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Reinforcement Learning for Vision-Based
Lateral Control of a Self-Driving Car

Mengzhe Huang, Mingyu Zhao, Parthiv Parikh, Yebin Wang, Kaan Ozbay, and Zhong-Ping Jiang

Abstract—Lateral control design is one of the fundamental
components for self-driving cars. In this paper, we propose
a learning-based control strategy that enables a mobile car
equipped with a camera to perfectly perform lane keeping in
a road on the ground. Using the method of adaptive dynamic
programming, the proposed control algorithm exploits the struc-
tural knowledge of the car kinematics as well as the collected data
(images) about the lane information. An adaptive optimal lateral
controller is obtained through a data-driven learning algorithm.
The effectiveness of the proposed method is demonstrated by
theoretical stability proofs and experimental evaluations.

I. INTRODUCTION

Vehicle motion control is a classical problem in the commu-
nity of robotics and autonomous driving [1], [2]. The nonholo-
nomic constraints associated with vehicles pose difficulties in
the motion planning and control design for self-driving cars.
To perform different maneuvers, such as lane keeping and
lane change, the control tasks can be categorized into two
subtasks: 1) path following; 2) trajectory tracking. In the task
of path following, the reference path is independent of time.
On the contrary, time is a constraint in the reference path for
the trajectory tracking problem formulation [3]. During the
last decades, extensive research efforts have been devoted to
develop intelligent control algorithms that can solve the above
two problems in the presence of modeling error and other
forms of uncertainty.

For academic research, differential wheeled and car-like
robots serve as affordable and easy-to-use hardware platforms
to validate the performance of developed control algorithms.
For the trajectory tracking problem, many control methods
have been proposed in prior work, such as backstepping [4]
and adaptive control [5]. These tracking controllers rely on
the exact or estimated global position measurement. On the
other hand, the path following problem can be solved based
only on the local information of the mobile car, e.g., distance
to the curve and heading angle error. Among the earliest
path following approaches is pure pursuit [6]. Due to its
simple implementation, pure pursuit has been employed in the
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DARPA Grand Challenge [7]. A chain-form based method was
proposed in [8] to achieve path following for a car connected
with several trailers. Recent investigations for robot motion
control have focused on conventional model-based control
solutions [9]–[11]. In [10], the authors designed a proportional
controller and discussed the existence and practical stability
of an equilibrium trajectory given that the reference path is
a circular track. In the stability analysis, the exact curvature
needs to be known in advance in order to eliminate the lateral
offset. This limitation motivates this study.

In this paper, without knowing the exact curvature, we aim
to design an image-based control method that allows a mobile
car to perfectly perform lane keeping on a circular track,
where the lateral deviation converges to zero as time goes
to infinity. As shown later in this paper, the equilibrium point
of the motion system is dependent on the curvature. In other
words, unknown curvature gives rise to unknown kinematic
model for path following. In addition, parametric uncertainties,
e.g., unknown motor parameters, may undermine the control
performance in practice. For the purpose of simultaneous adap-
tivity and optimality, this study presents a data-driven learning-
based control algorithm using adaptive dynamic programming
(ADP). ADP is an integration of reinforcement learning [12]
and control theory. Adaptive optimal controllers can be learned
from measurable data without the exact knowledge of system
dynamics [13]–[18]. Recently, ADP-based control algorithms
have been applied to the data-driven adaptive optimal control
of connected and autonomous vehicles [19]–[21].

The main contribution of this paper is as follows: by em-
ploying the error kinematics with respect to the lane centerline,
the lane keeping problem is solved by a data-driven learning-
based control method. In particular, a combination of ADP
and internal model principle is proposed to improve the lane
keeping performance in order to 1) avoid the curvature estima-
tion of the road; 2) overcome model uncertainties caused by
unknown motor parameters. Compared to the early work [8]–
[10], [22], our approach can achieve simultaneous adaptivity
and optimality. Specifically, it intends to improve the control
performance by reducing lateral offset and energy consump-
tion. The efficacy of the proposed algorithm is validated
through rigorous stability analysis and physical experiment
using a Raspberry Pi based self-driving car. The experimental
results show that the mobile car achieves lane keeping with
minimal lateral offset.

