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Abstract
Resorting to certain heuristic functions to guide the search, the computation efficiency of
prevailing path planning algorithms such as A*, D* and their variants is solely determined
by how good the heuristic function approximates the true path cost. In this study, we
propose a novel approach to learn heuristic functions using a deep neural network (DNN) to
improve the computation efficiency. Even though DNNs have been widely used for object
segmentation, natural language processing, and perception, their role in helping to solve path
planning has not been well investigated. This work shows how DNNs can be applied to path
planning problems and what kind of loss functions is suitable for learning such a heuristic.
Our preliminary results show that an appropriately designed and trained DNN can learn a
heuristic which effectively guides conventional path planning algorithms and speeds up the
path generation.
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Abstract

Resorting to certain heuristic functions to guide the search,
the computation efficiency of prevailing path planning al-
gorithms such as A*, D* and their variants is solely deter-
mined by how good the heuristic function approximates the
true path cost. In this study, we propose a novel approach to
learn heuristic functions using a deep neural network (DNN)
to improve the computation efficiency. Even though DNNs
have been widely used for object segmentation, natural lan-
guage processing, and perception, their role in helping to
solve path planning has not been well investigated. This work
shows how DNNs can be applied to path planning problems
and what kind of loss functions is suitable for learning such
a heuristic. Our preliminary results show that an appropri-
ately designed and trained DNN can learn a heuristic which
effectively guides conventional path planning algorithms and
speeds up the path generation.

Introduction
Efficient path planning is required for many applications
such as self-driving cars and home service robots. A va-
riety of path planning algorithms have been proposed, yet
heuristic learning using deep neural networks (DNNs) have
not been studied well. Deep learning has been successful
in a variety of applications, to name a few: object recogni-
tion (Krizhevsky, Sutskever, and Hinton 2012), video games
(Mnih et al. 2015) and image generations (Goodfellow et
al. 2014). Inspired by the object segmentation and the im-
age generation algorithms such as U-Net (Ronneberger, Fis-
cher, and Brox 2015) and Generative Adversarial Network
(GAN) (Goodfellow et al. 2014), we investigate how to ap-
ply these techniques to path planning. We focus on learning
a heuristic function instead of taking end-to-end approaches
that map sensory inputs to actions directly so that we can
still use the current well developed search-based path plan-
ning algorithms. This paper shows a potential direction of
heuristic learning for path planning. Our contributions are
as follows.
• We applied a neural network architecture commonly used

in semantic segmentation in order to learn heuristic func-
tions for path planning.
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• We investigated loss functions that are suitable for learn-
ing heuristic functions.

• We showed that the learned heuristic functions can reduce
the search cost in many scenarios in two domains: 2D grid
world and continuous domain.

The overall framework is outlined in Figure 1 and is ex-
plained in the section of our proposed method.

Figure 1: Learning heuristic functions for path planning.

Related Work
Path Planners
A variety of search algorithms have been proposed such as
A* (Hart, Nilsson, and Raphael 1968), Anytime Repairing
A* (ARA*)(Likhachev, Gordon, and Thrun 2004), Rapidly-
exploring Random Tree (RRT) (LaValle 1998), Hybrid-A*
(Dolgov et al. 2008), local-minima-free potential field (Con-
nolly and Grupen 1993), and two-stage RRT (Wang, Jha, and
Akemi 2017). Heuristic-based methods often use admissible
hand-crafted heuristic functions such as Manhattan distance,
Euclidean distance, and length of Reed-Shepp paths. Cost
functions of the states can be also created from the topol-
ogy of the state (Mahadevan and Maggioni 2007) (Connolly
and Grupen 1993) and can be learned from demonstration
(Ratliff, Bagnell, and Zinkevich 2006). Although optimal-
ity can be achieved with admissible heuristics, the complex-
ity can be beyond control with complex environments. Any-
time Repairing A* (ARA*) (Likhachev, Gordon, and Thrun



Figure 2: Network architecture used in our experiments (continuous domain)

2004) uses a scaling factor to reduce the complexity by ad-
justing the upper bound of the cost of a path. Hybrid-A* uses
the max of two different admissible heuristics to guide grid
cell expansion albeit it does not preserve completeness and
optimality. Two-stage RRT (Wang, Jha, and Akemi 2017)
uses two RRTs. The upper stage uses a low-cost RRT with-
out the robot kinematics to produce waypoints, and the way-
points guide the other RRT that considers the robot kinemat-
ics.

