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ABSTRACT
A methodology for designing robust, low-order observers for a class of spectral
infinite-dimensional nonlinear systems is presented. This approach uses the low-
dimensional subspace explicitly in the observer design. Then, robustness to bounded
model uncertainties is incorporated using the Lyapunov reconstruction method from
robust control theory. Furthermore, the proposed design includes a data-driven
learning algorithm that auto-tunes the observer gains to optimize the performance of
the state estimation. A numerical study using a model from fluid dynamics -Burgers
equation- demonstrates the effectiveness of the proposed observer.
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1. Introduction

The problem of designing robust observers for systems modeled by ordinary differen-
tial equations (ODEs) with parametric uncertainties and measurement noise, has been
extensively studied, see e.g., Battilotti (2017); Witczak et al. (2016) and the references
therein. The extension of these results to systems modeled by PDEs (distributed pa-
rameter systems) remains a very active and challenging problem. Indeed, there are
many works that utilize adaptive control to design observers for PDE systems, where
both system states and parametric uncertainties are estimated, see e.g., Smyshlyaev
& Krstic (2010) and references therein. However, due to the complexity of simultane-
ously estimating both the states and model parameters, the results are often limited to
linear or semi-linear PDEs with linear parametric uncertainty. Fewer works consider
passive robust control (in contrast to adaptive control) to design observers for PDEs
in the presence of parametric model uncertainties and/or measurement noise. How-
ever, in the recent work Schaum et al. (2016), one-dimensional, semi-linear PDEs are
considered and the assumption of a sector nonlinearity allows the use of dissipativity
to design observers that are robust to spill-over effects. In Borggaard et al. (2014),
the authors consider the case of a PDE with a quadratic nonlinearity where the states
and measurements are subject to time-varying disturbances. A MinMax approach was
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used to design a stabilizing robust observer/controller, based on the tangent lineariza-
tion of the PDE along a steady-state solution. Then model reduction was carried out
following two approaches. In one approach, an H2-model reduction was used for the
linearized system. In the second, a proper orthogonal decomposition (POD) model
reduction method for nonlinear systems was used to reduce the extended Kalman fil-
ter as in Atwell et al. (2001). In Kharkovskaya, et al. (2018), the authors propose an
interval state estimator for a class of uncertain parabolic PDE systems, under homo-
geneous Dirichlet boundary conditions, based on a finite-element approximation of a
PDE. In Miranda et al. (2012), a robust observer based on a super twisting algorithm,
which ensures finite-time convergence, is introduced for a class of hyperbolic PDEs
with bounded additive perturbations. In Feng & Guo (2017), the authors study the
problem of stabilization and observer design for the heat equation under uncertain
boundary conditions. They propose a two-stage unknown input observer to estimate
the uncertainty term and then observe the system states. The problem of designing a
robust observer for the Boussinesq equations has been studied in Koga et al. (2019),
where the authors first used POD for model reduction, followed by a Luenberger-like
observer design, based on the notion of input-state stability with respect to parame-
ter uncertainties. These uncertainties were then estimated online using a data-driven
optimization algorithm.

In this paper, we build upon the nominal observer proposed in Balas (1981), and
propose a methodology to design a robust observer for a class of spectral infinite-
dimensional nonlinear systems that use a low-dimensional subspace, such as POD
in the observer design. The observer is based on Lyapunov reconstruction theory to
‘dominate’ the influence of structured model uncertainties. Furthermore, we extend
this methodology so that it will auto-tune the observer gains online, using data-driven
optimization methods.

Indeed, the problem of auto-tuning feedback controllers has received much attention
in the control community. It is often referred to as Iterative Feedback Tuning (IFT),
and has been well-studied for the case of systems modeled by ODEs, e.g., Benosman
(2016); Hjalmarsson (2002); Killingsworth & Krstic (2006); Lequin et al. (2003). How-
ever, to the best of our knowledge, IFT has not been applied in the PDE setting. In
this paper, we propose the use of IFT to auto-tune the gain of a robust observer in an
online setting. We follow Benosman (2016); Killingsworth & Krstic (2006), and use an
extremum seeking algorithm for the tuning of the gain. This leads to the optimization
of a desired estimation performance cost function.

In the sequel, we begin by introducing some basic definitions and notation in Sec-
tion 2. Section 3 is dedicated to introducing the class of nonlinear PDEs studied here,
and presents the first result of the paper, namely, the nominal observer design. We
use Section 4 to introduce the second result of the paper, which is the robustification
of the observer under bounded model uncertainties. The third result of the paper is
presented in Section 5, where we introduce the IFT version of the robust observer. Sec-
tion 6 is used to present an application of the proposed robust observer and its IFT
extension to a one-dimensional PDE with a quadratic nonlinearity often associated
with fluid dynamics, known as Burgers equation. We conclude the paper commenting
on potential future developments of this work in Section 7.



2. Basic Notation and Definitions

For a vector q ∈ Rn, its transpose is denoted by qT , for a matrix C ∈ Rn×m, the
transpose is denoted by C∗. The Euclidean vector norm for q ∈ Rn is denoted by
‖ · ‖ so that ‖q‖Rn = ‖q‖ =

√
qT q. The Frobenius norm of a matrix A ∈ Rn×m, with

elements aij , is defined as ‖A‖F ,
√∑ı=n

i=1

∑j=m
j=1 |aij |2. The Kronecker delta function

is defined as: δij = 0, for i 6= j and δii = 1. We shall abbreviate the time derivative by