Notations. Throughout this paper, R and Z+ denote
the sets of real numbers and non-negative real numbers,
respectively. | · | represents the Euclidean norm for vectors,



or the induced matrix norm for matrices. ⊗ indicates the
Kronecker product. vec(A) = [aT1 , a

T
2 , . . . , a

T
m]T , where

ai ∈ Rn are the columns of A ∈ Rn×m. In represents
the n × n identity matrix. 0n×m denotes the n × m zero
matrix. For a symmetric matrix P ∈ Rm×m, vecs(P ) =
[p11, 2p12, · · · , 2p1m, p22, 2p23, · · · , 2pm−1,m, pmm]T ∈
R 1

2m(m+1). For an arbitrary column vector v ∈ Rn,
vecv(v) = [v2

1 , v1v2, · · · , v1vn, v
2
2 , · · · , vn−1vn, v

2
n]T ∈

R 1
2n(n+1). diag(a1, a2, · · · ) indicates a diagonal matrix

where the entries on the main diagonal are a1, a2, · · · and
the entries outside the main diagonal are all zero. Capital or
lower-case letters in bold font refer to vectors.

II. KINEMATIC MODEL OF A MOBILE CAR

Fig. 1: Kinematic model of a mobile car

In this study, the mobile car is approximately modeled by a
two-wheel differential-driven robot. Assuming that the mobile
robot satisfies the nonslipping condition during the motion.
Then, the simplified kinematic model of the unicycle-type
mobile robot is

Ẋ = v cos θ, Ẏ = v sin θ, θ̇ = ω, (1)

where (X,Y ) represents the coordinates of the middle point
Pm located at the car’s center of mass, θ specifies the
orientation angle of the car’s chassis in a reference frame, v is
the linear velocity of Pm, and ω is the chassis instantaneous
velocity of rotation. Furthermore, the linear velocity v and the
angular velocity ω are regulated by the actuated wheels via
the following relations

v =
r

2
(ωr + ωl), (2a)

ω =
r

2L
(ωr − ωl), (2b)

where r is the wheels’ radius, L is the distance between
wheels of both sides, ωl and ωr are the angular velocities of
the left and right wheels. The relationship between the motors
(that drive the robot) and the angular velocity of wheels can
be simplified as

ωi = bmi, (3)

where i = {l, r}, mi is the duty cycle of the micro-controller
that regulates the motor speed, and b is the coefficient. In short,

a linear relationship between the duty cycle and the angular
velocity of the wheel is assumed.

In this study, we focus on the controller design of the robot’s
lateral motion, while the linear velocity v is constant. Define
the duty-cycle difference between both sides as the control
input u, i.e., u = mr − ml. Note that u ∈ [−100%, 100%].

Combining (2b) and (3), we have ω = bmu, where bm =
rb

2L
.

Thus, from (1), we have

θ̇ = bmu. (4)

Recall that the objective here is to achieve lane keeping,
which is an example of path following. We follow the same
procedure as in [23, Chapter 34] and [10] to generalize the
kinematic model (1) and (4) into a model in Frénet frame. As
shown in Fig. 1, Fo = {o, iii, jjj} is a fixed reference frame.
Fm = {Pm, imimim, jmjmjm} is a frame attached to the point Pm.
P is the look-ahead point such that PmPPmPPmP = l1imimim with the
previewed distance l1 > 0. Fs = {Ps, isisis, jsjsjs} is the frame of
the tracked centerline at the target point Ps such that the unit
vector is tangents the curve. Ps is uniquely determined if the
point P is close enough to the curve.

In addition, we introduce the following variables to charac-
terize the vehicle motion with respect to the curve:

1) s is the curvilinear coordinate of Ps;
2) d is the distance between P and the curve, i.e., the

ordinate of the point P in the frame Fs;
3) θe = θ−θs is the orientation angle error of the car with

respect to the road;
4) c(s) is curvature of the path at Ps.