Navigation with Neural Networks
The recent advancement of deep neural networks enables
learning navigations directly from high dimensional sensory
inputs. Banino et al. show that neural networks for Simul-
taneous Localization and Mapping (SLAM) can learn grid-
like representations that appear in animal brains (Banino et
al. 2018). Pan et al. use imitation learning for a real au-
tonomous car to drive off-road at high speed using raw RGB
images with wheel speeds. Model Predictive Control (MPC)
experts were used to provide training data.

Deep reinforcement learning has been used to learn a
function that maps raw sensory inputs (images) to actions.
However, state-of-the-art algorithms have only been tested
in simple domains with a little variation of the environment
(Tamar et al. 2016) (Khan et al. 2017) (Panov, Yakovlev,
and Suvorov 2018). This is mainly due to the necessity of
very long training time. Tamar et al. propose Value Iteration
Networks (VIN) that computes value iteration by applying
convolution kernels that represent learned control dynamics.
The results show that their network is better than a reactive
policy that is learned by standard convolutional neural net-
works (Tamar et al. 2016). Khan et al. combine Value Iter-
ation Network with Differential Neural computing to learn
navigation (Khan et al. 2017). Panov et al. apply DQN (Deep

Q-Network) to solve 2D grid navigation using a reward that
is a function of optimal paths (Panov, Yakovlev, and Suvorov
2018). Zhang et al. use neural networks with external mem-
ory for SLAM (Zhang et al. 2017). They showed that their
neural SLAM helps a reinforcement learning algorithm to
learn navigation tasks. Imitation learning with neural net-
works is used to reduce the search cost (Bhardwaj, Choud-
hury, and Scherer 2017). They learn a heuristic policy for
each domain separately. The algorithm was tested on simple
domains but relatively high dimensional states with the fixed
start and the goal. Once start positions, goal positions and
environments are randomized, local features may not be able
to guide the planner to a goal efficiently as discussed in (Dhi-
man et al. 2018). On the contrary, we learn a heuristic func-
tion defined over the entire environment given the goal con-
figuration and the map so that we can avoid the misguiding
problem. In addition, we need only one feed-forward com-
putation of a neural network to obtain the heuristic function.
In our toy domain, we learn a heuristic function that can be
applied to six different environments rather a specific envi-
ronment. We also consider environments where a path does
not exist while the work on navigation with deep learning
cited above often consider only environments where a path
always exists. This is important to investigate behaviors of
planners in terms of the completeness.

Proposed Methods
Task
We work on a problem where a robot finds a path π :
[0, 1] 7→ Cfree from a start configuration π(0) := s0 ∈
Cfree to a goal configuration π(1) := sgoal ∈ Cfree given
a map of an environmentm and a heuristic function h where
Cfree is free space. Our goal is to learn a heuristic function h
using DNNs to reduce the search cost. Our overall approach



is shown in Figure 1. We first introduce the network archi-
tecture we adopted, and then we explain loss functions and
training procedures.

Network Architecture
We adopt U-Net (Ronneberger, Fischer, and Brox 2015)
that was initially proposed for object segmentation prob-
lems. The architecture has recently been used as a genera-
tor in GAN architecture to solve image-to-image translation
(Isola et al. 2017). We use the U-Net architecture to gener-
ate heuristic values. U-Net achieves the precise image gen-
eration by using the information from early convolutional
layers directly to the latter layers. However, our approach
does not limit to U-Net, and other image generation net-
works can be used. Figure 2 shows the architecture of the
network. The input is an occupancy map and a goal ten-
sor G. A goal tensor consists of two matrices that repre-
sent sgoal = (xgoal, ygoal, θgoal) where (xgoal, ygoal) is a
goal position and θgoal is a goal orientation of a robot. Let
(igoal, jgoal) be a position in the occupancy map that con-
tains (xgoal, ygoal). We define the goal tensor G as follows.

G(0, i, j) =

{
cos(θgoal), if i = igoal and j = jgoal
0, otherwise

G(1, i, j) =

{
sin(θgoal), if i = igoal and j = jgoal
0, otherwise

It is possible that we also discretize θ, but this increases
the input dimensions. We use cosine and sine instead of the
raw value in radian to compute the proper distance between
two orientations (for example, the distance between 2π and 0
should be 0 instead of 2π). The output is a discretized heuris-
tic values that is a tensor of W × H × O where W and H
is the number of columns and rows in the occupancy map
respectively, and O is the number of orientations.