ḟ(t, x) = ∂
∂tf(t, x), and consider the following Hilbert space H = L2(Ω). We define the

inner product 〈·, ·〉H and the associated norm ‖ · ‖H on H as 〈f, g〉H =
∫

Ω f(x)g(x)dx,

for f, g ∈ H, and ‖f‖2H =
∫

Ω |f(x)|2dx. A function z(t, x) is in L2([0, tf ];H) if for each

0 ≤ t ≤ tf , z(t, ·) ∈ H, and
∫ tf

0 ‖z(t, ·)‖
2
Hdt < ∞. We will use the standard notation

from distributed parameter control theory and drop the “·” when it is understood,
e.g., z(t) = z(t, ·) ∈ H. A pseudo-inverse of an operator T on H will be denoted as
T †, and its adjoint operator on H is denoted by T ∗. In the sequel when we discuss
the boundedness of a solution for an impulsive dynamical system, we mean uniform
boundedness as defined in Haddad et al. (2006) (p. 67, Definition 2.12). Finally, an
impulsive dynamical system is said to be well-posed, if it has well-defined distinct
resetting times, admits a unique solution over a finite forward time interval, and does
not exhibit any Zeno solutions, i.e., does not have an infinite number of resettings in
the system over any finite time interval Haddad et al. (2006).

3. Problem Statement and Observer Design

We consider the state estimation problem for nonlinear systems of the form

ż(t) = Az(t) +Bu(t) + h(z(t), u(t)), z(0) = z0,
y(t) = Cz(t),

(1)

where z0 ∈ D(A) ⊂ H, A is a linear operator that generates a C0-semigroup on the
Hilbert space H, B : Rm → H is an input operator, C : D(A) → Rp is the bounded
linear operator for measurements, and h contains higher-order terms. For the well-
posedness of the estimation problem, we assume that system (1) satisfies the following
assumption.

Assumption 1. The Cauchy problem for equation (1) has a solution with bounded
norm ‖z(t)‖H for any initial condition z0 ∈ D(A), and t > 0.

Furthermore, for analysis purposes we assume that h satisfies the Lipschitz-like
assumption:

Assumption 2. The function h : D(A)×Rm → [D(A)]′ satisfies h(0, 0) = 0 and the
local Lipschitz plus constant assumption: there is a nonnegative constant β and for
every pair (z, u) ∈ D(A)× Rm, there exist positive constants εz, εu, Lz, and Lu such
that

‖h(z, u)− h(z̃, ũ)‖H ≤ Lz‖z − z̃‖H + Lu‖u− ũ‖Rm + β,



for all (z̃, ũ) ∈ D(A)× Rm satisfying

‖z − z̃‖H < εz and ‖u− ũ‖Rm < εu.

We define a low-dimensional subspace Ĥ ⊂ H that inherits the norm of H, i.e.,
‖ · ‖Ĥ = ‖ · ‖H, and follow the framework in Balas (1981) to design the nominal
observer, while changing the roles for some operators. Consider an observer with the
following structure

˙̂z = Acẑ(t) +Bcu(t) + Fy(t) +G(ẑ(t), u(t)), (2)

with ẑ(0) = ẑ0 ∈ D(Ac), and where Ac : Ĥ → Ĥ, Bc : Rm → Ĥ, F : Rp → Ĥ, and

G : Ĥ × Rm → Ĥ are to be determined. Possible choices for Ĥ may be the space
spanned by a set of dominant eigenfunctions of A (modal approximation) or a set of
basis functions obtained by performing a proper orthogonal decomposition (POD) of
a collection of simulations of (1) and truncating (POD approximation), see Section
3.1.

Let T : H → Ĥ be the orthogonal projector from H to Ĥ (hence, ‖T ‖H = 1) and

T † be the injection from Ĥ into H: T †ẑ = z for all ẑ ∈ Ĥ ⊂ H. Then we define the
reduced estimation error as

e(t) = ẑ(t)− T z(t) ∈ Ĥ. (3)

This can be used as a proxy for the state estimation error

ese ≡ T †ẑ − z ∈ H, (4)

when T produces a small projection error (z − T †T z), since

ese(t) = T †e(t)−
(
z(t)− T †T z(t)

)
. (5)

In fact, when Ĥ is the span of r dominant POD basis functions and TPOD is the cor-
responding projection for a specific trajectory z, then TPOD minimizes the projection
error

P(T , z) =

(∫ tf

0
‖z(t)− T †T z(t)‖2H dt

)1/2

, (6)

over all projections T into subspaces of H with dimension r, and where tf denotes
the finite time support over which the projection error is evaluated, cf. Holmes et al.
(1998).

Remark 1. In practice, we can control the projection error P(T , z) by suitable se-
lection of the trajectory data and choosing enough basis functions r. However, we
want to underline here the fact that the existence of such a basis function with clear
dominant modes is only ensured for some PDEs that we denote here as spectral PDEs.
In the case where such basis functions do not exist, e.g. hyperbolic PDEs, one could
use recent results that propose more appropriate basis functions, e.g., Balajewicz et
al. (2013); Borggaard et al. (2007); Rim & Mandli (2018).



Although we are free to choose Bc and G in the observer (2), to guarantee conver-
gence we shall make the following assumptions for the remainder of this paper

Bc = T B and G(ẑ, u) = T h(T †ẑ, u) (7)

for all ẑ ∈ Ĥ and u ∈ Rm.
We can now state our first result.