By the definition of curvature, we have c(s) =
∂θs
∂s

. It follows
that

θ̇e = θ̇ − θ̇s
= bmu− ṡc(s). (5)

Then, we note that OPOPOP = OPsOPsOPs + PsPPsPPsP . Differentiating the
equation with respect to time t gives

∂OPOPOP

∂t
=
∂OPsOPsOPs
∂t

+
∂PsPPsPPsP

∂t
= ṡ(1− dc(s))isisis + ḋjsjsjs, (6)

where the last equality is obtained from the Frénet formula. On
the other hand, we haveOPOPOP = OPmOPmOPm+PmPPmPPmP and ∂OPmOPmOPm

∂t = vimimim
which imply that

∂OPOPOP

∂t
=
∂OPmOPmOPm
∂t

+
∂PmPPmPPmP

∂t
=(v cos θe − l1bmu sin θe)isisis

+ (v sin θe + l1bmu cos θe)jsjsjs. (7)

According to (6)-(7), the model describing the motion of the
self-driving car

ξ̇ = f(ξ, u) =

[
f1(ξ, u)
f2(ξ, u)

]
=

[
v sin θe + l1bmu cos θe

bmu− ṡc(s)

]
, (8)

where ξ =
[
d, θe

]T
, and ṡ =

1

1− dc(s)
[v − l1bmu sin θe] .



III. MODEL-BASED OPTIMAL CONTROL OF THE MOBILE
CAR

The control objective here is to achieve lane keeping on a
track with constant curvature, which is to force d to zero, i.e,
lim
t→∞

d = d∗ = 0. In this section, we present a model-based
control design method with the exact knowledge of the track
curvature c.

A. Linearization and Discretization of the Motion System

To simplify our controller design procedure, the system (8)
can be linearized around the equilibrium ξ∗ =

[
d∗, θ∗e

]T
and

u∗ which satisfy f1(ξ∗, u∗) = f2(ξ∗, u∗) = 0. After some
algebraic manipulations, we have the following linearized
model:

ξ̇ = Fξ +Gu+ E, (9)

where

F =

∂f1

∂d

∂f1

∂θe
∂f2

∂d

∂f2

∂θe


∣∣∣∣∣∣∣
ξ=ξ∗

u=u∗

, G =

∂f1

∂u
∂f2

∂u


∣∣∣∣∣∣∣
ξ=ξ∗

u=u∗

E =

−∂f1

∂θe
θ∗e −

∂f1

∂u
u∗

−∂f2

∂θe
θ∗e −

∂f2

∂u
u∗


∣∣∣∣∣∣∣
ξ=ξ∗

u=u∗

.

Note the constant disturbance matrix E is introduced by the
non-zero equilibrium point (ξ∗, u∗) at steady state, because
the curvature c is also a non-zero constant for a circular track.
Hence, for a mobile car, the motion system matrices F , G and
E are determined by the track curvature c, the longitudinal
velocity v and the motor coefficient bm.

To achieve digital control of the micro-motors, the linear
motion system (9) can be discretized as follows

ξk+1 = Fdξk +Gduk + Ed, (10)

where Fd = eFh, Gd =
(∫ h

0
eFτdτ

)
G, Ed = (

∫ h
0
eFτdτ)E,

and h > 0 is the sampling period.

B. Output Regulation of the Mobile Car

The output regulation problem aims to design a feedback
controller to achieve asymptotic tracking with disturbance
rejection for a reference signal while maintaining the closed-
loop stability [24]. In our study, output regulation is a powerful
tool to help reject the constant disturbance Ed caused by the
non-zero curvature c.

First, we define a compensator variable z such that

zk+1 = zk + dk, (11)

which essentially incorporates an internal model of the con-
stant disturbance, see [24, Chapter 1]. The internal model
plays an important role to define the augmented system that
combines (10) and (11). Letting xk =

[
ξk, zk

]T
, we have the

following augmented system

xk+1 = Axk +Buk +D (12)

where A =

[
Fd 0
C 1

]
, B =

[
Gd
0

]
, D =

[
Ed
0

]
, C =

[
1 0

]
.