Loss Functions
The objective of the path planning problem is to find the
shortest path with a constraint on search cost. The path cost
can be defined as a function of path length or the number
of actions. The search cost can be defined as a function of
the number of expanded nodes during the search process. In
this paper, we work on a research question of whether we
can learn a heuristic function that is better than hand-crafted
heuristics regarding the search cost.

We first explain why learning a heuristic function is not a
straight-forward supervised learning problem, and then ex-
plain why the choice of the loss function is important.

LetL be the cost of a path generated by a planner and T be
the search cost of the planner given m, s0, sgoal, and h. The
objective function for learning a heuristic function, J(h), is
a reward function of a path cost and/or a search cost. J(h)
satisfies the following condition.

If L1 ≥ L2 and T1 ≥ T2 , then J(h1) ≤ J(h2) (1)

Equation 1 means that h2 has a better reward if both of
the path cost and the planning cost are lower than those of
h1. This reward can be computed by solving path planning

problems with a path planner and h. Thus J is in general
not differentiable. In order to compute J appropriately, we
need to solve a path planning problem using a planner with
h. Hence, evaluating J is computationally expensive. Non-
differentiability and expensive computation make it chal-
lenging to learn heuristics in an end-to-end learning manner.

Let d(·) be a loss function, h1 and h2 be learned heuristics
and h∗ be an optimal heuristic. We can reduce the problem
above to a supervised learning problem whose objective is
to minimize errors between learned heuristics and optimal
heuristics if the following condition is satisfied (Barto and
Dietterich 2004).

If d(h1, h∗) ≤ d(h2, h∗),then J(h1) ≥ J(h2) (2)
However, standard loss functions such as mean squared error
(MSE) or mean absolute error (MAE) do not satisfy this con-
dition although lower loss usually indicates higher J . Fig-
ure 3 shows one simple example in which Equation 2 does
not hold. In this example, both a heuristic function h1 and a
heuristic function h2 can find an optimal path, but the search
cost is different. h1 has better MSE and MAE, but it needs to
expand more nodes. Therefore, it is essential to understand
what loss functions are suitable so that learning a heuristic
can be treated by solving the supervised learning problem
(minimizing d(·)) rather than solving the original computa-
tionally expensive optimization problem (maximizing J(·)).
We first introduce the standard loss functions and then pro-
pose new loss functions for this heuristic learning problem.

MSE between two tensors h and h∗ is defined as follows

MSE(h, h∗) =
1

N

N−1∑
i=0

(h(i)− h∗(i))2 (3)

where h is a learned heuristic, h∗ is an optimal heuristic and
N is the number of elements in the tensor.

MAE is computed as follows

MAE(h, h∗) =
1

N

N−1∑
i=0

|h(i)− h∗(i)| (4)

With MAE, we equally punish the errors in all direc-
tions. We, however, want to generate heuristics which are
between known lower bound of the cost and the optimal cost.
Thus, we can penalize more if the learned heuristic is out of
the range between these bounds. Especially if the learned
heuristic is larger than the optimal cost, it does not guaran-
tee the optimality anymore. Hence, we propose the follow-
ing piecewise MAE.

Losspiece(h, h
∗) =

1

N

(
α1

N−1∑
i=0

|h(i)− h∗(i)| [h(i) < hmin(i)]

+

N−1∑
i=0

|h(i)− h∗(i)| [hmin(i) ≤ h(i) ≤ h∗]

+ α2

N−1∑
i=0

|h(i)− h∗(i)| [h∗(i) < h(i)]

)



Figure 3: Equation 2 does not satisfy in this example. We have a 1D map that contains five nodes. A robot can move either left
or right. A cost of an action is 2. h1 and h2 represent some learned heuristics. h in each node represents a value of the heuristic
function. Mean squared error (Equation 3) and mean absolute error (Equation 4) between the heuristic and the optimal heuristic
are shown in the table on the right. The search cost is the number of expanded nodes when we apply A∗ algorithm. h2 has more
errors than h1, but h2 has less search cost.

where hmin is a lower bound of the cost, [·] is an indicator
function, α1 ≥ 1 and α2 ≥ 1 are positive constants. The
lower bound can be usually computed by considering the
environment without obstacles. The first term computes the
sum of absolute difference between the learned heuristic and
the optimal heuristic if the learned heuristic is lower than the
minimum cost at state. Similarly, the second term computes
the sum of the absolute difference if the heuristic is between
the minimum cost and the optimal cost. The third term is
computed if the heuristic is more than the optimal cost. If
α1 = 1 and α2 = 1, this loss function is reduced to MAE.

