
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Positive Invariant Sets for Safe Integrated Vehicle Motion
Planning and Control

Berntorp, Karl; Danielson, Claus; Weiss, Avishai; Di Cairano, Stefano; Erliksson, Karl; Bai,
Richard

TR2019-086 September 05, 2019

Abstract
This paper describes a method for real-time integrated motion planning and control aimed
at autonomous vehicles. Our method leverages feedback control, positive invariant sets, and
equilibrium trajectories of the closed-loop system to produce and track trajectories that are
collision-free with guarantees according to the vehicle model. Our method jointly steers the
vehicle to a target region and controls the velocity while satisfying constraints associated with
future motion of surrounding obstacles. We develop a receding-horizon implementation of the
control policy and verify the method in both a simulated road scenario and an experimental
validation using a scaled mobile robot with car-like dynamics using only onboard sensing.
The results show that our method generates dynamically feasible and safe (i.e., collision-free)
trajectories in real time, and indicate that the proposed planner is robust to sensing and
mapping errors.

Transactions on Intelligent Vehicles

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2019
201 Broadway, Cambridge, Massachusetts 02139

1

Positive Invariant Sets for Safe Integrated Vehicle
Motion Planning and Control

Karl Berntorp, Richard Bai, Karl F. Erliksson, Claus Danielson, Avishai Weiss, and Stefano Di Cairano

Abstract—This paper describes a method for real-time in-
tegrated motion planning and control aimed at autonomous
vehicles. Our method leverages feedback control, positive invari-
ant sets, and equilibrium trajectories of the closed-loop system
to produce and track trajectories that are collision-free with
guarantees according to the vehicle model. Our method jointly
steers the vehicle to a target region and controls the velocity while
satisfying constraints associated with future motion of surround-
ing obstacles. We develop a receding-horizon implementation of
the control policy and verify the method in both a simulated road
scenario and an experimental validation using a scaled mobile
robot with car-like dynamics using only onboard sensing. The
results show that our method generates dynamically feasible and
safe (i.e., collision-free) trajectories in real time, and indicate that
the proposed planner is robust to sensing and mapping errors.

I. INTRODUCTION

The introduction of anti-lock braking systems (ABS) and
electronic stability control (ESC) in 1978 and 1995, respec-
tively, were among the first instances of active safety systems
in road vehicles [1], [2]. Several recent advanced driver-
assistance and autonomous features such as lane keeping,
automated lane changes, and fully autonomous driving, need
control algorithms capable of generating and subsequently
tracking time-varying reference trajectories over extended time
periods, achieving obstacle avoidance within the operational
constraints imposed by the vehicle and traffic rules.

A vehicle equipped with autonomous driving features in-
cludes a variety of different sensing and control components.
Fig. 1 provides a high-level schematic for an autonomous
driving system. The sensing and mapping module uses various
sensor information, such as radar, lidar, camera, and global
positioning system (GPS), together with prior map information
to estimate the parts of the environment relevant to the driving
scenario. The motion-planning module is responsible for pro-
ducing a desired trajectory that the vehicle-control subsystem
should follow based on the sensing-module outputs [3], [4].

Trajectory generation is often performed using either
sampling-based methods such as rapidly-exploring random
trees (RRTs) [5]–[10] or graph-search methods [11], [12].
Trajectory tracking is frequently done using classical con-
trol (e.g., PID) or more advanced algorithms (e.g., model-
predictive control (MPC) [13]–[15]). Viewing the trajectory
generation and tracking problems as decoupled, as in Fig. 1, is
appealing because it simplifies the design. This is the dominant
approach in the robotics community [5] and is also frequently

The authors are with Mitsubishi Electric Research Laboratories (MERL),
02139 Cambridge, MA, USA. Email: karl.o.berntorp@ieee.org

Motion planning

Vehicle control

Actuator control

Vehicle

Environment

Sensing & mapping

Fig. 1. A high-level system architecture of an autonomous vehicle. The
different blocks can be interconnected in various ways but the main building
blocks remain the same.

exploited in automotive [3]. However, the time scales, dynam-
ics, and stringent performance and driving requirements that
are present in automotive systems suggests a more integrated
approach to planning and control than in traditional robotics.
In general, it is advantageous to consider planning and control
as interacting components, and an important question is how to
connect motion planning and vehicle control to ensure vehicle
performance and safety [14], [16].

In this paper, we develop a motion-planning and control
method that enables a wide set of maneuvers to be performed
on road networks. Our method constructs partially overlapping
regions in the state space, where the regions are constructed
based on the system dynamics, input constraints, and state
constraints (e.g., obstacles and road boundaries). Each region
is a constraint-admissible positive invariant (PI) set and has
an associated controller, designed together with the region,
that stabilizes the system to the center of the region. We
construct a graph from the regions, where graph edges are
determined from the overlap of the PI sets. Then, a discrete
graph search produces the sequence of nodes that provides the
selection of the time-varying target points and the associated
controllers. The switching of the target points and controllers
according to the overlap in the PI regions provides the actual
vehicle trajectory, which, because of the PI properties, is
guaranteed to; (i) satisfy the closed-loop dynamics of the
system; (ii) satisfy the state and input constraints; and (iii)
be obstacle-free by design. We exploit a receding-horizon
implementation, which provides feedback both in the planning
stage and in the vehicle-control stage: obstacle avoidance
and constraint-satisfaction are accounted for by design and
the state-feedback control compensates for modeling errors

2

and provides robustness with a quantifiable margin. There
is no need to perform pointwise collision checking on the
generated trajectory to evaluate its safety, which implies that
the computation of trajectories with the proposed method is
fast, that is, orders of magnitude faster than real time on
a standard laptop. This enables the implementation in auto-
motive grade embedded platforms, which have more limited
capabilities than standard caomputers [17], and the usage in
rapidly changing and reactive scenarios.

A. Previous Work

In [18], we assumed a constant longitudinal velocity over
the planning horizon and we only validated the approach in
simulation. Our work [19] extended [18] to motion planning
with time-varying longitudinal velocities. Similar to [18],
[19], in this paper we formulate the planning and tracking
problem in error coordinates of the vehicle with respect to
the road-aligned coordinate frame. In this way, we reduce
the dimensionality of the graph-search problem to an extent
that computations become suitable for real-time execution. We
extend [19] by providing a much more complete derivation,
a more rigorous motivation for the approach, and an exper-
imental validation showing that our method is capable of
safe motion planning in presence of sensing, estimation, and
modeling uncertainties. The experimental validation is done
using a scaled testbench on a number of different scenarios
representing different driving conditions.

Compared to methods for lane-change maneuvers and over-
taking in automotive based on MPC (e.g., [20]–[22]), and
algorithms connecting MPC and set invariance for obstacle
avoidance in robotic systems (e.g., [23]–[26]), our method
aims at reducing the computational burden to enable real-
time computation even in current, or near future, automotive
microcontrollers, that are significantly less powerful even than
standard computers [17], while still guaranteeing safety under
assumptions that are reasonable in the automotive practice.
The key ingredients to achieve these conflicting objectives are
our construction and usage of the invariant sets, which enable
to move most of the computations offline, while demanding
only lightweight computations at runtime. On the other hand,
methods like MPC must rely on solving constrained opti-
mization problems in real time, which can be computationally
demanding when there are limited computational resources.
For instance, [23] uses ideas from tube-based MPC to keep the
state within invariant tubes by utilizing set of sum-of-squares
(SOS) programming, where the motion-planning problem is
assumed solved by an external motion planner.

Related ideas to our approach have been explored in [9],
[27], that start from trajectories that must be feasible with
respect to differential constraints, i.e., the vehicle dynamics,
in the state and input space. These approaches solve SOS
problems in order to obtain invariant sets around the trajec-
tories, where [27] uses the SOS to minimize the size of the
worst case reachable set due to uncertainty in the dynamics
and bounded disturbances, the so called minimum positive in-
variant. Online, [27] solves quadratically constrained quadratic
programs to guarantee a composition of collision-free funnels.

The approach that we propose in this paper can be seen as the
dual of those in, for example, [9], [27]. Rather than starting
with obstacle free and dynamically feasible trajectories, which
are 1-dimensional manifolds, and then combining them by the
invariant set to become full dimensional sets used to cover the
entire space, we first cover the space by invariant sets, which
are full dimensional sets, and select a sequence of them by
graph search, obtaining a 1-dimensional, dynamically feasible,
and obstacle free trajectory as a consequence.

Alternative methods [28]–[30] assume the existence of an
external trajectory generation module, and use reachability
analysis for verifying whether the trajectory can be safely
executed by the vehicle with respect to obstacles and traffic
rules, while explicitly accounting for the model errors due
to linearization and the uncertainty and external disturbances,
hence accepting/rejecting the trajectory.