Theorem 3.1. Consider the system described by (1) under Assumptions 1, 2, for
which we associate the state observer defined by (2) and (7). We assume that F , Ac,
and T satisfy the conditions

[AcT − T A+ FC] z = 0, for all z ∈ D(A), (D0)

‖exp(Act)‖Ĥ ≤M exp(−δt), for all t > 0 (D1)

and,

δ > MLz, (D2)

where M ≥ 1 and δ > 0. Then we can guarantee the exponential stability of the
estimation error, e(t) in (3). Namely, there exists a constant c, depending on δ, M ,
the initial error ‖e(0)‖Ĥ, and the P(T , z) in (6) such that

‖e(t)‖Ĥ ≤ c exp((MLz − δ)t)‖e(0)‖Ĥ, (8)

where,

c = M

{
‖e(0)‖Ĥ + Lz

(
exp(2δtf )− 1

2δ

)1/2

Π(P(T , z), β)

}
, (9)

and

Π(P(T , z), β) =

(∫ tf

0

(
‖z(t)− T †T z(t)‖H +

β

Lz

)2

dt

)1/2

. (10)

Proof 1. If we differentiate (3) with respect to time and use (1) and (2), we find

ė(t) = ˙̂z(t)− T ż(t)
= Acẑ(t) +Bcu(t) + Fy(t) +G(ẑ(t), u(t))
− T [Az(t) +Bu(t) + h(z(t), u(t))]

= Ace(t) + [AcT − T A+ FC] z(t)
+ [Bc − T B]u(t) +N(e(t), z(t), u(t)),

(11)

where N(e, z, u) ≡ G(e + T z, u) − T h(z, u). The second term on the right hand side
vanishes if we require condition (D0) and the third vanishes using our choice of Bc



in (7). Thus, we are left with

ė(t) = Ace(t) +N(e(t), z(t), u(t)), (12)

or

e(t) = exp(Act)e(0) +

∫ t

0
exp(Ac(t− s))N(e(s), z(s), u(s)) ds. (13)

The matrix Ac is stable from (D1). Thus, we will exploit our choice of G in (7) and
the local Lipschitz plus bounded condition (Assumption 2) on h to bound the integral
term. First of all,

‖N(e, z, u)‖H = ‖T h(T †(e+ T z), u)− T h(z, u)‖H
≤ Lz‖T †e+ T †T z − z‖H + β

≤ Lz
(
‖e‖Ĥ + ‖T †T z − z‖H + β

Lz

)
.

(14)

Therefore, (13) leads to

‖e(t)‖Ĥ ≤Mexp(−δt)‖e(0)‖Ĥ +

∫ t

0
Mexp(−δ(t− s))Lz‖e(s)‖Ĥds

+MLzexp(−δt)
∫ t

0
exp(δs)

(
‖T †T z(s)− z(s)‖H +

β

Lz

)
ds.

By applying the Cauchy-Schwarz inequality to the last term above and using the
Gronwall-Reid inequality, we obtain

‖e(t)‖Ĥ ≤ c exp((MLz − δ)t)‖e(0)‖Ĥ, (15)

where c is given in (9). Finally, using assumption (D2) in equation (8) gives us expo-
nential stability of the error. �

Remark 2. Condition (D0) can be exactly satisfied for a class of bounded linear
operators T , as proven in (Theorem 3.2, Balas (1981)). However, in the more practical
context of POD-based realization of the observer, presented here in Section 3.1, we
will approximate condition (D0), such that the residual effect of its approximation
does not change the exponential convergence result of Theorem 3.1, see Remark 6.

Remark 3. The influence of the projection error P(T , z) on the reduced estimation
error e(t) appears explicitly in the calculation of the constant c above. Indeed, this is
one advantage of the estimator derived above and explicitly links the ROM-based esti-
mation error and the projection error. Many reduce-then-design approaches to design
observers for PDE systems, e.g., Koga et al. (2019), first build a reduced-order model
(ROM) by projection, then separately build an observer for the ROM. The separation

of the projection subspaces Ĥ from the observer design in the reduce-then-design ap-
proaches miss the explicit connection that we have included by using T in assumption
(D0) as well as in the reduced nonlinear operator (7), which ultimately leads to the
definition of c in (9). Another point that further differentiates our approach from the
reduce-then-design methods, is that the later methods when applied to some type of
PDEs can lead to an unstable reduced order model (ROM). This ROM then needs



to be stabilized first before designing a ROM-based observer, e.g., Benosman et al.
(2017); Koga et al. (2019). In this work, we do not have to impose any stability con-
straints on the projection T A, we only require that it satisfies condition (D0). Finally,
we can also underline that contrary to the classical ROM-based Luenberger-like ob-
server design, e.g., Koga et al. (2019), the proposed observer (2) does not explicitly
use an output-error injection term in its design.

Remark 4. The upper bound in (15) shows an exponential decrease of the estimation
error norm, however, this bound can be large in the case of large values of β, since
c in (9) is directly proportional to β. We will see in Section 4 that this upper-bound
estimate can be improved by a robustification of the observer, in the case of bounded
additive model uncertainties.

3.1. Observer Design Based on the Proper Orthogonal Decomposition

We first compute the proper orthogonal decomposition (POD) from solutions to (1)

then use this as a basis for Ĥ. Since POD with Galerkin projection is a well-known
model reduction method for nonlinear problems, we will keep this discussion brief and
refer the interested reader to Holmes et al. (1998); Kunisch & Volkwein (2007).

Given a trajectory (or snapshots) of (1)

S = {z(t, ·) ∈ H | t ∈ [0, tf ]}, (16)

the spatial autocorrelation function K is defined as K(x, x̄) = 1
tf

∫ tf
0 z(t, x)z∗(t, x̄) dt,

and is well defined when z(t, x) is in L2([0, tf ];H). The function K is used as the kernel
of the Fredholm problem

∫
ΩK(x, x̄)φ(x̄) dx̄ = λφ(x). Using Fredholm theory, there

exist solution pairs {(λi, φi)}∞i=1, where the POD eigenvalues {λi}∞i=1 satisfy λ1 ≥ λ2 ≥
· · · ≥ 0 with the only accumulation point at 0, and the POD basis functions {φi}∞i=1
are orthonormal functions, 〈φi, φj〉H = δij . We now consider the reduced basis of the

first r terms based on a desired projection error (6): Ĥr = span{φ1(·), φ2(·), · · · , φr(·)},
and approximate solutions to (1) in Ĥr using

zpodr (t, ·) =

r∑
i=1

qi(t)φi(·) ∈ Ĥr, (17)

where qi, i = 1, ..., r are the POD projection coefficients.
We then define the (orthogonal) projection operator T ≡ TPOD : H → Ĥr as follows

[TPODz] (·) =

r∑
i=1

φi(·)〈φi, z〉H. (18)

The pseudo-inverse of T is the injection of Ĥr into H. Thus T †ẑ = z for all ẑ ∈ Ĥr
and since T is a projection operator, we have T T † = Ir.