It is in general hard to learn the optimal heuristic for every
task; thus the learned heuristic does not necessarily preserve
gradients of the heuristic with respect to actions as you can
see in Figure 3. We use the following loss function to capture
errors on the gradients.

Lossgrad(h, h
∗) =

∑
a∈A

MAE(Ka ∗ h,Ka ∗ h∗) (5)

where ∗ operator denotes a discrete convolution operation.
Ka ∗h approximates the gradient of h with respect to a ∈ A
where A is an action set. This operation is similar to Sobel-
Feldman operator (Sobel 1968) that captures gradients of an
image. For example , Ka for “north” action in a 2D grid
world is as follows

Knorth =

[
0 1 0
0 −1 0
0 0 0

]
We use the weighted sum of these loss functions for our neu-
ral network.

Loss = Loss1 + αLossgrad (6)

where α is a constant that controls the importance of
Lossgrad. We use MSE, MAE or Losspiece as Loss1. Both
Loss1 and Lossgrad are differentiable, and we can apply
backpropagation to update the weights of the network.

Instead of using some handcrafted properties like the gra-
dient described above, it may be possible to use another
DNN to learn properties associated with optimal heuris-
tics automatically. Thus, we investigate the use of GAN for
this purpose. We introduce another DNN to discriminate
the learned heuristic with the optimal heuristic. We train a

generator network (U-Net) that generates heuristic values
which minimize Loss and fools a discriminator network fD.
We use a loss from a discriminator of Wasserstein GAN
(WGAN)(Arjovsky, Chintala, and Bottou 2017). In our case,
we use the goal pose tensor and a heuristic function as an
input to the discriminator. Then, a loss function for the dis-
criminator tensor Lossdes is computed as follows.

Lossdes = fD(h,G)− fD(h∗, G) (7)

where h is the learned heuristic (output of the generator net-
work) and G is a goal tensor. The learned heuristics are fake
examples and the optimal heuristics are the real examples.
We train the discriminator network using lossdes, and train
the generator network (U-Net) using the loss function of
WGAN LossWGAN , Loss1 and Lossgrad.

LossWGAN = −fD(h,G) (8)

The loss function from WGAN computes the loss regarding
the properties of optimal heuristic. We use a weighted sum
of loss functions to train the generator network.

Loss = Loss1 + αLossgrad + βLossWGAN (9)

where β is a constant. The discriminator network architec-
ture we use in our experiments is as follows: Input - Con-
volution - Convolution - Average Pooling - Dropout - Dense
- ReLU - Dense - ReLU - Dense - ReLU - Dense - Output.
One of the major drawbacks of WGAN is that it needs twice
as much time and memory as other methods in the training
stage.

Training
We make environments with randomized start and goal
poses. Then, we create optimal heuristic h∗ using Dijkstra
algorithm starting from sgoal assuming that each action has
an inverse action. Then, we train the network with h∗. We
use Adam optimization to train the network (Kingma and
Ba 2014). To evaluate the network, we generate h using the
network, and pass it to a path planner (either A∗ or hybrid
A∗), and measure the search cost. As we explained earlier,
the lower loss does not necessarily mean the better perfor-
mance, and we need to use path planners with the learned
heuristic to evaluate the network.



Figure 4: Examples of environments used in toy domain.

Experiments
We consider two simulated domains: toy 2D domain and
continuous 2D domain.

Toy domain
Toy domain is a simple 2D grid world. A robot can move
either north, west, east or south. The robot volume is equiv-
alent to one cell. There is no orientation. Thus, we use a
one-hot matrix to represent the goal position instead of using
the goal tensor explained earlier for the input. We generated
180,000 training examples from six different environments
(Figure 4). We used different rules to create such environ-
ments with random parameters. We also generated 10,000
test examples. We used Manhattan distance and scaled Man-
hattan distance (inflation factor is 1.5) as baselines. We in-
troduce difficulty of a task as follows to evaluate perfor-
mance in toy domains:

difficulty =
hOpt(s0)

hBase(s0)
(10)

where hBase is a commonly used simple heuristic function
that is admissible and consistent such as Manhattan distance
or Euclidean distance in our task. We use this criterion for
a fair comparison against baselines because baselines work
well in simple environments. difficulty measures how the op-
timal cost at s0 deviates from the estimated cost (heuristic).
If this value is large, the estimated cost is much smaller
than the optimal cost. Hence, a simple heuristic may not
be able to guide the planner appropriately. We use MAE,
MSE, Lossgrad, Losspiece and LossWGAN for loss func-
tions. There will be a number of combinations of these, and
we investigate some of the combinations. We use α1 = 1.0,
α2 = 2.0, α = 1.0 (when we use Lossgrad) and β = 1.0
(when we use LossWGAN ). We selected these hyper param-
eters after we tried several values.