A distinction between reachable sets and invariant sets is
that reachable sets are time varying, that is, they indicate
the state reached at a certain time, and as the time changes
the set changes. This may imply the need to compute (and
possibly store) different reachable sets for any different time.
In contrast, invariant sets are immutable over time. Hence,
only computation and storage of one set is enough, which
can be also carried out offline. In fact, [29] reports a ratio
between real-time and computing time on a dedicated laptop
of ν = 1.79 for verifying safety of a previously generated
trajectory (i.e., without accounting for the trajectory generation
time). In contrast, the approach proposed in this paper, in
similar conditions generates safe trajectories with ν > 100,
which allows us to consider reactive scenarios and imple-
mentation on automotive-grade electrical control units (ECUs).
The work in [29] explicitly accounts for linearization errors
and uncertainties, while we rely on the robustness margin
achieved by the controller, for maintaining the PI set invariant
under disturbances, which can be analyzed at design time.

Notation: We denote vectors in lower-case bold font as x,
xj denotes the jth element of x, and x̂ denotes the estimate
of x. Matrices are denoted with with X and Xj denotes the
jth row of X . A set O is PI for the system xk+1 = f(xk) if
∀x ∈ O, f(x) ∈ O. A PI set O is constraint admissible with
respect to the constraint set Y ifO ⊆ Y . If V (x) is a Lyapunov
function for the stable system xk+1 = f(xk), then any level
set O = {x ∈ Rn : V (x) ≤ ρ} is PI since V (f(x)) ≤ V (x),
and we write x0:k = {x0, . . . ,xk}. A graph G = (V, E) is
defined by a set of vertices V and a list of edges E ⊂ V × V .
Two vertices i, j ∈ V are adjacent if (i, j) ∈ E . A path is
a sequence of adjacent vertices. Two vertices i, j ∈ E are
connected if there exists a path connecting them.

Outline: Sec. II presents the vehicle model, system con-
straints, and problem definition. Sec. III describes our pro-
posed approach, which is followed by a simulation study in
Sec. IV. Sec. VI contains an experimental evaluation. Finally,
Sec. VII concludes the paper.

II. MODELING AND PROBLEM STATEMENT

We refer to the automated vehicle as the ego vehicle (EV),
whereas other moving entities in the region of interest (ROI)

3

X

x

ψ
ψd

eψ

ey

Y

X

Fig. 2. Definition of the coordinate frames and related notation.

of the EV are denoted by other vehicles (OV). The OVs can be
autonomous or manual. The modeling of the EV is in the local
error coordinates with respect to a road-aligned frame (Fig. 2),
with the origin at the start of each planning step fixed to the
road center. We introduce the following assumptions.

Assumption 1: Positions and velocities of the OVs relative
to the EV at the beginning of the planning phase are known.

In practice, Assumption 1 can be satisfied by measuring or
estimating OV positions and velocities using onboard sensors,
such as cameras, lidars, radars, and/or ultrasound sensors, or
even vehicle-to-vehicle communication of GNSS data. Such
an estimator may also provide an estimate of the uncertainty
that could be used in the algorithm. The future states of the
OVs over the planning horizon are not assumed to be known a
priori but are estimated by a prediction module, see Sec. II-B.
If present, the estimate of the uncertainty can be used in the
traffic prediction. Sec. VI provides an experimental evaluation
of how the method performs when Assumption 1 is violated.

Assumption 2: The road geometry, number of lanes, and the
direction of travel in each lane is known.

Assumption 2 is usually satisfied by determining the in-
volved quantities over the ROI by maps and onboard cam-
eras. For instance, the lane markers can be determined by
onboard cameras, as is already done today in some high-end
production vehicles. This can also be complemented with map
information, for example, from a car-navigation system that
provides static road information such as the number of lanes
and direction of travel.

A. Vehicle Model

We introduce an assumption on the driving behavior.
Assumption 3: The planner performs highway or urban

driving with speeds large enough such that nonlinear effects
from the powertrain are negligible, with steering action small
enough that the nonlinear part of the tire-force curve is
not excited, and with accelerations smooth enough that the
longitudinal slip is negligible. Aggressive maneuvers, such
as emergency braking and evasive steering, are handled by
a separate control system.

Due to Assumption 3, the lateral dynamics are well repre-
sented by a planar single-track model with lumped right and

lf lr

F yf
v

βδ

F yr

x

y

ψ

Y

X

xψ

Fig. 3. A schematics of the single-track model and related notation.

left wheels on each axle, see Fig. 3, where the lateral tire
forces are well approximated by the linear functions

Fy,f ≈ Cfαf , Fy,r ≈ Crαr, (1)

where f, r stand for front and rear, respectively, and Cf , Cr
are the front and rear lateral tire stiffness coefficients. The slip
angles αf , αr can be approximated as [31]

αf ≈ δ −
vy + lf ψ̇

vx
, αr ≈

lrψ̇ − vy
vx

, (2)

where δ is the steering angle of the front wheel (a control
input), vx and vy are the longitudinal and lateral velocity of
the vehicle, respectively, ψ̇ is the yaw rate, and lf , lr are the
distances between the mass center and the front and rear wheel
base, respectively. We introduce the lateral dynamics state

xlat =
[
ey ėy eψ ėψ

]T
, (3)

where ey and eψ = ψ − ψd denote the lateral position and
vehicle orientation, respectively, in the road-aligned frame, and
ψd is the angle of the tangent of the road with respect to the
inertial frame, as defined in Fig. 2.

Using (1), (2), the model of the lateral dynamics in the error
coordinates (3) can be written as the linear model [32], [33]

ẋlat = Aexlat +Beδ +Deψ̇d. (4)

From Assumption 3, the effect of the longitudinal slip
on the tire force is negligible compared to the actuation
system. Similar to standard cruise control modules, we model
the response of the longitudinal acceleration v̇x due to the
commanded acceleration ua as a first-order system from input
torque τ to acceleration with time constant Tc, which gives
the longitudinal dynamics

ėx = vx − vx,nom, (5a)

v̇x = −Tc
m
vx + Tcua, (5b)

where ex is the longitudinal position in the road-aligned
coordinate frame, with respect to a nominal reference path
with nominal velocity vx,nom, m is the vehicle mass, and ua
is the control input. The desired velocity vx,nom is assumed
constant over the planning horizon but vx is allowed to vary.

The combined continuous-time nonlinear lateral and lon-
gitudinal dynamics are described by (4) and (5), with input
vector u = [δ ua]T. Next, we convert the continuous-time

4

dynamics to discrete time with sampling period ∆t, which
results in the system

xlat,k+1 = A(vx,k)xlat,k + bδk + d(vx,k)dk, (6a)
xlon,k+1 = Fxlon,k + gua,k + h(vx,k)wk, (6b)
ylat,k = Cxlat,k, (6c)
ylon,k = Exlon,k, (6d)

where xlon = [ex vx]T, k is the time index corresponding
to sampling instant tk, d = ψ̇d is the disturbance term on
the lateral dynamics, and w = vx,nom is the nominal velocity
that the vehicle should track. The output equations (6c) and
(6d) model the vehicle position and velocity for which the
trajectory is planned, and subsequently tracked, where ylat,k
is the output vector for the lateral dynamics (6a) and ylon,k is
the output vector for the longitudinal model (6b).

As standard in discrete-time control [34], the sampling
period ∆t is chosen such that the discrete-time model (6)
captures the relevant frequencies of the continuous-time dy-
namics. In addition, in this paper we ensure safety pointwise
in time at sampling instants in terms of both vehicle constraint
satisfaction and obstacle avoidance. Thus, ∆t must be chosen
such that no relevant constraint violation or collision may
occur during the intersampling without appearing also at a
sampling instant.

Remark 1: The term ψ̇d acts as a first-order disturbance
on the vehicle dynamics and arises because we model the
vehicle motion in the noninertial road-aligned frame. Similar
to [21], [32], [33], we ignore higher-order effects. We consider
maneuvers with moderate steering and velocity changes over
the planning horizon, for which this approximation has been
assessed as reasonable. For high-performance maneuvering,
such as during emergency collision avoidance, higher-order
terms may be needed [35]. Note that ψ̇d is not considered
known, but estimated during driving as discussed in Sec. III-D.

B. System Constraints

To ensure that the motion planner produces trajectories
that satisfy vehicle limitations and traffic rules, including
obstacle avoidance and driving on the road, we impose various
constraints on the vehicle states and inputs. The input vector
is subject to symmetric constraints

−δmax ≤ δk ≤ δmax, (7a)
−ax,max ≤ ua,k ≤ ax,max, (7b)

which can be expressed as

U = {uk : umin ≤ uk ≤ umax}. (8)

Constraint (8) is determined by the physical limitations of
the vehicle, and for ensuring that the assumptions made for
deriving (4) hold, or determined as a tradeoff between the
allowed level of aggressiveness and driving comfort.

