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Abstract
In this paper, to mitigate the nonlinear shadow effects in Terahertz time-domain spectroscopy
(THz-TDS) multilayer imaging, we utilize a one-dimensional (1D) nonlinear model to capture
the interaction between the dielectric permittivity profile and the THz wavefield and recover
the multi-layer structure by solving a 1D nonlinear inverse scattering via an iterative and
sequential optimization over frequency. Numerical results confirm the effectiveness of the
proposed method.
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Abstract—In this paper, to mitigate the nonlinear shadow
effects in Terahertz time-domain spectroscopy (THz-TDS) multi-
layer imaging, we utilize a one-dimensional (1D) nonlinear model
to capture the interaction between the dielectric permittivity
profile and the THz wavefield and recover the multi-layer
structure by solving a 1D nonlinear inverse scattering via an
iterative and sequential optimization over frequency. Numerical
results confirm the effectiveness of the proposed method.

I. INTRODUCTION AND PROBLEM OF INTEREST

In the recent years, electromagnetic (EM) waves in Tera-
hertz (THz) frequencies have attracted considerable amount
of interest in imaging, gas sensing, non-destructive evaluation
(NDE), security screening and many other applications due to
their noninvasive, noncontact, and nonionizing characteristics
[1]–[3].

To image a multi-layer sample, a THz time-domain spec-
troscopy (THz-TDS) system, shown in Fig. 1 (a), sends an
ultra-short pulse (1-2 picoseconds) in a raster scanning mode.
One challenge here is to mitigate the shadow effect caused by
non-uniform penetrating illumination from front layers to deep
layers. This shadow effect has been observed in several THz-
TDS imaging experiments; see e.g., Fig. 3 in [1] and Fig. 9 in
[2]. Our own experiment on multi-layer hardboard papers also
shows clear evidence of the shadow effect in Fig. 1 (b). Current
solutions perform THz multi-layer imaging using a cascade
of layer identification and contrast enhancement steps [1],
frequency-domain deconvolution [2] or a time-domain sparse
deconvolution via the ray-tracing model [3] without explicitly
accounting for the shadow effect. In this paper, we propose
to mitigate the shadow effect by utilizing recent advances in
nonlinear inverse scattering for a complete characterization of
multi-layered sample structure.

II. PROBLEM FORMULATION AND PROPOSED SCHEME

Our approach models the nonlinear relationship between the
dielectric permittivity profile and the propagating wavefield
according to the scalar theory of diffraction [4]. Imagine a
scenario where the THz sensor is placed in (x − y) plane
of a Cartesian coordinate system and the layered dielectric
medium extends in the z-direction. Assume that, as in the
raster scanning mode where the wave propagation is one
dimensional (1D), a point object placed at a distance r with
respect to the transceiver within a bounded depth domain
Ω ⊂ R is illuminated by an incident wave uin(r), and that the
scattered wave is denoted as usc(r),∀r ∈ R. Using the scalar

(a) (b)
Fig. 1. THz-TDS multi-layer imaging (from [1]) and (b) the shadow of three
letters on the 1st layer is clearly shown on the 2nd layer.

Lippmann-Schwinger equation [4], the relationship between
wave and permittivity contrast can be established as

u(r) = uin(r) + k2

∫
Ω

g(r − r′)u(r′)d(r′)dr′,∀r ∈ Ω, (1)

where u(r) is the total field. Note that d(r) = ε(r) − εb
represents the dielectric permittivity profile, where ε(r) is the
permittivity of the object, εb is the permittivity of the back-
ground and k is the THz wavenumber in vacuum. Furthermore,
g(r) = − i

2kb
e−ikb|r| is the 1D free-space Green’s function,

and kb = k
√
εb is the wavenumber of the background medium.

Note that d is assumed to be real, implying that the object is
lossless.

By taking the Fourier transform into frequency domain and
discretizing over depth domain z, the measured wavefield in
(1) can be reformulated as

u(ω) = uin(ω) + G(ω)Diag(d)u(ω), (2)

y(ω) = hT (ω)Diag(u(ω))d + e(ω),

where ω is the angular frequency, y(ω) is the measurement
at ω and e(ω) is the measurement noise. Furthermore, h(ω)
represents the 1D Green’s function that maps the depth domain
Ω to the receiver domain Γ, G(ω) is the discretization of
Green’s function in transmitter to the depth domain, and d
characterizes the depth-domain permittivity profile in Ω.