Next, we define Ac : Ĥr → Ĥr as

Ac = T †∗AT †. (19)

With this selection, we can show that for any ẑ ∈ Ĥr with ‖ẑ‖Ĥ = 1, the following



holds: 〈Acẑ, ẑ〉 = 〈AT †ẑ, T †ẑ〉 ≤ max‖z‖H=1〈Az, z〉.

Remark 5. If A is self-adjoint and exponentially stable, the suggested choice for Ac
in (19), ensures that (D1) is satisfied, e.g., see (Definition 7, Jacobson & Nett (1988)).
Condition (D2) may naturally be enforced with our choice of the projection operator
T and the local Lipschitz constant associated with the solution we are estimating.
However, one may need to modify the construction of Ac to simultaneously ensure
exponential stability, as well as, impose a sufficient decay constant for Ac, cf. Benosman
et al. (2017); Noack et al. (2008); Wang et al. (2012). For example, by substituting

Ãc = Ac + Âc for Ac, where Âc is used to tune the decay rate of the new Ãc matrix.

Condition (D0) is the most challenging to satisfy. We define F as

F = (T A−AcT )C†, (20)

where C† is a left pseudo-inverse of the bounded linear operator C, e.g., Beutler (1965).

Remark 6. We want to underline here that in applications, and due to the finite
number of sensors (even sparse in most real-life applications), it is clear that equation
(20), which stems from our POD formulation of the observer, constitutes an approx-
imation in a least-squares sense of the exact condition (D0) This is due to the fact
that the pseudo-inverse C† is only an approximation of the exact left-inverse of C, e.g.
(Beutler (1965), pp. 451-452). This approximation could also be obtained by directly
minimizing the term [AcT −T A+FC]z for z ∈ span{φi}, i.e., along a simulated solu-
tion of the system. Another solution would be to use the matrices decomposition used
in Witczak et al. (2016) for solving a similar Sylvester equation (in the ODE setting).
However, such solution will also be an approximation in our case of a non-square mea-
surement operator C, i.e., less sensors than the large state variables number obtained
from discretization. In essence, what we need is for the term [AcT − T A+ FC] z(t)
to be as small as achievable, under the constraint of finite number of sensors. Indeed,
the fact that condition (D0) is not exactly satisfied does not change the exponential
convergence of the error shown in Theorem 3.1, since if we denote by resSylvester the
residual error in solving the Sylvester equation AcT −T A+FC = 0, using (20), then
due to Assumption 1, one can bound the norm of the residual term resSylvesterz, which
can then be included in the constant term β when computing the upper-bound of N
in (14). Additionally, the effect of this bounded residual term can be compensated for
by the robustification of the observer, as presented in the next section.

4. Robustification of the Observer

In this section we use tools from robust control theory, i.e., Lyapunov redesign tech-
niques, e.g., Benosman & Lum (2010); Khalil (1996), to robustify the nominal observer
developed in the previous section. Let us consider the case where the system (1) con-
tains an uncertainty on h, as follows

ż(t) = Az(t) +Bu(t) + h(z(t), u(t)) + ∆h(z(t)), (21a)

y(t) = Cz(t), (21b)

from z(0) = z0, where the uncertainty ∆h : H → H, satisfies the following assumption.



Assumption 3. The uncertainty ∆h : H → H, is uniformly bounded: there exists a
constant ∆hmax > 0 such that ‖∆h(z)‖H ≤ ∆hmax, ∀z ∈ H.

Now, if we examine the dynamics of the observer (2), we see that the observer
convergence relies on the design of the nonlinear function G, in (7). To robustify the
nominal design presented in Section 3, and account for the additional uncertainty
term ∆h, we use a Lyapunov redesign approach and add an additional term to G. The
robust observer is now written as

˙̂z(t) = Acẑ(t) +Bcu(t) + Fy(t) +G(ẑ, u) + ∆G(ẑ), (22)

with Ac, Bc, F, G satisfying conditions (7), (D0), (D1), (D2), and where ∆G : Ĥ →
Ĥ, must be designed to compensate for any negative impact that the uncertainty ∆h
might have on the exponential stability of e obtained in (8). Carrying out a simi-
lar analysis for the robust observer (22), under (7), and (D0), the associated error
dynamics satisfy

ė(t) =Ace(t) +G (e(t) + Tz(t), u(t))

− T h(z(t), u(t)) + ∆G(ẑ)− T ∆h(z). (23)

In the remainder of this section, we will try to recover at least the convergence of e
to a positively invariant set with a radius that we can control, regardless of the form
of the bounded uncertainty ∆h. We summarize the first result of this section in the
following theorem.

Theorem 4.1. Consider the error dynamics (23) for the observer (22) and (7), track-
ing the uncertain system (21). Let h and ∆h satisfy Assumptions 2 and 3, respectively.
Define the compensation term ∆G as

∆G(ẑ) = k∆hmaxC̃
∗C̃e, (24)

for k < 0, and C̃ satisfying

C̃T = C. (25)

Then under Assumption 1, and conditions (D0), (D1), and (D2), the solution of the
error dynamics equation (23) converges to the invariant set

S = {e ∈ Ĥ, satisfying, k‖e‖Ĥλmin(C̃∗C̃) + 1 ≥ 0},

and the estimation error upper-bound is given by

‖e(t)‖Ĥ ≤
−1

kλmin(C̃∗C̃)
+ (‖e(0)‖Ĥ +

1

kλmin(C̃∗C̃)
)exp(k∆hmaxλmin(C̃∗C̃)t).