The output yk = [ylat,k ylon,k]T is constrained as yk ∈
Yk ∈ Rm, where the output set Yk in general can be time-
varying and is determined from different constraints. The road
boundaries in the road-aligned frame impose constraints

−ey,max ≤ ey,k ≤ ey,max (9)

on the lateral position of the EV. The term ψ̇d associated with
the curvature of the road in the global frame, together with
bounds on the allowed lateral accelerations, gives

ėψ,min ≤ ėψ,k ≤ ėψ,max. (10)

Limitations on local lateral velocity error can also be set,

ėy,min ≤ ėy,k ≤ ėy,max. (11)

The constraints (9)–(11) can compactly be written as

Yk = {yk : Hkyk ≤ kk} (12)

for appropriately defined Hk and kk. In this paper, (12) only
refers to the lateral dynamics, since the longitudinal dynamics
(6b) are completely governed by the input constraint (8) and
the nominal velocity vx,nom, which is a known parameter, as
will be described in detail in Sec. III. The velocity is a setpoint
and the overshoot when converging to the setpoint can be
adjusted by tuning the controller response to the dynamics (5).
In general (12) can be time varying. However, this increases
the computational burden since the computation of the regions
for the planner depends on (12) and will need to be adjusted
in real time. In this paper (12) is time invariant since we use
a feedforward term in the controller to cancel the effects of
the curvature. Hence, (12) can be determined offline.

The spatial extent of the collision area of the EV around
the jth OV is denoted with Bj . This area may depend on the
geometry of the EV and may include additional safety margins
as commonly done in robotics applications. The longitudinal
and lateral position and velocity of each OV relative to the
EV are included in the state vector xOV and add further time-
varying constraints on the outputs of the EV. We define the jth
obstacle set at time step k as D(x̂jOV,k,Bj), which is a function
of the predicted OV state vector and the spatial extent. In this
way we can also model both deterministic and probabilistic
(i.e., uncertain) regions for the OV spatial extent. Denote the
planning horizon with Np. Then, the predicted set of the jth
obstacle for each k ∈ [0, Np] is

Sjk = D(x̂jOV,k,B
j). (13)

The motion-planning method proposed in this paper is com-
patible with various obstacle-prediction and threat-assessment
methods proposed in literature [36]. The collision-avoidance
area at time index k is the union of all OV trajectory sets (13),

Sk =

M⋃
j=1

Sjk. (14)

The set (13) can be probabilistic, such as an uncertainty
region computed with statistical methods [37]. A trajectory
is collision free as long as the PI sets associated with the
trajectory do not intersect (13).

C. Problem Statement

The objective of the integrated motion-planning and vehicle
control approach developed in this paper is to generate an
input trajectory uk ∈ U over the planning horizon Np, k ∈
[0, Np], such that the resulting trajectory obtained from (6)

5

satisfies the constraints (12) and avoids the obstacle set (14)
pointwise in time, for all k ∈ [0, Np], and reaches a given goal
region Xgoal, that is, xNp ∈ Xgoal.

The goal region Xgoal is not required for the operation of the
method and may be redundant in scenarios such as highway
driving. In fact, if no viable path exists to Xgoal, the algorithm
will still ensure safety while moving as close as possible, in a
specific metric, to it. The goal region may be useful to make
sure that the vehicle obeys traffic rules, such as stopping at an
intersection or switching lane in preparation for a turn.

III. SAFE MOTION PLANNING USING POSITIVE
INVARIANT SETS

In this section we describe our method for solving the
integrated motion-planning and vehicle-control problem. Our
focus is safe real-time motion planning when computing
resources are limited, as it happens in embedded computing
platform for automotive applications [17]. This implies that the
main objective is to quickly find smooth, drivable trajectories
that avoid collision, rather than searching for the optimal one.

The main idea of the method is that we determine regions
on the road where it is safe to travel, each region being
associated with the controller that renders it invariant for the
vehicle dynamics and enforces the vehicle constraints. Then,
we construct a graph by determining, through the overlap of
the regions, from which region we can safely move to which
other region without collision and while satisfying vehicle
dynamics and constraints. Finally, we compute the trajectory
to navigate the road by graph search to find a safe path through
the regions. This also determines the sequence of tracking
controllers that generates the closed-loop trajectories.

A. Feedback Control Design

In our preliminary work [18] we generated paths by con-
necting equilibrium points that correspond to lateral positions
on the road, where each equilibrium was associated with an
invariant set. However, to allow variable velocity we must
include velocity information into the equilibria.

We formulate the path-planning problem as a graph-search
problem over the graph G = (V, E) of vertices V and edges E
incorporating the closed-loop dynamics. The planning horizon
Np is constructed with sampling period Ts, where Ts = `∆t is
a multiple of the sampling period ∆t for some ` ∈ N. At each
time step k ∈ [0, Np] in the planning phase we define a set
of R candidate equilibrium references in longitudinal velocity
and lateral position as

R = {rjk}
R
j=1 ⊂ R2, (15)

where each equilibrium reference point

rjk =
[
vjx,nom rjy,k

]T
(16)

is modeled in the local vehicle frame relative to the position
and velocity at the beginning of the planning phase. Due to
the sampling period ∆t of the vehicle dynamics, the nominal
longitudinal relative position reference rx,k is also defined.
The set of lateral reference points {riy}

ny

i=1 define a grid on the

road and includes the middle of each lane. For each candidate
nominal velocity vjx,nom in the set {vjx,nom}

nv
j=1 the relative

motion of the OVs to the EV will be different. Consequently,
as long as at least one of the velocities in the set {vjx,nom}

nv
j=1

leads to a feasible trajectory, by checking for feasibility in
the set of candidate reference velocities, the graph search will
eventually find a collision-free closed-loop trajectory for a
given reference velocity vjx,nom. The number of reference paths
in (15) is R = nynv and constitute reference paths over the
entire planning horizon Np.

The motion planner integrates trajectory generation and
trajectory tracking by exploiting state-feedback controllers
for both longitudinal and lateral motion. The longitudinal
dynamics (6b) are linear, and we want to track the nominal
velocity vnom. We design a state-feedback controller

ua,k = −κT
xxlon,k (17)

where κx is the feedback gain. The lateral dynamics (6a) are
nonlinear in vx. We linearize (6a) about the nominal reference
velocity vjx,nom, which gives a locally linear model

x̃lat,k+1 = Ãx̃lat,k + bδk + d̃dk. (18)

We use a local state-feedback controller with integral action
[34] by adding εy,k = εy,k−1+∆tey and augmenting the state
vector as x̄lat = [x̃T

lat εy]T. With such an augmentation, the
reference setpoint vector becomes

riy =
[
0 riy 0 0 0

]T
, (19)

which results in the controller

δk = −κT
y (ry − x̄lat,k) + δffk (20)

for the augmented system. The feedforward term
δffk = −bd−†dk, where † is the pseudo-inverse, corrects
for the disturbance dk due to the curvature of the road.
The feedback gain κx globally asymptotically stabilizes
vx,nom and κy locally stabilizes the lateral reference point
(16). Model (18) is usually linearized for multiple reference
velocities, for which a different state feedback controller is
designed. Hence, the bound on the linearization errors is
determined by the number of nominal velocities nv , which is
a design parameter whose effect can be analyzed offline.

B. Offline Graph Construction
To know which reference points are safe to connect, and

hence how to determine a safe path between reference points
when accounting for the closed-loop dynamics, we us PI sets.
We construct a family of PI sets {Oi}no

i=1 ⊆ R5 of states x̄lat ∈
R5 for different nominal velocities vjx,nom. Each PI set Oi is a
sublevel set of the quadratic Lyapunov function V (x̄lat − riy)
associated with (6a) in closed-loop with the controller κy .
The PI sets guarantee that the closed-loop trajectory locally
satisfies constraints (7a) and (12). The ith PI set is

Oi = {x̄lat ∈ R5 : (x̄lat − riy)TP (x̄lat − riy) ≤ ρi}, (21)

where P is a symmetric positive definite matrix associated
with the Lyapunov function V (·) [38]. Although each refer-
ence equilibrium point riy has an associated PI set Oi, storage-
wise typically no 6= ny since the scale factor ρi is the same

6

for multiple invariant sets. This means that the same invariant
set Oi can be used, in a shifted form, for multiple reference
points, which reduces memory requirements. Since V (·) is a
Lyapunov function associated with the feedback gain κy , any
state trajectory that is initially inside Oi will remain inside
Oi for all k > 0 if riy is unchanged. The scale factor ρi is
determined as the largest value such that Oi does not violate
the input constraints (7a) and the static output constraints
(12). Determining ρi is in general a nonconvex optimization
problem. However, for our system (6a) and constraints (8),
(12), the problem has the closed-form solution [38]

ρi = minj

{
δmax − δffk
‖κT

yP
−1/2‖

,
ey,max − riy
‖CP−1/2‖

}
. (22)