To recover the depth structure, i.e., the dielectric permittiv-
ity, we consider the following nonlinear optimization problem,

min
d,u

∑
ω

Dω(d,u) +R(d)

s.t. u(ω) = (I−G(ω)Diag(d))−1uin(ω), (3)

where the data-fidelity term at the frequency ω is given as
Dω(d,u) ,

1

2
‖y(ω)− hT (ω)Diag(u(ω))d‖22 (4)

and R(d) is a regularization term over the depth (z) domain
and/or spatial (x−y) domains. Particularly, we use an isotropic



total variation (TV) regularization term R(x) , τ‖Dx‖2 to
preserve sharp edges in the depth domain, where D is the
discrete finite difference operator in 1D and τ > 0 is a
regularization parameter. Note that the above cost function is
non-convex due to the constraint in (3). To efficiently tackle
the problem, we resort to a quasi-Newton like global optimizer
such as limited-memory BFGS (L-BFGS) algorithm [5] and
use the alternating direction method of multipliers (ADMM)
[6] to handle the regularization term. We first make use of the
ADMM algorithm to project our current solution to the TV
regularization space and then use it to optimize d in (3) using
L-BFGS without the regularization term.

Furthermore, instead of optimizing (3) over all the frequen-
cies at once, we introduce an incremental frequency inversion
optimization framework to refine the estimated permittivity
profile [7]. Particularly, with Nω discrete frequencies, the pro-
posed framework iteratively solves the optimization problem
from low frequencies to high frequency (e.g., ωk) while keep-
ing the cost function at low frequencies (e.g., Di(d,ui), i < k)
as a regularizer for higher frequency as,

(dn,u
∗) , arg min

d,u
Dω(d,un) +

n−1∑
i=1

λiDi(d,ui) +R(d)

s.t. u(ω) = (I−G(ω)Diag(d))−1uin(ω), (5)

where n = 1, · · · , Nω , and λi ∈ (0, 1] are regularization
parameters that account for the sub-total cost function at
lower frequencies (ωi < ωk) into the current cost function
at the frequency ωk. As a result, we sequentially solve Nω

subproblems in (5), and the sequence of solutions iteratively
proceed towards the global minimizer of (3) [7].

III. NUMERICAL SIMULATION RESULTS

The proposed method is numerically evaluated using syn-
thetically generated data with relatively large contrast variation
in the object permittivity. In our experiment, we consider a
three-layered sample of size 7 × 7 pixels, each pixel having
relative permittivities of 0.3 and 0.8. The thickness of each
layer and the air gap between two consecutive layers are
0.3 mm and 0.2 mm, respectively. The sample is placed 5
mm away from the THz transceiver. The transmitted THz
waveform covers 240 frequencies up to 1.82 THz. Fig. 2 (a)
and (b) show two dielectric constant profiles over the three-
layer structure and recovered results, respectively. It is seen
that a good recovery of the three-layer structure with small
elevated estimates in air gaps in between the layers. Compared
with the existing approach based on layer identification and
peak magnitudes (in the middle column), the results in the
right column shows mitigated shadow effects of the three-layer
imaging.

IV. CONCLUSIONS

The shadow effect in the THz-TDS multi-layer image
has been mitigated by using recent advances in nonlinear
inverse scattering and by capturing the interaction between
the dielectric permittivity profile and the THz wavefield. The
proposed method recovers the multi-layer structure by solving

(a) (b)
Fig. 2. Synthetic validation on a three-layer sample pixels with dielectric
permittivity profiles of (a) [0:3; 0:3; 0:8], (b) [0:3; 0:8; 0:3]

Fig. 3. The sliced view of the layered structure: ground truth, existing method
and our shadow removal using our proposed method

a 1D nonlinear inverse scattering model via an iterative and
sequential optimization over frequencies. The effectiveness of
the proposed method is verified using numerical results.
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