(26)

Proof 2. We define the Lyapunov function as

V (e) =
1

2
〈e, e〉Ĥ, (27)



then show that our design for ∆G in (24) compensates for the uncertainty ∆h in (21),
by providing an asymptotic decrease in V as the system evolves.

Taking the derivative along solutions leads to:

V̇ (e(t)) = 〈e(t), Ace(t) +G (ẑ(t), u(t))− T h(z(t), u(t))〉
+ 〈e(t),∆G(ẑ(t))− T ∆h(z(t))〉.

Note that, due to the exponential stability of e in the nominal case (when ∆G ≡ 0,
∆h ≡ 0), the fact that G is given by (7), and using the conditions (D0), (D1), and
(D2), we know that V̇ is negative along the solution to the nominal error dynamics
(12). Thus, the first term of the right-hand-side is negative, and we can write

V̇ (e(t)) ≤ 〈e(t),∆G(ẑ(t))− T ∆h(z(t))〉,
≤ 〈e(t),∆G(ẑ(t))〉+ ‖e(t)‖Ĥ∆hmax.

Now to compensate for the effect of the ∆h term, and preserve the decrease of V along
the new error dynamics (23), we define the term ∆G as

∆G(ẑ) = k∆hmaxC̃
∗C̃e, k < 0. (28)

This allows us to bound V̇ as

V̇ ≤ k‖e‖2Ĥ∆hmaxλmin(C̃∗C̃) + ‖e‖Ĥ∆hmax

≤ (k‖e‖Ĥλmin(C̃∗C̃) + 1)∆hmax‖e‖Ĥ.

This proves convergence of the error to the invariant set, e.g., see Khalil (1996): S =

{e ∈ Ĥ, satisfying k‖e‖Ĥλmin(C̃∗C̃) + 1 ≥ 0}.
Finally, to establish the upper-bound for ‖e‖Ĥ, we use the following classical argu-

ment: We define Y = ‖e‖Ĥ, which leads to

V̇ = Y Ẏ , (29)

we can then write the inequalities

Ẏ ≤ ∆hmax(Y kλmin(C̃∗C̃) + 1). (30)

Thus, Y is bounded by the solution of the ordinary differential equation

ẏ = ∆hmax(ykλmin(C̃∗C̃) + 1), y(0) = Y (0), (31)

which finally allows us to write the inequality (26).

Remark 7. The introduction of the operator C̃ in the definition of ∆G in (24) is not
required to show stabilization of the estimation error to the invariant set S. Indeed, the
upper-bound on V̇ can be made negative without the need of C̃. However, to make the
observer implementable, one cannot consider cases where the full state z is available
for feedback. Hence the need to project z into the space of measurements through the
use of the mapping C̃. By further defining C̃ to satisfy C̃T = C, we can implement



the robust portion of the observer as follows:

∆G = k∆hmaxC̃
∗C̃e,

= k∆hmaxC̃
∗C̃(ẑ − T z),

= k∆hmaxC̃
∗(C̃ẑ − Cz),

= k∆hmaxC̃
∗(C̃ẑ − y),

(32)

which only requires the observer states ẑ, and the measured output y.

Remark 8. The robustification of the observer allows us to obtain a tighter upper-
bound of the estimation error norm given by (26), since it is inversely proportional to
the observer gain k, which can be selected high enough to tighten this upper-bound.

The passive robustification presented above guarantees asymptotic convergence of
the observer. However, this robustness might lead to poor transient performance in
practice. Thus, one is also interested in improving the transient performance of the
observer. For this reason, we want to improve the passive robust observer presented
in this section by complementing it with an active learning step. This step learns the
best (in an optimal sense that we define later) observer feedback gain k.

5. Learning-based Tuning of the Observer

In this section we want to merge together the passive robust observer given by (22), and
(24), with an active learning algorithm, to improve the performance of the observer.
Indeed, one parameter that could benefit from online tuning is the robust observer
gain k defined in (24). If we examine the results of Theorem 4.1, we see that the
estimation error upper-bound (invariant set radius) decreases with the decrease of
the negative feedback gain. However, if we are concerned with more than asymptotic
convergence to an invariant set, we need to tune the feedback gain k to achieve other
objectives. For instance, if one is interested in optimizing the transient behavior of
the observer, the gain k needs to be tuned to optimize a transient estimation cost
performance. To find the optimal value of the observer gain, we propose to use a
data-driven optimization algorithm to auto-tune the gain online, while the observer
is estimating the system states. This problem is strongly related to iterative feedback
tuning (IFT), e.g.,Benosman (2016); Hjalmarsson (1998, 2002); Killingsworth & Krstic
(2006); Lequin et al. (2003). We will follow Benosman (2016); Killingsworth & Krstic
(2006), and use an extremum seeking (ES)-based auto-tuning approach. We first write
the feedback gain as

k = knom + δk, knom < 0, (33)

where knom represents the nominal value of the observer gain, and δk is the necessary
adjustment of the gain to improve the transient performance of the observer. We then
define the learning cost function

Q(δk) =
∫ T

0 ||ey||
2
Ĥdt,

ey(δk) = ŷ(t; δk)− y(t),
ŷ = Cẑ,

(34)



where T > 0, ẑ is solution of the observer (22), (24), and y is the measured output.
Furthermore, for analysis purposes, we will need the following assumptions on Q.