Each vertex v ∈ V of the graph for each nominal ve-
locity vjx,nom includes the lateral equilibrium point riy , the
state-feedback controller κy that stabilizes the equilibrium
point, and the safe set Oi associated with the state-feedback
controller. The edges E indicate which of the setpoints are
connected by safe trajectories. An equilibrium point ry,i with
PI set Oi is connected to ry,j with PI set Oj in ` time steps
(i.e., in one planning step) if Oi is contained in Ō`j [39],

Oi ⊆ Ō`j , (23)

where

Ō`j = {x̄lat ∈ R5 : (x̄lat − rjy)TP̄ (x̄lat − rjy) ≤ ρj}, (24)

where P̄ = (Ā`)TPĀ`, Ā = Ã − bκy . Evaluating (23)
exactly requires solving a nonconvex quadratically-constrained
quadratic program. However, a sufficient condition for (23) to
hold is

(riy − rjy)TP̄ (riy − rjy) ≤ ρj − ρi
∥∥P−1/2ĀP 1/2

∥∥
F
, (25)

where ‖·‖F denotes the Frobenius norm. Checking for con-
nectivity using (25) is simple but it may be conservative. An
alternative is to check

(riy−rjy)TP (riy−rjy) ≤
√
ρj −

√
ρi
∥∥P−1/2ĀP 1/2

∥∥
2∥∥P−1/2ĀP 1/2

∥∥
2

, (26)

which is typically less conservative than (25) since
‖P−1/2ĀP 1/2‖2 ≤ ‖P−1/2ĀP 1/2‖F and the division of
the right-hand side in (26) with ‖P−1/2ĀP 1/2‖2 < 1 .

With all edges between the vertices determined, we con-
struct a weighted adjacency matrix M i for each reference ve-
locity vix,nom between all vertices in V . A connection between
two vertices is indicated by setting the edge weight wij to the
cost of moving along the edge (i, j). Edges corresponding to
transitions between the middle of either of the lanes may have
a low cost, whereas transitions close to the road boundaries
may have larger cost. The edge weights of the connectivity
graph G can be used as design parameters to ensure that the
motion planner follows a desirable driving behavior. Ramp-
like cost landscapes are constructed around OVs to make the
predefined safety margins soft. This encourages the EV to stay
further away from the obstacles but does not force the EV to
drastically reduce its speed if the EV cannot turn as fast as
the motion planner suggests.

k = 0 k = 1 k = 2

r1y

r2y

r3y

Fig. 4. An example of a small graph of three vertices (filled circles) and
edges (arrows) that connect the vertices over the three time steps. The graph
corresponds to the adjacency matrix in Fig. 5.

r1y,0 r2y,0 r3y,0 r1y,1 r2y,1 r3y,1 r1y,2 r2y,2 r3y,2



w11 w12 r1y,0

w21 w22 w23 ∞ r2y,0

w32 w33 r3y,0

w11 w12 r1y,1

w21 w22 w23 r2y,1

∞ w32 w33 r3y,1

r1y,2

r2y,2

r3y,2

Fig. 5. The adjacency matrix corresponding to the graph in Fig. 4.

Because of time-causality and size limitations of the PI
sets, the adjacency matrices M i will be upper-block diagonal
and extremely sparse. Fig. 4 shows an example graph for the
case of three lateral reference points {riy}3i=1 and a planning
horizon Np = 2. In this example, the vertices are connected
with edges to the neighboring vertices. For instance, when
driving in the middle of the road it is possible to move both
to the left and right. However, from the outer vertices, it is
only possible to switch to the closest reference point, which
implies that it would take two time steps to change lane. If two
vertices are not connected, the corresponding edge weight in
the adjacency matrix is set to∞. Fig. 5 displays the adjacency
matrix M corresponding to the graph in Fig. 4.

In the graph construction we have a set of nominal velocities
around which different linearization models are computed, and
the PI sets will be different for the different nominal velocities.
Indeed, due to linearization, there may be differences between
the expected trajectory according to the linearized model (18)
and the actual vehicle trajectory according to (6a). However,
such errors will only be practically visible in the transient
phase when we switch between nominal velocities, which only
happens at the beginning of a planning phase.

In this regards, an advantage of the proposed method that
exploits feedback and uses as PI sets the sublevel sets of
local quadratic Lyapunov functions is that along the nominal
trajectory the Lyapunov function decreases as ∆V (x̄lat) =
−(x̄lat − riy)TQ(x̄lat − riy), where Q is positive definite.
In nonnominal conditions, each sublevel set of V is still PI

7

as long as ∆V (x̄lat) ≤ 0. Thus, invariance of Oi for the
original system (6a) is still guaranteed as long as the error
on the Lyapunov function ∆V (x̄lat) due to model errors
or other disturbances satisfies ∆V (x̄lat) < x̄TlatQx̄lat. This
condition is actually only needed to ensure both safety and
convergence, while if only safety is the concern, the condition
is ∆V (x̄lat) ≤ (x̄lat − riy)TQ(x̄lat − riy) + (ρ − V (x̄lat)).
These conditions can be used to determine the allowed model
error and from this, the set of nominal velocities {vjx,nom}

nv
j=1.

The size of the invariant sets will change with the velocity
setpoint we linearize around to get the linear model (18).
Therefore, depending on the range of reference velocities
being used, several lateral controllers may need to be designed
to ensure that stability and connectivity is maintained, which
in the worst case gives nv different adjacency matrices, one
for each velocity setpoint. In practice, we design a lateral
controller for a subset of the range of velocities such that
connectivity and stability in this subset is guaranteed in a
similar fashion as for the lateral setpoints within each velocity
(see (24)). This reduces the amount of adjacency matrices to
be stored in the, usually limited, computing platform.

In the adjacency matrix M we can encode a minimum
length of the planning horizon [39]. The nominal planning
horizon is Np steps long, but it may be possible to reach a
target region Xgoal in fewer steps, and due to the stage costs
associated with traversing the nodes, the graph search will
favor solutions that involve fewer steps. As short solutions may
be overly aggressive for passengers, we encode in M that the
path must be at least Nm steps long, where 0 < Nm ≤ Np.

Remark 2: Quantification of the disturbances and modeling
errors that can be tolerated by the proposed approach can
be performed in several ways. The maximum 2-norm of the
additive disturbance as percentage of the current state that
can be tolerated is determined by the maximum ρ > 0 such
that (Āz + w)TP (Āz + w) − zPz ≤ −εzTz, for all
vectors w such that wTw ≤ ρ2zTz, where z = x̄lat − riy
and ε > 0 is arbitrarily small, which is solved by a linear
matrix inclusion (LMI) [40, (5.10)–(5.14), adapted to discrete-
time]. Relating this to parameter errors is straightforward
and as a consequence, one can tune the control design (and
therefore the invariant sets) to be more or less conservative.
For safety to be preserved, by Nagumo’s Theorem [41] it
is sufficient for this to hold at the border of the invariant
set, that is, for all x̄lat such that zTP̄ z = ρ, although
to account for discrete-time behavior, a “strip” around the
border is more appropriate. For the design used to obtain
the simulation results in Sec. IV, ρ > 9.5%. In addition, for
range uncertainty on the parameters, quantification amounts
to feasibility checking of (Āw)TPĀw − P ≤ −εI , for all
w ∈ W , where W is the range uncertainty on the parameters,
which again can be solved via LMI after reformulation as a
polytopic difference inclusion [40, (5.8), adapted to discrete-
time].

Remark 3: In this paper we use PI sets for guaranteeing
safety, relying on the robustness margin due to Lyapunov
function and the related feedback against modeling errors and
possible uncertainties, as discussed above. Alternatively, one
may use robust PI sets (RPI) that explicitly account for additive

or multiplicative disturbances during set construction, based
on (nontrivial) uncertainty quantification. Given that the errors
stemming from model uncertainty and linearization tend to be
multiplicative (e.g., trigonometric expressions of the rotation,
linear gain of stiffness, and coefficients due to velocity errors)
one could compute robust feedback gains and corresponding
RPI sets for a difference inclusion akin to [42]. In this paper
we use PI sets since, for the application at hand, the robustness
from the Lyapunov function and related feedback appears
sufficient to compensate for modeling errors and uncertainties.

C. Obstacle Avoidance and Online Graph Search

The connectivity test between equilibrium points (25) is
done offline and in absence of any OV. While it is possible
to change online the size of ρi and ρj in (21) and (24),
respectively, depending on the obstacle constraints Sk, the
computational cost tends to be too high for real-time high-
frequency implementation on an embedded platform for auto-
motive applications. Instead, we exploit again the properties
of the PI sets for reducing the computation as follows. During
runtime, we check for intersection of the PI sets with the
obstacle set (14). If

Oi
⋂
Sk 6= ∅, (27)

the equilibrium point ri for Oi is marked as unsafe and the
corresponding vertex (i, k) is eliminated from the graph.