In particular, the matrix C is the output matrix. The following
theorem provides a potential controller design procedure to
achieve path following on a circular track with the knowledge
of the curvature c.

Theorem 1. Suppose a controller K =
[
Kξ Kz

]
satisfies

that all the eigenvalues λ of the closed-loop system Acl =
A − BK are located in the unit disk, i.e., |λ| < 1. Then,
considering (12), we have lim

k→∞
dk = 0.

Proof. First, the existence of such a controller K is guaranteed
by [24, Lemma 1.37]. The closed-loop system (12) with
controller K is

xk+1 = (A−BK)xk +D. (13)

Then, the steady state x∗ is defined as

x∗ = (I3 − (A−BK))−1D

=
[
ξ∗, z∗

]T
, (14)

where z∗ is the steady state value of the compensator z.
In particular, z∗ is determined by the parametrization of K.
Accordingly, the steady-state input is u∗ = −Kx∗.

Next, let the error state and the error input be x̄k = xk−x∗
and ūk = uk − u∗, respectively. From (13), we have

x̄k+1 = (A−BK)x̄k (15)

which implies that lim
k→∞

x̄k = 0. Therefore, we have
lim
k→∞

xk = x∗, which gives that lim
k→∞

dk = d∗ = 0 and
lim
k→∞

uk = u∗.

Note that the compensator z is essentially an integrator of
the distance d. Thus, the controller in Theorem 1 is equivalent
to a proportional-integral (PI) controller.

C. Optimal Control Formulation for Path Following

In this section, an optimal control formulation of path fol-
lowing is presented, aiming to minimize the lateral deviation
and heading angle error as well as the energy consumption.
Now, we introduce the following optimal control problem
known as the linear quadratic regulator (LQR) problem:

minimize
ū

∞∑
k=0

x̄TkQx̄k + rū2
k

subject to x̄k+1 = Ax̄k +Būk

where Q = QT ≥ 0, r > 0 and (A,
√
Q) is observable. By

linear optimal control theory [25], the gain K∗ of the optimal
controller ūk = −K∗x̄k is given by

K∗ = (r +BTP ∗B)−1BTP ∗A, (16)

where P ∗ = P ∗T > 0 is the unique solution to the following
algebraic Riccati equation

ATP ∗A− P ∗ +Q−ATP ∗B(r +BTP ∗B)−1BTP ∗A = 0.
(17)



Here, an iterative algorithm is recalled from [26] to solve (17).

Algorithm 1 Model-based Value Iteration Algorithm [26]

1: Choose a sufficiently small constant ε > 0. j ← 0. Pj ←
03×3.

2: repeat
3: Compute Pj+1 and Kj+1 by

Pj+1 ← ATPjA+Q−ATPjB(r +BTPjB)−1BTPjA
(18)

Kj+1 ← (r +BTPj+1B)−1BTPj+1A (19)

4: j ← j + 1
5: until |Pj − Pj−1| < ε

Remark 1. The following property holds for the sequences
{Pj}∞j=1 and {Kj}∞j=1 obtained from Algorithm 1:

lim
j→∞

Kj = K∗, lim
j→∞

Pj = P ∗.

We refer the interested reader for the convergence proof of
the sequences in Remark 1 to [26], [27]. Hence, by iteratively
solving (18)-(19), the optimal control gain K∗ can be obtained.

Hitherto, a model-based optimal control design has been
proposed to accomplish path following with the exact knowl-
edge of the curvature c and the motor coefficient b. However,
these parameters, including r and L in (2), can constitute
uncertainties in practice, while the model-based method cannot
guarantee the stability/optimality of closed-loop system with
unknown c, b, r and L. We shall overcome this limitation by
a data-driven learning-based approach presented in the next
section.