Assumption 4. The cost function Q(δk) in (34) has a local minimum at δk = δk∗.

We propose to use the following time-varying amplitude-based ES algorithm, intro-
duced in Tan et al. (2009), to tune δk

ẋk = −δkωk sin(ωkt)Q(δk),

δk(t) = xk(t) + ak sin(ωkt), (35)

ȧk = −δkωkεkak,

where δk > 0, ωk > 0, εk > 0. We summarize the gain auto-tuning algorithm in the
following theorem.

Theorem 5.1. Consider the observer (7), (22), and (24), where the gain k is tuned
iteratively, with each iteration being of finite time T , such that the state is reset over
the tuning iteration j = 1, 2, ..., as ẑ(jT ) = ẑ0, j = {1, 2, ...}, and the gain–over
iterations–is defined as

k(t) = knom + ∆k(t), knom > 0
∆k(t) = δk((j − 1)T ), (j − 1)T ≤ t < jT, j = 1, 2, 3...

(36)

where δk is defined by the forward first order Euler discretization of (34), (35), with a
time step equal to T . Then, the impulsive dynamic (22), (24), (34), (35), and (36), is
well-posed, the state vector ẑ is uniformly bounded, and under Assumption 4, the gain
k converges to a neighborhood of its local optimum value knom + δk∗.

Proof. The proof follows similar arguments as the one used in proving Theorem 2 of
Benosman (2016). Indeed, we first observe that the closed-loop system (7), (22), (24),
(36), (34), and (35) can be viewed as an impulsive time-dependent dynamical system,
Haddad et al. (2006), pp. 18-19, with the trivial resetting law ∆ẑ(t) = ẑ0, for t =
jT, j ∈ {1, 2, ...}. In this case the resetting times given by jT, T > 0 j ∈ {1, 2, ...}, are
well defined and distinct. Furthermore, due to Assumption 2 and the smoothness of (7),
(22), and (24) (within each learning iteration), this impulsive dynamic system admits a

unique solution in forward time, for any initial condition ẑ0 ∈ Ĥ (Haddad et al., 2006,
p. 12). Finally, the fact that T 6= 0 excludes a Zeno behavior over a finite time interval
(only a finite number of resets are possible over a finite time interval). Next, if we
consider the error dynamic (23) with the initial error e0 = ẑ(0) − T z(0), then under
the conditions of Theorem 4.1, there exists, for any given time-interval (j − 1)T ≤
t < jT , for any given j ∈ {1, 2, ...}, a Lyapunov function Vj = 1

2〈e, e〉, such that,

V̇j ≤ (kj‖e‖Ĥλmin(C̃∗C̃)+1)∆hmax‖e‖, where kj is the gain for iteration j ∈ {1, 2, ...}.
This shows that e, starting from e0 (for all the iterations j ∈ {1, 2, ...}) is steered

∀t ∈ [(j − 1)T, jT [, towards the invariant set Sj = {e ∈ Ĥ, s.t., kj‖e‖Ĥλmin(C̃∗C̃) +
1 ≥ 0}. Furthermore, since at each switching point, i.e., each new iteration j, we
reset the system from the same bounded initial condition e0, we can conclude uniform
boundedness of the tracking error e. Next, since we restart each learning iteration from
the same inial condition e0, then the cost function (34) is well defined as a function
of the optimization parameter δk. Finally, by Theorem 1, in Tan et al. (2009) and
accounting for the global o(T ) error of a first-order forward Euler discretization, we



can conclude, under Assumption 4, the convergence of the extremum seeker (35) to a
neighborhood o(T ) of the local optimal value δk∗.

Remark 9. We decided to use the ES algorithm of Tan et al. (2009) for two reasons:
1) Under stronger assumptions, i.e., existence and uniqueness of a global minimum
of Q (Assumption 3, in Tan et al. (2009)), and another technical assumption on the
equilibrium solutions of the averaged system of the ES dynamics (Assumption 4, in Tan
et al. (2009)), one can claim semi-global convergence to a neighborhood of the global
minimum, i.e., semi-global practical stability of the global minimum (Theorem 1, in
Tan et al. (2009)), even in the case of existence of minima. 2) Due to the asymptotic
decrease of the dither amplitude, ak(t), which is a solution of the stable dynamics given
by the third equation in (35), the ES algorithm converges to a tight neighborhood of
the minimum (local or global), with less residual dither oscillations compared to other
classical dither-based ES algorithms with constant dither signal amplitude, e.g., Krstic
(2000); Tan et al. (2006). The latter point can be easily seen from the second equation
in (35), where one observes that the oscillations in δk introduced by the dither signal,
vanishes with ak(t). However, we want to emphasize that in the absence of these
assumptions, the algorithm still ensures local convergence to a local extremum, which
means the auto-tuning will still have a beneficial effect on the observer performance.

Remark 10. Theorem 5.1 does not directly deal with the convergence of the observer,
but it deals with the optimization of the transient solution of the observer. Indeed, in
Theorem 5.1, we analyze the convergence of the auto-tuning algorithm ((35), (34), and
(35)) that is introduced to auto-tune the gain k < 0 of the observer. In other words,
instead of tuning the negative gain k manually, where each optimal value would depend
on the new initial conditions and optimizes its own transient tracking performance
defined by the cost Q in (34), we use an auto-tuning optimization algorithm that
will tune the gain online, and automatically find an optimal gain from the set of all
stabilizing gains. This idea is usually used in gain tuning of feedback controls, and is
referred to as iterative feedback tuning (IFT), e.g., Benosman (2016). We use it here
as gain tuning for our observer.