We employ Dijkstra’s algorithm for the graph search in our
simulations and experiments. We search through the set of
connectivity graphs M , according to the preferred velocity
order, until we find a feasible reference path. If there exists
no path to the goal region, we modify the goal region so
that its associated node is reachable. One approach is to
execute Dijkstra’s algorithm with the current node as the goal
and “reverted edges” to determine which nodes are currently
reachable, and then to select as modified goal the node that
has the least distance to the original goal node for the graph
that does not consider the obstacles.

When the graph search is completed and the reference path
has been found, this path is submitted to the controllers (17),
(20) for execution and subsequent real-time tracking. The pre-
ferred velocity can be adjusted during runtime. For instance,
on highway driving it is reasonable to start with the speed limit
and then try different velocities in decreasing order. However,
when stopping at an intersection the preferred velocity is zero,
possibly with a transition phase through intermediate velocities
to ensure safe deceleration of the vehicle.

D. Implementation Aspects

The vehicle model (4) assumes knowledge of the distur-
bance ψ̇d, which has to be estimated. The disturbance can be
written as

ψ̇d(t) = vxc(t), (28)

where c(t) is the road curvature, which is an unknown function
of time. However, it is possible to point-wise estimate the
curvature given data points of either the road boundary or the
lane markers, or from a map.

8

Due to sensor errors and unpredicted changes in the envi-
ronment, especially at long distances, the computed steering
inputs and corresponding trajectory are implemented as a
receding horizon strategy. The computed trajectory is Np steps
long but is only applied for a portion Nc of the whole plan.
This ensures that feedback is not only imposed during the
trajectory tracking but also in the planning stage.

To account for modeling errors, assumptions not strictly
holding in practical cases, and estimation errors of the OVs
relative to the EV not captured by the constraint set (13), we
introduce an additional safety time of Ns time steps for the
longitudinal uncertainties and a lateral safety margin w for
uncertainties in the lateral direction.

The parameters, nr and Ts that indicate the number of
setpoints and the sampling-period in the planner, respectively,
are tightly connected. A small Ts means that a large number
of setpoints nr is needed, since the switching of the reference
points is made with respect to Ts. Instead, the obstacle
avoidance is guaranteed at sampling instants seperated by ∆t.
Thus, other than by classical factors such as capturing relevant
frequencies, sensor update rates, and available computing
power, ∆t is selected by considering that no relevant event
may occur during the intersampling which is not visible at
some sampling instant.

The number of lateral reference points riy is a tuning pa-
rameter that can be used to determine the number of switches
and connectivity of the search graph. Increasing the number
of reference points results in a larger graph and therefore a
larger computational cost, but it also improves connectivity
in the graph. Furthermore, a large number of reference points
makes it possible to design smaller PI sets. In the offline phase
this reduces connectivity since there is less overlap between
the PI sets. On the other hand, in the online collision checking
this can result in fewer nodes being eliminated from the graph
search, thereby effectively increasing connectivity.

The motion planner updates the motion plan with an
allocated computation time. Hence, the delay will cause a
mismatch between the EV position at the start of the planning
phase and the actual position of the EV when it receives
the motion plan. To account for this mismatch, we use a
delay compensator that predicts the EV position for the
allocated computational time. To generate the trajectory from
the determined path, we switch setpoints to the controller and
subsequently generate the trajectory by forward simulation of
the closed-loop dynamics between the time instants of the
switching. This gives the state trajectory xt+1, . . . ,xt+Np

.

E. Algorithm Summary

The proposed algorithm is summarized in Algorithm 1. The
algorithm assumes a state estimate x̂0 of the ego vehicle and
the M OVs ({x̂ov,0}Mj=1 at the time instant corresponding
to the beginning of the planning phase. If there exists no
path to Xgoal, this is detected at Line 7, and the goal is
modified as previously discussed. Most of the computations
are done offline. Online, the most demanding task is to perform
the prediction of obstacles (Line 4) and the intersection test
(Line 5). Line 5 scales linearly with the number of obstacles

and the collision checks are quadratic in the output dimension.
Note that the collision checks are performed only on the graph
nodes to remove edges from the graph, and not on every
point of the vehicle trajectories, to evaluate its safety, since
safety is guaranteed by the PI sets. The graph search (Line 7)
is computationally fast, since the graph matrix M is upper
block-diagonal (due to causality) and sparse, and the causality
decreases the complexity for solving Dijkstra’s algorithm from
O(|E| + |V| log(|V|)) to O(|E| + |V|). Furthermore, applying
standard state-feedback control (Line 14) is computationally
inexpensive. The total computational cost depends on the
number of obstacles in the region of interest and how many
reference velocities (i.e., graphs) the method needs to traverse
before finding a solution.

Algorithm 1 Proposed method
Offline: Compute Oi using (21), (22) ∀i ∈ [1, . . . , nr]
for different velocity setpoints and construct adjacency
matrices M as needed by determining (23) using (25).

1: Input: x̂0, {x̂ov,0}Mj=1, Xgoal.
2: Predict obstacle set (14).
3: for v ∈ {vix,nom}

nv
i=1 do

4: Closed-loop prediction of EV using v.
5: Check for intersection using (27) and remove cor-

responding edges in M i.
6: Determine riy such that x̂0 ∈ Oi from (21).
7: Perform a graph search to find a reference path

r̄0:N , N ∈ [Nm, Np], where rN ∈ Xgoal.
8: if Solution found then
9: Go to Line 12.

10: end if
11: end for
12: for k = 1 to Nc do
13: Estimate ψ̇d from (28).
14: Control the vehicle using (17), (20) with setpoint r̄k.
15: end for
16: Go to Line 1.

IV. SIMULATION STUDY

We consider an EV that travels on a single-direction two-
lane road. The road includes both straight-line and curved road
segments. The road coordinates are from the outer ring test
track of the Japanese Automobile Research Institute proving
ground in Shirosato, Japan, and the vehicle parameters used
in the simulation study are obtained from a real mid-size
SUV, from data-sheet, precision testbenches, and data analysis.
There are surrounding vehicles maintaining either of the lanes
with constant velocity. In the simulation, the obstacle set is
predicted by designing lane-tracking controllers that control
the OVs assuming a fixed lane over the planning horizon Np.
The desired velocity is vx = 20 m/s. Hence, this is the first
candidate reference velocity that the planner tries in searching
for a collision-free trajectory. The gridding of the velocity
setpoints is done in decrements of 2 m/s down to 10 m/s,
that is, using five reference velocity setpoints. The goal region
is chosen such that a path is considered to have reached the
region if the endpoint is at least Nm steps long and is in the
middle of either of the lanes.

9

TABLE I
PARAMETER VALUES USED FOR THE SIMULATION STUDY.

Parameter value Unit Description

∆t 0.1 s Sampling period vehicle dynamics
Ts 0.5 s Sampling period in planner
Np 20 (10) steps (s) Nominal planning horizon
Nm 10 (5) steps (s) Minimum planning horizon
Nc 5 (0.5) steps (s) Control horizon
nr 36 - # road discretization points

The planning is done in the road-aligned, local coordinate
frame. However, in the simulation, the computed control inputs
are used in a vehicle modeled in the global coordinate frame.
Furthermore, neither the disturbance (28) nor the true motion
of the vehicles are known to the planner. The disturbance
is estimated online by a first-order Taylor expansion of the
curvature at each time step, where the estimate and the
corresponding first-order derivative are calculated from the
radius of curvature, which is found from the data points by
fitting a circle segment. The obstacle set (14) is determined
from obstacle predictions, by using the position and velocity
of each OV at the time corresponding to the beginning of each
planning phase. Hence, the simulation study gives indications
on the planner robustness to these uncertainties.

Table I shows the algorithm parameters. These values cor-
respond to a weighted adjacency matrix M ∈ R758×758, out
of which approximately 3100 elements are nonzero (i.e., about
0.5%). Algorithm 1 is implemented in MATLAB on a 2014 i5
laptop. We design one set of state-feedback controllers (17),
(20) for the entire range [10, 20] of reference velocities and
construct the adjacency matrix M using the connectivity test
for v5x,nom = 10 m/s such that we ensure connectivity for the
same vertices for all vjx,nom > v5x,nom. We design the edge
weights as piecewise linear functions, with the lowest cost
edge weight in the middle of each lane.

A. Results

Fig. 6 shows five snapshots of a situation where the
EV catches up with two slower moving OVs, one in each
lane. Eventually, there is no collision-free trajectory for the
preferred velocity v1nom, so the planner tests the different
candidate velocities in decreasing order until a solution is
found. In the figure, the time at which switching between
setpoints is initiated can be seen in the second and fourth
subplots. The PI sets projected on the road are shown in
green. When switching between different setpoints is initiated
(e.g., the second plot from the left), the contraction of the
invariant sets due to (25) is noticeable. The resulting trajectory
in the global frame when applying the control inputs is in
Fig. 7. Fig. 8 displays the velocity profile for the time period
corresponding to the snapshots. The time instants when the
different snapshots occur are indicated by dashed lines.

