σ

= γi∗ds − αβφ∗ − T ∗
l

µ2(φ∗)3
(
µω∗(φ∗)2 + LmαT

∗
l

)
,

ucqs
σ

= γ
T ∗
l

µφ∗ + i̇∗qs + βω∗φ∗ +
i∗ds

µ(φ∗)2
(
µω∗(φ∗)2 + LmαT

∗
l

)
,

which can be rewritten as

ucds = σ
(
γi∗ds − αβφ∗ − ω∗1i∗qs

)
ucqs = σ

(
γi∗qs + i̇∗qs + βω∗φ∗ + ω∗1i

∗
ds

)
.

Note that uc =
[
ucds ucqs

]>
is different from ue in (5).

C. Performing policy iteration with polynomial bases

We will solve (9)–(10) on the basis of the aforementioned
parameterizations and tracking error dynamics. When using



the linearized control policy (21), we use the tracking error
dynamics (17) in both policy iteration steps. At the ith
iteration, the closed-loop system dynamics are given as
ė = fe + ge(u

c + uli(e)), where uc is independent from
e, and uli =

∑q
j=1 ci,jψj(e) is purely feedback based on

tracking error e. During ith iteration, we take samples ei in
a neighborhood of the origin e = 0; for each ei, (9) yields
a linear algebraic equation, the right hand side of which is
a known value since it involves computing the known cost
function (6) using the tracking error and control input data
obtained, and the left hand side of which is

N∑
j=1

wi,j
∂ϕi(e)

∂e
(fe + ge(u

c + uli(e)). (22)

The linear algebraic equation contains unknown variables
wi,j , which can be solved by using a sufficiently large
number of samples.

Subsequently, we can use this expansion of the reward
function Vi to obtain the updated control policy uli+1 =
− 1

2R
−1(∇Vi(e) ge)>.

IV. SIMULATION

We verify the effectiveness of the proposed policy iter-
ation methodology via numerical simulations of an induc-
tion motor. We compare the performance of three closed-
loop systems using three distinct control policies: baseline
nonlinear control policy (14)–(15), a combination of uc and
linearized initial control policy (21), and a combination of
uc and the proposed near-optimal control policy generated
by policy iteration.

TABLE II
PARAMETER VALUES

Notation Values Notation Values
Rs 0.439 Ω ω∗ 5 rad/sec
Rr 0.410 Ω φ∗ 0.5 Web
Lm 0.0601 H T ∗

l 1 Nm
Ls 0.0615 H kd 200π
Lr 0.0619 H kq 200π
J 0.0163 Kgm2 kω 40π

Motor model parameter values, references, and controller
gains are provided in Table II. We select an initial condition
x(0) = [0, 0, 0.01, 0, 0]> for the induction motor and ensure
that φdr is non-zero to avoid singularity; note that zero is not
our desired equilibrium state. In this work, we do not consider
state and input constraints explicitly. Matrices Q and R in
the cost function play an important role in the speed tracking
performance of the resultant optimal control policy. Here, we
select Q = diag(1, 0.1, 1000) and R = diag(0.001, 0.001) as
the cost function matrices. An initial control policy u0(e) of
the form (21) is given by

ulds(e) = −628eid − 7eiq − 2029eφd
+ 814eω,

ulqs(e) = 6eiid − 622eiq + 1014eφd
− 33419eω.

A comparison of the closed-loop dynamics of the three
control policies is presented in Figs. 1–3. Fig. 1 illustrates

0 0.02 0.04 0.06 0.08 0.1
-1

0

1

2

3

4

5

6

7

Fig. 1. Comparison of IM closed-loop speed trajectories.

0 0.02 0.04 0.06 0.08 0.1
-10

0

10

20

30

40

50

Fig. 2. Comparison of d-axis tracking error trajectories.

0 0.02 0.04 0.06 0.08 0.1
-100

-50

0

50

100

150

200

250

300

Fig. 3. Comparison of q-axis tracking error trajectories.

the resulting speed trajectories with the baseline nonlinear
control policy, the linear control policy u0, and the ADP
control policy u∗. We observe that the nonlinear control is
quite aggressive and thus, results in a quick response but
produces a large overshoot in speed tracking. The linearized
initial control is less aggressive, and the resulting speed



trajectory response is smoother, but the settling time is
quite large, that is, the tracking error does not converge
to a small quantity very quickly. Our near-optimal control
policy trades off speed tracking bandwidth and oscillatory
behaviour, resulting in a quick but smooth transient and a
settling time that is better than its competitors. Fig. 2 shows
the d-axis current tracking error trajectories. As expected, the
nonlinear controller produces a large peak in the beginning
of the transient, but quickly converges to 0. Both linear
control and optimal control have similar transient behaviors
in eid: lower peak current, which implies safer operational
conditions and slower convergence to the equilibrium current.
We have observed that the speed of the transient decay of the
near-optimal control policy can be improved by reducing the
weight on eid through the matrix Q in the cost function (6).
Fig. 3 depicts the corresponding q-axis current tracking error
trajectories. Note that the near-optimal control policy penal-
izes large peaks in the q-axis current, resulting in lower q-
axis current transient oscillations. This is supported by Fig. 4,
which illustrates that the cost function is non-increasing over
iterations, as guaranteed by Theorem 1.