IV. DATA-DRIVEN LEARNING-BASED APPROACH FOR
LATERAL CONTROL

In this section, we develop a data-driven approach to obtain
the controller K∗ using an ADP method which assumes no
knowledge of the curvature of the track.

First, we define the following matrix Hj :

Hj =

 H11
j H12

j H13
j

(H12
j )T H22

j H23
j

(H13
j )T (H23

j )T H33
j


:=

 BTPjB BTPjD BTPjA
DTPjB DTPjD DTPjA
ATPjB ATPjD ATPjA

 .
Then, the augmented system (12) can be rewritten into

xk+1 = Axk +Buk +D

= Ajxk +B(Kjxk + uk) +D, (20)

where Aj = A−BKj . From (18) and (20), it follows that

xTk+1Qxk+1

=− xTk+1F(Pj)xk+1 + xTk+1Pj+1xk+1

=− xTk+1

[
H33
j − (H13

j )T (r +H11
j )−1H13

j

]
xk+1

+

uk1
xk

⊗
uk1
xk

T

vec(Hj+1)

=xTk+1

[
H33
j − (H13

j )T (r +H11
j )−1H13

j

]
xk+1

+

vecv

uk1
xk

T vecs(Hj+1)

=− φjk+1 + ψTk vecs(Hj+1), (21)

where

F(Pj) = ATPjA−ATPjB(r +BTPjB)−1BTPjA,

φjk+1 = xTk+1

[
H33
j − (H13

j )T (r +H11
j )−1H13

j

]
xk+1,

ψk = vecv
([
uTk 1 xTk

]T)
.

Note that (21) holds for any time instant k ∈ Z+. In order to
determine Hj+1, measurable data, i.e., x and u, are collected
at multiple time steps k0 < k1 < · · · < kN where N is a
sufficiently large positive integer. In particular, we can define

Ψ =
[
ψk0 , ψk1 , . . . , ψkN

]T
,

Φj =
[
xTk0+1Qxk0+1 + φjk0+1, . . . , x

T
kN+1QxkN+1 + φjkN+1

]T
.

Then, (21) can be put into the following matrix equation:

Ψvecs(Hj+1) = Φj . (22)

Assumption 1. There exists a positive integer N∗ such that
for all N > N∗ and for time instant k0 < k1 < · · · < kN , Ψ
has full column rank.

Remark 2. To make Assumption 1 satisfied, some exploration
noise η can be added to the input [15].

Under Assumption 1, (22) can be solved by the least-squares
method to find Hj+1[

vecs(Hj+1)
]

= (ΨTΨ)−1ΨTΦj . (23)

Using obtained Hj+1 and (19), the control policy Kj+1 can
be updated as follows

Kj+1 = (r +H11
j )−1H13

j . (24)

Finally, the ADP-based control algorithm for path following
is summarized.



Algorithm 2 ADP-based Algorithm for Path Following

1: Choose a sufficiently small constant ε > 0.
2: Apply an arbitrary initial control policy with exploration

noise η and collect data x and u until the rank condition
in Assumption 1 is satisfied. j ← 0. Hj ← 05×5.

3: repeat
4: Compute Hj+1 and Kj+1 by (23) and (24)
5: j ← j + 1
6: until |Hj −Hj−1| < ε

Theorem 2. Under Assumption 1, the obtained sequences
{Hj}∞j=1 and {Kj}∞j=1 from (23) and (24) satisfy

lim
j→∞

Hj = H∗, lim
j→∞

Kj = K∗,

where H∗ is defined as

H∗ :=

 BTP ∗B BTP ∗D BTP ∗A
DTP ∗B DTP ∗D DTP ∗A
ATP ∗B ATP ∗D ATP ∗A

 .
Proof. Let Pj+1 be the solution of (18), which uniquely
determines Hj+1. By (21), it is obvious that Hj+1 satisfies
(23). On the other hand, let H be a solution of (23). Since
Ψ is of full rank, we have H = Hj+1, which implies that
the least square solution of (23) is equivalent to the one in
Algorithm 1. Thus, the convergence of Hj+1 is obtained. The
convergence of Kj+1 follows directly, which completes the
proof.