Fig. 9 shows the computation time for the planning steps
across the scenario. The nominal computation time is always
less than 40 ms for trajectories of at least 5 s, i.e., the ratio
between real time and computing time is ν > 125. The higher
peaks correspond to periods when the velocity is decreased
(c.f. Fig. 8). However, the computation time is always below

40 ms. The complexity grows linearly with the number of
elements in the adjacency matrix and the number of obstacles
[18]. Because of the fast computation, the proposed method
appears suitable for use even in rapidly changing and reactive
scenarios, and in automotive-grade embedded platforms whose
capabilities are more limited than standard computers [17].

V. EXPERIMENTAL SETUP

For experimental validation of the method, we use the
Hamster platform [43], see Fig. 10. The Hamster is a 25× 20
cm mobile robot for research and prototype development. It
is equipped with sensors commonly available on full-scale
research vehicles, such as lidar, inertial measurement unit,
GPS receiver, camera, magnetometers, and motor encoder.
It uses two Raspberry PI3 for processing. The Hamster is
robot operating system (ROS) compatible, hence allowing to
be integrated in a ROS network. The robot uses Ackermann
steering and is therefore kinematically equivalent to a full-
scale vehicle, and its dynamics, such as the suspension system,
resembles that of a regular vehicle. Hence, it presents itself as
a suitable platform for verifying dynamic feasibility and for
testing the performance of the motion planner in a realistic
situation, in a safe and limited space environment.

Table II shows some of the most important algorithm param-
eters. The test track is a two-lane closed circuit with each lane
0.3 m wide, which implies that the lateral distance between
two adjacent discretization points is 0.01 m. The longitudinal
velocity is discretized equidistantly with steps of 0.04 m/s
from 0.4 m/s down to 0.12 m/s, and the preferred velocity is
0.4 m/s. We design four state-feedback controllers at the ve-
locities {v1x,nom, . . . , v4x,nom} = {0.4, 0.225, 0.155, 0.12} m/s.
The velocity level vix,nom was chosen by determining the
largest set for ensuring connectivity for all velocities vx ∈
[vix,nom, v

i+1
x,nom] (c.f. Sec. III-B).

The edge weights of the connectivity graph G can be used
as design parameters to ensure that the motion planner follows
a desirable driving behavior. The final edge weights, computed
as piecewise linear functions in the lateral direction, that are
used for our driving experiments are shown in Fig. 11, where
a heat map of the cost landscape is shown for the nodes of
the graph, and the value associated to a node is the weight
of all edges pointing to this node. According to Fig. 11, in
the lateral dimension it is more expensive to move to a node
that is located between the lanes. This strategy encourages
the motion planner to find a path that stays in the center of
the lanes and avoids driving between lanes. Along the time
dimension, we gradually increase the edge weights, that is, it
becomes more expensive to move close to a preceding OV. If
the EV plans to pursue an overtaking, this will encourage the
EV to switch lane as early as possible.

In the experiments, the obstacle set (14) is determined
from obstacle predictions in the local frame, by using the
estimated position and velocity of each OV at the time instant
corresponding to the beginning of each planning phase and
predicting the OVs by using a proportional mid-lane tracking
controller assuming constant speed.

The number of nonzero elements of the connectivity graph
Gv for the different longitudinal velocity levels are shown in

10

0

40

80

120

t = 14 [s]

ey

ex [m]

0

40

80

120

t = 21 [s]

ey

ex

0

40

80

120

t = 28 [s]

ey

ex

0

40

80

120

t = 33 [s]

ey

ex

0

40

80

120

t = 36 [s]

ey

ex

Fig. 6. Five snapshots of a situation where the EV (red) catches up with two slower moving OVs (blue), one in each lane. The desired path is indicated with
red crosses and the invariant sets projected onto the road are in green. Resulting trajectory is in black and the corresponding time the EV reaches a particular
point on the trajectory is enumerated to the left in each snapshot. In each snapshot, snapshots of the OVs every 0.5 s are shown in increasing color. The
snapshots of the OVs correspond to the point at the time of the reference equilibrium points.

700 750 800

−250

−200

−150

−100

−50

0

50

X [m]

Y
[m

]

Fig. 7. The resulting trajectory in the global frame when applying the steering
input resulting from Algorithm 1 over the time span in Fig. 6.

10 14 21 28 33 36
14

16

18

20

Time [s]

v x
[m

/s
]

Fig. 8. The resulting velocity (black) and reference velocity setpoints (red
dashed) as computed by the planner over the time span in Fig. 6. The dashed
lines correspond to the snapshots in Fig. 6, numbered from left to right.

10 20 30 40
20

25

30

Time [s]

Ti
m

e
[m

s]

Fig. 9. Computation time over the time steps for the driving scenario (Figs. 6–
7). The implementation is done in MATLAB on a 2014 i5 2.8GHz laptop.

Fig. 10. The Ackermann-steered mobile robot used in the experiments.

TABLE II
PARAMETER VALUES USED FOR THE EXPERIMENTAL EVALUATION.

Parameter value Unit Description

∆t 0.1 s Sampling period vehicle dynamics
Ts 0.5 s Sampling period in planner
Np 30 (15) steps (s) Nominal planning horizon
Nm 10 (5) steps (s) Minimum planning horizon
Nc 5 (0.5) steps (s) Control horizon
nr 31 - # road discretization points

11

0
0.2

0

10

0

0.2

0.4

ey [m]
Time [s]

E
dg

e
co

st

Fig. 11. Illustration of the edge weights of the connectivity graph, with the
boundaries in the lateral direction being the center of each lane. It is most
expensive to move to a node located between the lanes.

TABLE III
PROPERTIES OF THE CONNECTIVITY GRAPH Gv .

v [m/s] Nonzero elements Sparsity [%] Setpoint outdegree

0.4 4493 99.52 5
0.36 4493 99.52 5
0.32 4493 99.52 5
0.28 4493 99.52 5
0.24 4493 99.52 5
0.20 4493 99.52 5
0.16 2753 99.70 3
0.12 2753 99.70 3

Table III, where the velocity levels are associated with the
state-feedback controller of the corresponding velocity region.
The sparsity is the fraction of zero-valued elements of Gv
and the setpoint outdegree is the maximum number of out-
neighbors of any node in Gv . The connectivity graphs for
the six highest velocity are all the same. For the two lowest
velocities, the connectivity graphs are the same, yet different
from the former ones. In fact, for the lower velocity levels,
the EV can only reach the two most adjacent setpoints in
one planning step, because of the imposed input constraint
set U . Since the connectivity graphs are extremely sparse
for all velocities, the graph-search problem can be computed
efficiently in real-time.

For localization, we create a 2-D occupancy grid map [44].
The map is sent to a Monte-Carlo based localization system
(AMCL) [45], which uses the lidar for localization in the map.
The localization system has a low update frequency, does not
fully utilize all the available sensing, and is furthermore sub-
ject to outliers. To account for this, we have implemented an
extended Kalman filter (EKF) that estimates the vehicle state
vector by fusing the position estimates from AMCL, the IMU,
and odometry sensors. The EKF additionally estimates the bias
of the steering-wheel sensor, and we have implemented an
outlier detection scheme and filter divergence monitoring [46].
We use the lidar also for online obstacle detection.

VI. EXPERIMENTAL EVALUATION

We present results from three different scenarios, one with
moving obstacles operating normally on the road and commu-
nicating their initial position and velocity, one with a static
obstacle appearing suddenly in front of the EV that is only
detected by lidar, and one intersection test with moving OVs
detected only by lidar.

A. Overtaking of two OVs

The first scenario considers overtaking of two OVs. To show
the performance of the planning module without presence of
disturbances in obstacle detection, we simulate the OVs using
multiple instances of an appropriately built ROS simulator,
each implemented as a stand alone ROS-node, and send the
obstacle information (pose and velocity) at the beginning of
the planning stage to the planner.

Fig. 12 shows six snapshots for the overtaking scenario
(lower). The upper plot shows the velocity setpoint (red
dashed) and the estimated velocity (black). The OVs in the
right and left lane have constant velocities of 0.15 m/s and
0.2 m/s, respectively. In this case, the motion planner has to
reduce the reference velocity to ensure that the EV does not
enter the dangerous zones around the obstacles. The EV aims
to drive close to the nominal speed 0.4 m/s and the OV in
the left lane is the faster among the two. Hence, the motion
planner overtakes first the OV in the right lane. Once it is
possible to safely plan a trajectory back to the preferred right
lane, this becomes the intended motion plan.

Fig. 13 shows the tracking errors for the experiment. The
tracking error is within a range of ±1.5 cm throughout, with
the tracking error below 1 cm most of the time, showing that
the approximations to the model are suitable and well within
the safety margins of the Lyapunov function (Remark 2). The
path for the entire experiment is shown in Fig. 14.