Continuous domain
We consider a four-wheeled robot. The environment is a
2.318m×2.318m parking lot. We randomize occupied park-
ing spaces and added small obstacles randomly. The robot

size is 0.25m × 0.20m. We use a bicycle model (Rajamani
2011) to describe the robot’s kinematics. The robot uses
five steering angles for both forward and backward direction
with the fixed speed. There are ten actions in total. Colli-
sion checkings are performed in continuous space. To plan
a path, we use a hybrid A∗. This planner does not hold op-
timality anymore, but it can still produce sub-optimal driv-
able paths. We discretize states (x, y, θ) into 32 × 32 × 32
states for the hybrid A∗. We generate 3040 training samples
and 130 test samples. We also randomize s0 and sgoal in
continuous space. The robot reaches sgoal when the robot
reaches a voxel containing sgoal. Hence, the robot’s orienta-
tion must be close to the goal orientation. We use α1 = 1.0
and α2 = 2.0 for Losspiece and α = 0.01 for Lossgrad. We
do not use the difficulty measure because hybrid A∗ is not
guaranteed to produce an optimal solution or to find a path
even if a path exists. We do not investigate WGAN loss in
this domain because it does not bring many benefits in toy
domain (we describe it in the next section) despite the fact
that it takes very long time to train.

Results and Discussion
Toy domain
Figure 5 shows successful cases and Table 1 summarizes re-
sults. As in Figure 5, a planner with the learned heuristic
function does not need to expand many nodes (green stars) if
the solution exists. If there is no path, learned heuristic pro-
duces high values for unreachable states from the goal. Note
that we used a single learned network to generate heuris-
tic values in all testing environments. Hence the results also
show the generalizability of our proposed algorithm. In Ta-
ble 1, the bold numbers show that the learned heuristic func-
tion outperforms baselines regarding the search cost. The
gradient loss helps MSE and MAE to reduce the search cost.
Use of GAN also contributes to reducing the search cost
of MSE and MAE. Piecewise loss works better especially
when tasks are difficult. Although WGAN improves the per-
formance a little, it needs twice as much training time and
memory as other methods. We do not provide the statistical
testing because the number of testing examples is too large
for the meaningful statistical testing for our experiments and
a small difference can easily lead to the statistical signif-
icance (Lin, Lucas Jr, and Shmueli 2013). Such statistical
significance does not indicate meaningful results. Thus, we
show the mean of the ratio of the number of expanded nodes
only. When the tasks are easy (difficulty= [1.0, 1.2]), scaled
Manhattan distance is better than learned heuristics.

Contrary to computer vision tasks such as object segmen-
tation and object recognition, it is possible that a change of
one cell can change the optimal heuristic drastically. Hence,
learning heuristic functions using DNN can have a difficulty
that does not appear in other DNN applications. As the re-
sults show, even we randomize goal positions, the neural
network can still learn heuristic that is better than baselines.
Thus, our results indicate that DNN is capable of dealing
with such difficulty. There are some cases that the learned
heuristic does not produce good results as shown in Figure
6. The number of unsuccessful examples can be reduced by



Figure 5: Successful results in toy domains. The top row shows results of baselines that use Manhattan distance, and the bottom
row shows results of the learned heuristic that used our proposed piecewise loss function. The color of each cell represents
the value of heuristic. Dark blue represents small heuristic. Yellow indicates the highest heuristic, and it usually means the
obstacles or unreachable region from a goal. Red circles are s0, red crosses are sgoal and green stars are expanded nodes in A∗.
The rightmost column shows an environment where a path does not exist.