6. An Application Example from Fluid Dynamics: The 1D Burgers
equation

We consider estimating solutions to the 1D damped Burgers equation, e.g., Burns &
Kang (1990)

∂z(t, x)

∂t
+ z(t, x)

∂z(t, x)

∂x
= µ

∂2z(t, x)

∂x2 − γz(t, x), (37)

where z represents the state, µ > 0 the viscosity coefficient, γ > 0 is a dissipation
coefficient, x ∈ [0, 1], and t > 0. We consider this problem in D(A) = H2

per(0, 1), the

completion of C∞-periodic functions in H2(0, 1). The initial conditions are unknown
and we seek to estimate the solution by performing state measurements

y(t) =

(∫
Ω1

z(t, x)dx, ...,

∫
Ωp

z(t, x)dx

)T
=: Cz(t) (38)



in Rp. To write (37) in the form of equation (1), we define

Az = µ
∂2z

∂x2 − γz, (39)

and

h(z, u) = −z ∂z
∂x
. (40)

We consider u ≡ 0 for this nominal experiment, so we can also ignore the B operator.
In the sections below, we show the problem of building a low-dimensional observer for
the damped Burgers equation (37) fits within our robust estimation framework. After
some preliminary results describing the solutions to (37), we show that A generates a
C0-semigroup onH and that h satisfies the local Lipschitz-like condition of Assumption
2. This will be followed by numerical tests that demonstrate the performance of the
nominal observer; the observer under the presence of a bounded uncertainty satisfying
Assumption 3; and the auto-tuning implementation of the observer.

6.1. Theoretical Justification

We first show that solutions to (37) are bounded in H.

Lemma 6.1 (Solutions to (37) are bounded). Let z(t, ·) be a solution to the damped
Burgers equation (37) with z(0, ·) = z0(·) ∈ H2

per(0, 1). Then ‖z(t, ·)‖H remains
bounded on any fixed time interval (0, tf ).

Proof. Multiplying equation (37) by z(t, ·) and integrating over the periodic domain
(0, 1) leads to

d
dt

∫ 1
0

1
2z

2(t, x)dx = −
∫ 1

0 z
2(t, x) ∂z∂x(t, x)dx− µ

∫ 1
0

(
∂z
∂x(t, x)

)2
dx− γ

∫ 1
0 z

2(t, x)dx.

The first term on the right-hand-side above can be integrated and vanishes by peri-
odicity. The second term results from integration-by-parts with the boundary terms
vanishing by periodicity. Multiplying the remainder by an integrating factor leads to
the following∫ 1

0 z
2(t, x)dx = exp(−2γt)

∫ 1
0 z

2
0(x)dx− 2µ

∫ t
0 exp(2γ(s− t))

∫ 1
0 z

2
x(s, x)dxds.

Since the last term above is always non-positive, we have shown that ‖z(t, ·)‖H de-
creases over time.

Theorem 6.2. Let D(A) = H2
per(0, 1) ⊂ H and A : D(A) → H be defined as in (39)

with µ, γ > 0. Then A generates a C0-semigroup on H.

Proof. The operator A is dissipative as integration-by-parts leads to 〈Az, z〉 =
−〈zx, zx〉 − γ〈z, z〉 ≤ 0. Since A is densely defined, it generates a C0-semigroup.

Corollary 6.3 (Stability of Ac). If we compute the operator Ac : Ĥ → Ĥ using (19),
then Ac generates an exponentially stable semigroup.



Proof. If we consider Aµz ≡ µzxx, the arguments made in Section 8.2 in Pazy (1983)
for this periodic case show that Aµ is the infinitesimal generator of an analytic semi-
group T (t) satisfying ‖T (t)‖ ≤ M for some M ≥ 1 depending on the parameter µ.
The semigroup S(t) = exp(−γt)T (t) is generated by A = Aµ − γz, and is an analytic
semigroup of solutions satisfying the bound ‖S(t)‖ ≤Mexp(−γt).

Using (19), we have Ac = T †∗AT † and can show that for any ẑ ∈ Ĥr with ‖ẑ‖Ĥ = 1,

the following holds: 〈Acẑ, ẑ〉 = 〈AT †ẑ, T †ẑ〉 ≤ max‖z‖H=1〈Az, z〉 since ‖T †ẑ‖ ≤ 1. The
operator A is self-adjoint, this implies the Ac generates a semigroup Sc(t) satisfying
the bound ‖Sc(t)‖ ≤Mexp(−γt).

For functions that are piecewise differentiable, we can differentiate (37) with respect
to x. By following the arguments of Lemma 1, multiplying the differentiated equation
by ∂z

∂x instead, leads to the complex result that the spatial derivative, also known as the

enstrophy ‖ ∂z∂x(t, ·)‖H, remains bounded on any fixed time interval (0, tf ), cf. Pelinovsky
(2012). Indeed, the additional −γu term limits the rate of growth over the usual
estimates. The result is that ‖z(t, ·)‖H1 remains bounded. This allows us to consider
a local Lipschitz condition plus constant for (40) since

‖h(z1)− h(z2)‖H ≤ (‖z1‖H1 + ‖z2‖H1) ‖z1 − z2‖H1

≤Lz(‖z1 − z2‖H + |z1 − z2|)
≤Lz‖z1 − z2‖H + ∆h,

where Lz = (‖z1‖H1 + ‖z2‖H1) and ∆h = Lz|z1 − z2| where |z1 − z2| is the H1-
seminorm, e.g. (Brezis, 1999, p. 121). We then use Lemma 1 together with the fact
that the enstrophy is bounded Pelinovsky (2012).

6.2. Numerical Tests

We consider here the case of the Burgers equation (37), with µ = 5×10−3, γ = 5×10−2,
boundary conditions z(0, t) = z(1, t), and the initial condition:

z0(x) =

{
0.5 sin(2πx), x ∈ [0, .5],

0, x ∈].5, 1].