B. Lidar-Detected Obstacle Avoidance

Here, the EV is driving on the outer lane without any OVs
nearby. An OV suddenly appears in front of the EV. The OV
does not send any information about position and velocity: the
lidar is responsible for detecting the OV, and the position and
velocity estimate is propagated to the motion planner.

Fig. 15 shows that the onboard lidar successfully detects
the OV, and the motion planner can appropriately react to the
sudden OV appearance. The motion planner can quickly react
to the detected obstacle and re-compute a safe trajectory thanks
to the fast computation time. Fig. 16 shows a snapshot of what
the lidar detects. Multiple obstacles are detected, for instance,
corners of some nearby objects. All detected obstacles not
in the interior of the map (i.e., all but the OV) are filtered
out when propagated to the motion planner. The EV switches
lane to avoid the OV, and returns back once it has passed
the obstacle. This behavior is very similar to the results using
virtual OVs in Sec. VI-A.

12

0 5 10 15 20

0

0.2

0.4

Time [s]

vx [m/s]

−0.5

0.5

1.5

2.5

t=0 [s]

ey [m]

ex [m] t=5 [s] t=10 [s] t=15 [s] t=20 [s] t=25 [s]

Fig. 12. Six snapshots of an experimental evaluation of overtaking of two slower moving OVs. The upper plot shows the estimated velocity (black) and
reference velocity setpoints (red dashed) as computed by the motion planner. Same notation as in Fig. 6 (Sec. VI-A).

0 20 40 60 80

−0.01

0

0.01

Time [s]

ey [m]

Fig. 13. Tracking error as a function of time for the same experiments as in
Figure 12 (Sec. VI-A).

−2 −1 0 1

−1

0

1

2

3

X [m]

Y [m]

Fig. 14. The EV path for the whole experiment corresponding to Fig. 12.

Fig. 15. Overtaking scenario with a lidar-detected static obstacle . The
increased opacity illustrates the time progression.

Fig. 16. Snapshot of the rviz window during the lidar detection experiment
with one static obstacle. The small coordinate frame represents the estimated
EV position, where the red axis is in the heading direction of the vehicle. The
lidar-detected obstacles are illustrated by red circles with green borders. The
view is rotated 90 ◦ anti-clockwise with respect to Figure 15.

13

Fig. 17. Fused sequence of images from the intersection experiment with a
lidar-detected moving obstacle. Increased opacity illustrates time progression.

C. Intersection with Crossing OVs

In this scenario we demonstrate how the proposed motion
planner can handle intersection scenarios. We have imple-
mented simple heuristic decision rules for signs and predicted
obstacles in the EV ROI. Sign information is propagated to
the motion planner. If there are any signs in the ROI, the
EV enters sign mode and certain overtaking maneuvers are
prevented. A decision to stop is implemented by setting the
preferred velocity v1x,nom = 0.

Fig. 17 shows the motion sequence from the intersection
experiment. The EV safely stops at the stop sign and waits
until the obstacle has passed, before moving on. Also in
this case the OV does not provide any position or velocity
information which are then estimated only from lidar sensing.

Fig. 18 shows snapshots for the intersection scenario. From
the velocity plot, it is clear that the motion planner is capable
of planning a smooth deceleration, stop at the stop sign, and
continuing on once the intersection is clear. The prediction
of the detected obstacle is seen in the snapshots for the time
instants from 2.6 s to 7.8 s. Although the obstacle is actually
moving along the crossing road, the predicted direction of
motion is changing in time due to the noise characteristics
of the lidar scans. Indeed, the estimate of the OV velocity
obtained from the onboard lidar is not very reliable. Still,
the detected obstacles are handled by the motion planner to
produce reference trajectories that safely avoid the obstacle.

VII. CONCLUSION

This paper presented a method for integrating motion plan-
ning and vehicle control by exploiting PI sets. The proposed
approach enforces constraints on the vehicle motion as well as
avoids collisions. The method uses a graph search over lateral
displacements on the road for different reference velocity
setpoints, and then executes a sequence of state-feedback

controllers using the nodes in the path resulting from the graph
search as a sequence of corresponding target equilibria. The
simulation study showed that the method can safely navigate
the vehicle through tight passages where combined slow-
down and lane change is needed, and the online computation
requirements are modest.

The experimental study, even when using only onboard
sensors for localization and obstacle detection, shows that
the method is robust to sensing errors and disturbances.
Furthermore, the tracking errors are within 1 cm most of the
time, implying that the method indeed computes dynamically
feasible, realistic trajectories. The computation for the pro-
posed method is fast enough to react to obstacles that suddenly
appear in front of the vehicle, as long as the obstacle behavior
is not excessively malicious.

REFERENCES

[1] D. Burton, A. Delaney, S. Newstead, D. Logan, and B. Fildes, “Eval-
uation of anti-lock braking systems effectiveness,” RACV, Tech. Rep.
04/01, 2004.

[2] K. Reif and K.-H. Dietsche, Bosch Automotive Handbook, ser. Bosch
Invented for life. Plochingen, Germany: Robert Bosch GmbH, 2011.

[3] B. Paden, M. Cap, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of
motion planning and control techniques for self-driving urban vehicles,”
IEEE Trans. Intell. Veh., vol. 1, no. 1, pp. 33–55, 2016.

[4] K. Berntorp, “Path planning and integrated collision avoidance for
autonomous vehicles,” in Amer. Control Conf., Seattle, WA, May 2017.

[5] S. M. LaValle, Planning Algorithms. Cambridge, UK: Cambridge
University Press, 2006.

[6] Y. Kuwata, S. Karaman, J. Teo, E. Frazzoli, J. How, and G. Fiore, “Real-
time motion planning with applications to autonomous urban driving,”
IEEE Trans. Control Syst. Technol., vol. 17, no. 5, pp. 1105–1118, 2009.

[7] K. Berntorp and S. Di Cairano, “Particle filtering for online motion
planning with task specifications,” in Amer. Control Conf., Boston, MA,
Jul. 2016.

[8] K. Berntorp, T. Hoang, and S. Di Cairano, “Motion planning of
autonomous vehicles by particle filtering,” IEEE Trans. Intell. Veh.,
vol. 4, no. 2, pp. 197–210, 2019.

[9] R. Tedrake, I. R. Manchester, M. Tobenkin, and J. W. Roberts, “Lqr-
trees: Feedback motion planning via sums-of-squares verification,” Int.
J. Robot. Res., vol. 29, no. 8, pp. 1038–1052, 2010.

[10] R. Allen and M. Pavone, “Toward a real-time framework for solving the
kinodynamic motion planning problem,” in Int. Conf. Robot. Autom.,
Seattle, WA, May 2015.

[11] C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. Clark,
J. Dolan, D. Duggins, T. Galatali, C. Geyer et al., “Autonomous driving
in urban environments: Boss and the Urban challenge,” J. Field R,
vol. 25, no. 8, pp. 425–466, 2008.

[12] M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Et-
tinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke et al., “Junior:
The Stanford entry in the Urban challenge,” J. Field R., vol. 25, no. 9,
pp. 569–597, 2008.

[13] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust non-
linear predictive control approach to semiautonomous ground vehicles,”
Veh. Syst. Dyn., vol. 52, no. 6, pp. 802–823, 2014.

[14] S. Di Cairano, U. Kalabić, and K. Berntorp, “Vehicle tracking control on
piecewise-clothoidal trajectories by MPC with guaranteed error bounds,”
in Conf. Decision and Control, Las Vegas, NV, Dec. 2016.

[15] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive
active steering control for autonomous vehicle systems,” IEEE Trans.
Control Syst. Technol., vol. 15, no. 3, pp. 566–580, 2007.

[16] A. Carvalho, S. Lefévre, G. Schildbach, J. Kong, and F. Borrelli,
“Automated driving: The role of forecasts and uncertainty - a control
perspective,” Eur. J. Control, vol. 24, pp. 14–32, 2015.

[17] S. Di Cairano and I. V. Kolmanovsky, “Real-time optimization and
model predictive control for aerospace and automotive applications,”
in Amer. Control Conf., Milwaukee, WI, Jun. 2018.

[18] K. Berntorp, A. Weiss, C. Danielson, I. Kolmanovsky, and S. Di Cairano,
“Automated driving: Safe motion using positively invariant sets,” in Int.
Conf. Intell. Transp. Syst., Yokohama, Japan, Oct. 2017.

14

0 5 10

0

0.2

0.4

Time [s]

vx [m/s]

t=0 [s]

−0.5

0.5

1.5

2.5

ey [m]

ex [m] t=2.6 [s] t=5.2 [s] t=7.8 [s] t=10.4 [s] t=13 [s]

Fig. 18. Intersection scenario with a stop sign and a lidar-detected moving obstacle, corresponding to Fig. 17. Same notation as in Fig. 6.