Although the trend of the cost is decreasing due to careful
selection of cost functions and approximators, this monotonic
property does not always hold in practice. Combining exten-
sive simulation with theoretical analysis, we identified the
following reasons for this anomaly: (i) The limited region of
attraction for a given local control policy. Because the initial
control policy locally stabilizes the tracking error dynamics
at the origin, one has to sample the state space within its
region of attraction to apply policy iteration. In simulation,
we skip the step of estimating the region of attraction for
simplicity, and thus likely some samples in policy evaluation
may lie outside of the region of attraction, resulting in non-
stabilizing control actions that lead to an increase in the cost.
(ii) The choice of basis functions. On one hand, improper
basis functions may violate Assumption 1, which could lead
to the failure of policy iteration if implemented naively.
An intuitive interpretation is that with improperly selected
{ϕj}Nj=1, policy iteration may produce skewed evaluation of
a control policy even if the control policy globally stabilizes
the tracking error dynamics. On the other hand, bad choices
of basis functions may render the algebraic equations, estab-
lished and solved in policy evaluation, ill-conditioned.

Fig. 5 illustrates the flexibility of Q to tune the closed-loop
system performance. We refer to the element Qω in the cost
matrix Q to represent the weight on the speed tracking error.
As expected, larger Qω leads to an optimal control policy that
gives a faster speed response. Figs. 6–7 provide performance
of a sequence of control policies produced by policy iteration
with a fixed Qω = 103. We infer that, over multiple iterations,
policy iteration comes up with new policies that improve
speed responses consecutively. This phenomenon can be
explained by examining Fig. 7, where the peak value of iqs is
successively reduced over iterations. This is because the peak
value in eiq is such an important contributor to the value of
the cost function that, even though its weight is 0.1, reducing
the peak brings significant decrements of the cost function.

0 2 4 6 8 10
140

160

180

200

220

240

260

280

300

Fig. 4. Stage cost computed iteration-wise.

0 0.005 0.01 0.015 0.02
-1

0

1

2

3

4

5

6

7

Fig. 5. Comparison of speed trajectories for various speed tracking error
penalties (Qω).

0 0.005 0.01 0.015 0.02
-1

0

1

2

3

4

5

6

7

Fig. 6. Speed trajectories resulting from learned policies during multiple
ADP iterations.

It is noteworthy that even though we conduct policy
iteration with LQR being the initial control policy, simu-
lation results are not presented. This is partially because
that beginning with LQR and the same polynomial basis
functions, policy iteration is much more likely to diverge than



0 0.005 0.01 0.015 0.02
-50

0

50

100

150

200

250

Fig. 7. q-axis current trajectories resulting from learned policies during
multiple ADP iterations.

the other case. Specifically, policy evaluation of LQR mostly
ends up with a reward function which is indefinite, unless
the samples of tracking error e during policy evaluation are
drawn from a tiny neighborhood of e = 0. We believe that
this is because of conditioning issues of the linear algebraic
equations, specifically the left hand side (22). Since the left
hand side is uniquely determined by basis functions {ϕj}Nj=1

and the tracking error dynamics, the ill-conditioning can
be alleviated by normalizing the error dynamics, alternative
basis functions, as well as using algorithms avoiding the
operation of matrix inverse, for example, via recursive least
square, to solve algebraic equations in policy evaluation. We
consign this to future work.

V. CONCLUSION AND FUTURE WORK

This work investigates whether ADP, a well-known data-
driven optimal control technique, can improve the transient
performance of induction machines in future industrial set-
tings. Our preliminary results demonstrate that an unequiv-
ocal ‘yes’ or ‘no’ cannot yet be provided. The method is
promising because ADP (after careful tuning) can compute
a near-optimal control policy that outperforms a baseline
nonlinear control or an initial linearized control policy. On
the other hand, several pitfalls of ADP have been identified:
naively applying policy iteration without an appreciation for
these pitfalls will likely result in less-than-useful iterates
of ADP-based control policies. These pitfalls include how
one chooses the initial control policy and basis functions,
where to sample data to get meaningful policy iterates, and
how to reliably estimate the region of attraction of each
policy that is learned and improved. We conclude that ADP
when implemented with a good understanding of function
approximation and nonlinear control is indeed useful, but in
terms of systematic implementation of ADP with automatic
selection of basis functions, asserting regions of attraction,
and synthesizing useful and safe control policies using online
data, many questions need conclusive answers before ADP
becomes an integral part of smart factories.

REFERENCES

[1] J. Holtz, “Sensorless control of induction motor drives,” Proceedings
of the IEEE, vol. 90, no. 8, pp. 1359–1394, 2002.

[2] R. Marino, P. Tomei, and C. M. Verrelli, Induction Motor Control
Design. London, UK: Springer, 2010.

[3] H. Zhang, L. Cui, and Y. Luo, “Near-optimal control for nonzero-
sum differential games of continuous-time nonlinear systems using
single-network ADP.” IEEE Transactions on Cybernetics, Vol. 43, no.
1, pp.206-216, 2013.