Next, we give the local stability analysis when the learned
controller is applied to the mobile car.

Theorem 3. Let Kj∗ be the learned controller from Algorithm
2, where j∗ is the index when the algorithm is terminated.
After applying Kj∗ to the vehicle motion system (12), the lane
keeping task is accomplished, i.e., lim

k→∞
dk = 0.

Proof. By Theorem 2, the closed-loop system becomes

xk+1 = (A−BKj∗)xk +D, (25)

which is a stable system, i.e., all the eigenvalues of (A −
BKj∗) are located in the unit disk. According to Theorem 1,
we have lim

k→∞
dk = 0.

V. EXPERIMENTAL RESULTS

A. Description of the Mobile Car
The mobile car has two identical wheels on either side.

During the movement, the control signal to the front wheel
of either left or right side is always the same as the rear one.
Hence, the rotation speeds of the front wheels are the same as
the rear ones. See Fig. 2.

The vision device consists of a wide angle camera with a
resolution of 640×480. It is fixed on the mobile car with a
lateral angle of view 110 degrees.

A computer vision program is designed to detect the two
lane boundaries of the track, which determines the centerline
as the path to follow (see Fig. 3). The output of the vision
system is ξ =

[
d, θe

]T
.

Fig. 2: Experimental mobile car and a test circular track

Fig. 3: Processed image including detected lane boundaries,
lane centerline and d, θe

B. Performance Evaluation

In order to compare the learned control policies with an
initial control policy, the initial condition for each trial is fixed
at ξ0 =

[
d0, θe,0

]T
where d0 = 20 [cm] and θe,0 = 0.4

[rad]. The longitudinal velocity v is also fixed. The weighting
matrices are set as Q = diag(8, 0.1, 0.1) and r = 1.

The initial controller is chosen as K0 =
[
6 0 0

]
. The

resulting performance is depicted in Fig. 4, where the initial
controller is tested for 5 trials. The solid line is the average
trajectory of these 5 trials, and the shaded area indicates the
variations between each trial. It is observed that the initial
control policy cannot regulate the lateral deviation to 0 as
desired, which approaches 2.7 [cm] as time goes. All the
data of these 5 trials are collected to initiate our proposed
Algorithm 2.

The ADP algorithm is terminated at 50th iteration. As
illustrated in Algorithm 2, the controller is updated at each
iteration. Thus, we select three controllers in these itera-
tions to demonstrate the learning and improved performance.
In particular, controllers K5, K9 and K50 are tested on
the same track, where K5 =

[
4.46 33.31 0.02

]
, K9 =[

4.61 34.65 0.05
]

and K50 =
[
5.31 39.14 0.28

]
. Each

of the controllers is tested for 5 trials. The resultant perfor-
mance is also included in Fig. 4.

We note that all three controllers can force the lateral devia-
tion to the neighborhood of 0, which achieves the goal of lane
keeping. ADP controller K5 regulate the lateral error slower,
and K50 makes the mobile car converge to the equilibrium in
less than 10 seconds. The convergence of K50 is consistent
with the theoretical result in Theorem 3.

VI. CONCLUSION AND FUTURE WORK

In this paper, a data-driven learning-based algorithm has
been proposed to solve the lateral motion control problem for
a mobile car, using image as the feedback signal. Based on



(a) Trajectories of lateral deviation d

(b) Trajectories of heading angle error θe

Fig. 4: Performance evaluation with different controllers

a synthesis of ADP and internal model method, an adaptive
optimal controller is learned from collected data, such as
lateral offset and heading angle error extracted from the image.
Using the proposed approach, the self-driving car achieves
nearly optimal lane keeping performance without knowing
the exact curvature of the circular track and the coefficient
of motor system. Rigorous stability proofs are presented in
the study and our experimental results are consistent with the
theoretical results. Our future work will focus on the learning-
based control design of a platoon of self-driving cars in order
to accomplish different maneuvers, such as car following, lane
changing and collision avoidance.
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