[19] K. Berntorp, C. Danielson, A. Weiss, and S. Di Cairano, “Positive
invariant sets for safe integrated vehicle motion planning and control,”
in Conf. Decision and Control, Orlando, FL, Dec. 2018.

[20] N. Murgovski and J. Sjöberg, “Predictive cruise control with autonomous
overtaking,” in Conf. Decision and Control, Osaka, Japan, 2015.

[21] V. Turri, A. Carvalho, H. E. Tseng, K. H. Johansson, and F. Borrelli,
“Linear model predictive control for lane keeping and obstacle avoidance
on low curvature roads,” in Int. Conf. Intell. Transp. Syst., The Hague,
Netherlands, 2013.

[22] J. Nilsson, P. Falcone, M. Ali, and J. Sjöberg, “Receding horizon
maneuver generation for automated highway driving,” Control Eng.
Pract., vol. 41, pp. 124–133, 2015.

[23] S. Singh, A. Majumdar, J. J. Slotine, and M. Pavone, “Robust online
motion planning via contraction theory and convex optimization,” in Int.
Conf. Robot. Autom., Singapore, May 2017.

[24] G. Franzè and W. Lucia, “The obstacle avoidance motion planning
problem for autonomous vehicles: A low-demanding receding horizon
control scheme,” Systems & Control Letters, vol. 77, no. 1–10, 2015.

[25] ——, “A receding horizon control strategy for autonomous vehicles in
dynamic environments,” IEEE Trans. Control Syst. Technol., vol. 24,
no. 2, pp. 695–702, 2016.

[26] B. Schürmann, N. Kochdumper, and M. Althoff, “Reachset model
predictive control for disturbed nonlinear systems,” in Conf. Decision
and Control, Maimi Beach, Fl, Dec. 2018.

[27] A. Majumdar and R. Tedrake, “Funnel libraries for real-time robust
feedback motion planning,” J. Robot. Res., vol. 36, no. 8, pp. 947–982,
2017.

[28] M. Althoff and J. M. Dolan, “Set-based computation of vehicle behaviors
for the online verification of autonomous vehicles,” in Int. Conf. Intell.
Transp. Syst., 2011.

[29] ——, “Online verification of automated road vehicles using reachability
analysis,” IEEE Trans. Robot., vol. 30, no. 4, pp. 903–918, 2014.

[30] D. Hess, M. Althoff, and T. Sattel, “Formal verification of maneuver
automata for parameterized motion primitives,” in Int. Conf. Intell.
Robots and Syst., Chicago, Il, Sep. 2014.

[31] H. B. Pacejka, Tire and Vehicle Dynamics, 2nd ed. Oxford, United
Kingdom: Butterworth-Heinemann, 2006.

[32] R. Rajamani, Vehicle Dynamics and Control. Springer-Verlag, 2006.

[33] A. Gray, M. Ali, Y. Gao, J. K. Hedrick, and F. Borrelli, “Integrated
threat assessment and control design for roadway departure avoidance,”
in Int. Conf. Intell. Transp. Syst., Anchorage, AK, 2012.

[34] K. J. Åström and B. Wittenmark, Computer-Controlled Systems. Dover,
2011.

[35] A. Eidehall and L. Petersson, “Statistical threat assessment for general
road scenes using Monte Carlo sampling,” IEEE Trans. Intell. Transp.
Syst., vol. 9, no. 1, pp. 137–147, 2008.

[36] S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction
and risk assessment for intelligent vehicles,” Robomech J., vol. 1, no. 1,
p. 1, 2014.

[37] K. Okamoto, K. Berntorp, and S. Di Cairano, “Driver intention-based
vehicle treat assessment using random forests and particle filtering,” in
IFAC World Congress, Toulouse, France, Jul. 2017.

[38] C. Danielson, A. Weiss, K. Berntorp, and S. Di Cairano, “Path planning
using positive invariant sets,” in Conf. Decision and Control, Las Vegas,
NV, Dec. 2016.

[39] A. Weiss, C. Petersen, M. Baldwin, R. S. Erwin, and I. Kolmanovsky,
“Safe positively invariant sets for spacecraft obstacle avoidance,” J.
Guidance, Control, and Dynamics, vol. 38, no. 4, pp. 720–732, 2014.

[40] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matrix
inequalities in system and control theory. Philadelphia: SIAM, 1994.

[41] J.-P. Aubin, Viability theory. Springer Science & Business Media, 2009.
[42] S. Di Cairano, “Indirect adaptive model predictive control for linear

systems with polytopic uncertainty,” in Amer. Control Conf., Boston,
MA, Jul. 2016.

[43] Cogniteam, “The Hamster,” 2018, [accessed 8-January-2018]. [Online].
Available: www.cogniteam.com/hamster5.html

[44] G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with Rao-Blackwellized particle filters,” IEEE Trans. Robot.,
vol. 23, pp. 34–46, 2007.

[45] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[46] F. Gustafsson, Statistical Sensor Fusion. Lund, Sweden: Utbildning-
shuset/Studentlitteratur, 2010.

15

Karl Berntorp received the M.Sc. degree in En-
gineering Physics in 2009 and the Ph.D. degree in
Automatic Control in 2014, from Lund University,
Lund, Sweden. In 2008 he was a visiting researcher
at Daimler AG in Sindelfingen, Germany. In 2014 he
joined Mitsubishi Electric Research Laboratories in
Cambridge, MA. His research is on statistical signal
processing, sensor fusion, and optimization-based
control, with applications to automotive, aerospace,
transportation, and communication systems. His
work includes design and implementation of non-

linear estimation, constrained control, and motion-planning algorithms. Dr.
Berntorp is the author of more than 65 peer-reviewed international papers
and patents.

Richard Bai received the M.Sc. degree in Engineer-
ing Physics from Lund University, Lund, Sweden
in 2018. His research interests include motion plan-
ning and sensor fusion for control of autonomous
vehicles. He is currently working as a consultant at
Netlight in Stockholm, Sweden.

Karl F. Erliksson received the M.Sc. degree in
Engineering Physics in 2018 from Lund University,
Lund, Sweden. In 2016 he was a research fel-
low at Netlab at California Institute of Technology,
Pasadena, CA, USA. His research interests include
motion planning and control for autonomous vehi-
cles, as well as optimization algorithms for smart
grid applications. He is currently with the Advanced
Analytics practice at Accenture Sweden.

Claus Danielson received his PhD in 2014 from
the Model Predictive Control Laboratory at the Uni-
versity of California, Berkeley. He is currently a
Principal Research Scientist at Mitsubishi Electric
Research Laboratories in Cambridge, MA. His re-
search interests are in predictive and constrained
control. His specialty is developing methods for
exploiting structure in large-scale or complex con-
trol and optimization problems. He has applied his
research to a variety of fields include energy storage
networks, heating ventilation and air conditioning,

adaptive optics, spacecraft guidance and control, atomic force microscopy,
autonomous vehicles, cancer treatment, and robotics.

Avishai Weiss is a Principal Research Scientist
in the Control and Dynamical Systems group at
Mitsubishi Electric Research Laboratories (MERL),
Cambridge, MA. He received his Ph.D. in Aerospace
Engineering in 2013 from the University of Michi-
gan and holds B.S. and M.S. degrees from Stan-
ford University in Electrical Engineering (2008)
and Aeronautics and Astronautics (2009). His main
research interests and contributions are in the areas
of spacecraft orbital and attitude control, constrained
control, model predictive control, and time-varying

systems, in which he has authored over 45 peer-reviewed papers and patents.

Stefano Di Cairano received the Master (Laurea),
and the PhD in Information Engineering in ’04
and ’08, respectively, from the University of Siena,
Italy. He has been visiting student at the Techni-
cal University of Denmark and at the California
Institute of Technology. During 2008–2011, he was
with Powertrain Control R&A, Ford Research and
Adv. Engineering, Dearborn, MI. Since 2011, he
is with Mitsubishi Electric Research Laboratories,
Cambridge, MA, where he is now the Senior Team
Leader for Optimization-based Control, and a Dis-

tinguished Researcher in Control and Dynamical Systems. His research is
on optimization-based control strategies for complex mechatronic systems,
in automotive, factory automation, transportation systems and aerospace.
His research interests include model predictive control, constrained control,
particle filtering, hybrid systems, optimization.

Dr. Di Cairano has authored/co-authored more than 150 peer reviewed
papers in journals and conference proceedings and 35 patents. He was the
Chair of the IEEE CSS Technical Committee on Automotive Controls 2012-
2015, the Chair of IEEE Standing Committee on Standards since 2016-
2019, and an Associate Editor of the IEEE Transactions on Control Systems
Technology.

	Title Page
	page 2

	/projects/www/html/my/publications/docs/TR2019-086.pdf
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15