6.2.1. Nominal Case

We first test the nominal case where there are no uncertainties explicitly added to
the model (21), i.e., ∆h ≡ 0. We report in Figure 1 the exact solution. We assume
that we have access to 5 measurements centered at the following sensors locations:
[0.15 0.35 0.55 0.75 0.95] with |Ωi| = 0.1, i.e., Ω1 = [0.15 − 0.05, 0.15 + 0.05], Ω2 =
[0.35−0.05, 0.35+0.05], Ω3 = [0.55−0.05, 0.55+0.05], Ω4 = [0.75−0.05, 0.75+0.05],
and Ω5 = [0.95 − 0.05, 0.95 + 0.05]. The corresponding measurements are plotted in
Figure 2. We first implement the nominal observer (2), with the POD-based design
(in Section 3.1). We use a POD basis of dimension 5, and discretize the PDE with
linear finite elements resulting in an approximate state of dimension 64. Note that this
number of sensors and discretization dimension leads to the residual computation error
‖resSylvester‖F = 0.0258, which together with the maximum norm of z, max‖z‖H =
0.0625, leads to the upper-bound ‖resSylvesterz‖ ≤ 0.0016, this small error does not
change the exponential convergence results of the observer, as discussed in Remark



Figure 1.: Exact state evolution
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Figure 2.: Output measurements: Nominal Case

Figure 3.: Estimated velocity: Nominal case

Figure 4.: Estimation error: Nominal case



6. We also introduce an initial condition error of 50%. The estimate T †ẑ of the PDE
solution z is shown in Figure 3. The estimated solution from only 5 measurements
tracks toward the exact flow. The error between the estimate and the exact solution
is reported in Figure 4, where we can see that the maximum error happens in the
transient phase, due to the initial condition mismatch.

6.2.2. The Case with Parametric Uncertainty

Next, to test the robustification term (24), we introduce an uncertainty in the viscosity
coefficient δµ = −45 × 10−4. We run again the nominal observer (2), without the
robustification term. The corresponding estimated solution, and estimation error are
given in Figure 5 and 6, respectively. We can see that the observer converges but the
estimation error is larger than in the nominal case, due to the parametric uncertainty.
Now, we test the robust observer (2), (7), and (24), where we select the gain to be
k = −103. We see the clear effect of the robustification term in Figures 7 and 8.
The estimation error rapidly decreases to zero, due to the robustification term that
compensates for the model uncertainty.

6.2.3. An Uncertain Case with Gain Auto-Tuning

We now present a test case with uncertainty in the viscosity coefficient. However,
we do not ‘settle’ with our initial ‘guess’ of the observer gain k. Instead, we use
the auto-tuning algorithm proposed in Section 5: implementing the auto-tuning ES
algorithm presented in Theorem 5.1 with the learning cost function (34). We consider
a simulation time T = 30 sec, to include the transient as well as the steady-state part of
the estimation error. To motivate the need for auto-tuning, we first show the evolution
of the learning cost function (34) as function of the observer again k. We report in
Figure 9, the cost vs. gain plot, where we see that the constant value k = −1×103 used
in our first test, is not the optimal gain value. Indeed, the estimation performance,
as defined by the learning cost, is optimal for a gain in the interval [−300,−200]. To
ensure that the optimal gain for output error-based cost (34) is also optimal for the
full state estimation error (i.e., equation (34) where C is replaced with the identity
matrix) we plot the full-state cost as function of the gain k in Figure 10. One clearly
observes that the optimal gain for the output-based cost is also optimal for the full
state-based cost. Thus, the gain k obtained through auto-tuning of the output-based
learning cost will also have improvement in the overall estimation error for the entire
state.

Next, we run the ES-based auto-tuning algorithm with the following constants:
ak(0) = 10, ωk = 100 [rad/sec], δk = 40, and εk = 5 × 10−4. The results of the auto-
tuning are shown in Figures 11 and 12. We can see that the learning cost function
decreases over the iterations and, as expected, the gains that provide the lowest esti-
mation error are not necessarily the highest gains (in absolute value): the gain starts at
−1×103 and converges to the neighborhood of the optimal gain (within [−300,−200]).

We underline here that a classical extended Kalman filter approach has been applied
to the same 1D Burgers problem in Borggaard et al. (2014). However, the extended
Kalman filter does not handle parametric uncertainties. Furthermore, the Kalman filter
would not be a good candidate for an auto-tuning implementation, since its feedback
gains have to satisfy algebraic Riccati equations, and cannot be easily learned online.



Figure 5.: Estimated velocity: Uncertain case with non-robust observer

Figure 6.: Estimation error: Uncertain case with non-robust observer

Figure 7.: Estimated velocity: Uncertain case with robust observer

Figure 8.: Estimation error: Uncertain case with robust observer
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Figure 9.: Learning (output-based) cost vs. gain
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Figure 10.: Learning (full state-based) cost vs. gain
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7. Conclusions

The problem of robust observer design for nonlinear infinite dimension systems is
challenging. The results proposed in this paper are: 1) a robust reduced-order observer
for nonlinear PDEs with bounded model uncertainties; 2) an IFT approach for online
tuning of the observer gain; 3) an application to a non-trivial nonlinear PDE, namely
the 1D Burgers equation.

For the large-scale discretizations required for complex nonlinear PDEs, it is infea-
sible to implement a full-order observer that can be reduced. Yet implementing an
observer for a reduced-order model generally lacks theoretical justification. We have
narrowed this gap in the current work by directly incorporating the model reduction
subspaces within the observer design. Further studies will concern the case of model as
well as measurement uncertainties. We intend to demonstrate the effectiveness of our
approach on models where full-order observers are not feasible. For example, models
that involve the 2D and 3D Boussinesq equations.
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