[4] H. Zhang, Y. Luo, and D. Liu, “Neural-network-based near-optimal
control for a class of discrete-time affine nonlinear systems with control
constraints.” IEEE Transactions on Neural Networks, Vol. 20, no. 9,
pp.1490-1503, 2009.

[5] Y. Zhang and H. Yang, “Model predictive torque control of induction
motor drives with optimal duty cycle control,” IEEE Trans. Power
Electron., vol. 29, no. 12, pp. 6593–6683, 2014.

[6] X. Fu and S. Li, “A novel neural network vector control technique for
induction motor drive,” IEEE Trans. Energy Convers., vol. 30, no. 4,
pp. 1428–1437, Dec. 2015.

[7] F. Blaschke, “The principle of field orientation as applied to the new
transvector closed-loop system for rotating-field machines,” Siemens
review, vol. 34, no. 3, pp. 217–220, 1972.

[8] S. Odhano, R. Bojoi, A. Boglietti, G. Roayu, and G. Griva, “Maximum
efficiency per torque direct flux vector control of induction motor
drives,” IEEE Trans. Ind. Appl., vol. 51, no. 6, pp. 4415–4424, 2015.

[9] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific Belmont, 1995.

[10] F. L. Lewis and D. Vrabie, “Reinforcement learning and adaptive
dynamic programming for feedback control,” IEEE Circuits Syst. Mag.,
vol. 9, no. 3, pp. 40–58, Aug. 2009.

[11] D. Kleinman, “On an iterative technique for Riccati equation compu-
tations,” IEEE Trans. Aut. Control, Vol. 13, pp. 114–115, 1968.

[12] W. Gao and Z.-P. Jiang, “Adaptive dynamic programming and adaptive
optimal output regulation of linear systems,” IEEE Trans. Automat.
Control, vol. 61, no. 12, pp. 4164–4169, Dec. 2016.

[13] W. Gao, Y. Jiang, Z.-P. Jiang, and T. Chai, “Output feedback adaptive
optimal control of interconnected systems based on robust adaptive
dynamic programming,” Automatica, vol. 72, pp. 37–45, Oct. 2016.

[14] D. Wang, D. Liu, H. Li, B. Luo, and H. Ma, “An approximate optimal
control approach for robust stabilization of a class of discrete-time
nonlinear systems with uncertainties.” IEEE Transactions on Systems,
Man, and Cybernetics: Systems, Vol. 46, no. 5, pp.713-717, 2016.

[15] A. Chakrabarty, V. Dinh, M. Corless, A. Rundell, S. Żak, and G.
Buzzard. “Support vector machine informed explicit nonlinear model
predictive control using low-discrepancy sequences.” IEEE Transac-
tions on Automatic Control, Vol. 62, no. 1, pp. pp.135-148, 2017.

[16] W. Gao, Z.-P. Jiang, F. F. Lewis, and Y. Wang, “Leader-to-formation
stability of multi-agent systems: An adaptive optimal control ap-
proach,” IEEE Trans. Automat. Control, vol. PP, no. 99, 2018.

[17] T. Cheng, F. Lewis, and M. Khalaf, “Fixed-final-time-constrained opti-
mal control of nonlinear systems using neural network HJB approach,”
IEEE Trans. Neural Netw., vol. 18, no. 6, pp. 1725–1736, 2007.

[18] Z. Chen and S. Jagannathan, “Generalized HJB formulation-based
neural network control of affine nonlinear discrete time systems,” IEEE
Trans. Neural Netw., vol. 19, no. 1, pp. 90–106, 2008.

[19] Y. Wang, J. Wu, and C. Long, “Policy iteration-based optimal control
design for nonlinear descriptor systems,” in Proc. American Control
Conference, pp. 5740–5745, 2016.

[20] Y. Wang, “Data-driven output feedback optimal control for a class of
nonlinear systems via adaptive dynamic programming approach: Part
I-algorithms,” in Proc. 2018 CCC, 2018, pp. 2926–2932.

[21] R. A. Howard, Dynamic Programming and Markov Processes. Cam-
bridge, MA: MIT Press, 1960.

[22] G. Saridis and C.S.G. Lee, “An approximation theory of optimal
control for trainable manipulators,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 9, no. 3, pp. 152–159, 1979.

[23] R. J. Leake and R.-W. Liu, “Construction of suboptimal control
sequences,” SIAM Journal on Control, vol. 5, no. 1, pp. 54–63, 1967.

[24] R. Beard, G. Saridis, and J. Wen, “Galerkin approximations of the
generalized HJB equation,” Automatica, 33(12), pp. 2159–2177, 1997.

[25] Z.-P. Jiang and Y. Jiang, “Robust adaptive dynamic programming for
linear and nonlinear systems: An overview,” Eur. J. of Control, vol. 19,
no. 5, pp. 417–425, 2013.

[26] D. Vrabie and F. L. Lewis, “Neural network approach to continuous-
time direct adaptive optimal control for partially unknown nonlinear
systems,” Neural Networks, vol. 22, no. 3, pp. 237–246, 2009.


	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-116.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8