Loss

Complexity Evaluation
Ratio of the number of expanded nodes on different task difficulties

1.0- 1.2- 1.4- 1.6- 1.8- 2.0- 2.2- 2.4- 2.6- ≥ 2.8
1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

MSE 0.64 0.57 0.56 0.57 0.56 0.56 0.60 0.64 0.65 0.71
MSE, lossgrad 0.50 0.42 0.41 0.40 0.46 0.46 0.48 0.53 0.53 0.62
MAE 0.57 0.46 0.45 0.42 0.48 0.51 0.58 0.60 0.59 0.62
MAE, lossgrad 0.60 0.45 0.45 0.46 0.47 0.51 0.51 0.60 0.55 0.65
MSE, lossWGAN 0.58 0.53 0.52 0.49 0.47 0.50 0.51 0.53 0.63 0.71
MAE, lossgrad, lossWGAN 0.54 0.45 0.42 0.41 0.43 0.45 0.47 0.53 0.56 0.61
Piecewise 0.57 0.46 0.44 0.42 0.44 0.47 0.46 0.54 0.52 0.58
Piecewise, lossgrad 0.54 0.45 0.45 0.43 0.46 0.51 0.48 0.58 0.51 0.58
Baseline (Manhattan) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Baseline (Scaled Manhattan) 0.41 0.49 0.63 0.69 0.72 0.75 0.78 0.81 0.82 0.84

Table 1: Results of experiments in the toy domain. The number shows the mean of the ratio of the number of expanded nodes
where ratio= N

Nb
, N is the number of expanded nodes using the learned heuristic, and Nb is the number of expanded nodes

using Manhattan distance. Task difficulty is computed by Equation 10. If the task difficulty is [1.0, 1.2], this indicates the task
is ”easy”. The bold numbers indicate that the leaned heuristic is better than the baselines.



Figure 6: First three figures show unsuccessful results in the toy domain and the rightmost figure shows an unsuccessful result
in the continuous domain. Learned heuristic expanded many unnecessary nodes in the first, second, and the fourth figures. The
third figure from the left shows the environment where the path does not exist. In the third figure, the learned heuristic function
generated small heuristic values in many unreachable states from the goal. However, all cells except several cells around the
goal should be yellow (high heuristic values) because there are no paths from these cells. Note that the learned heuristic function
generates these images (except for green star, path, red circle, and red cross). Thus, free space can be yellow if the space is
unreachable from the goal. You see some expanded nodes in yellow cells in the third figure because of this.

increasing training samples.

Continuous domain
Figure 7 shows a successful example in the continuous do-
main where the hybrid A∗ with the learned heuristic does
not need to expand many nodes. With only 130 testing ex-
amples, such as χ2 test can be applied to produce statis-
tically meaningful results. Table 2 summarizes the results
of statistical testing. The results are similar to those of toy
2D domain. MAE is better than MSE. The use of gradi-
ent loss improves the results for MSE and MAE; however,
there is no statistical significance when we compare them
against scaled Euclidean heuristic. Piecewise loss is statisti-
cally better than the scaled Euclidean. The loss of gradient
degrades the results of piecewise loss. We also show the ra-
tio of the number of expanded nodes in Table 2. If we use
the piecewise loss, the ratio of expanded nodes is less than
0.081 in half tasks, 0.248 in 75% of tasks, and 0.77 in 90%
of tasks. These results indicate that it is possible that DNNs
can learn a heuristic function that is better than simple base-
lines. It also shows that the proposed piecewise loss func-
tion captures errors that simple loss functions such as MSE
and MAE cannot. There are several cases where the learned
heuristic function does not work well. One of the examples
is shown in Figure 6. In this case, hybrid A∗ expands almost
all of the reachable nodes from s0. Coarse discretization of
orientations is one of the issues that a Hybrid A∗ needs to
expand many nodes to find a path. Increasing the number of
orientations can avoid such cases. When we create h∗ during
training, we need to apply many collision checkings which
are computationally expensive. However, once it learns h,
we do not need to apply collision checkings to generate h
during the test time.

Conclusion and Future work
In this paper, we applied the neural network architecture
commonly used in object segmentation and creative image

generation appropriately to learn heuristic functions for path
planning. Our goal of this paper is to show preliminary
results on this kind of approach, and we showed that the
learned heuristic function can reduce the search cost in many
scenarios in both the toy domain and the continuous domain.
We also investigated loss functions and showed that the pro-
posed piecewise loss helps DNNs to learn better heuristics.
The learned DNN does not produce high-quality heuristics
in some cases, but the path planner can still find a path even
with those low-quality heuristics. This is one of the benefits
of combining existing path planning algorithms with DNNs.
Loss of gradient with respect to actions also helps other loss
functions such as MSE and MAE to learn heuristic func-
tions. Use of GAN automatically captures the properties of
optimal heuristic and produces good heuristic, but it needs
long training time compared to other approaches.

As future work, we want to investigate network architec-
tures including the representation of the goal tensor to pro-
duce better heuristic values. We also would like to examine
the scalability of the proposed approach using large maps.
We, however, consider that our proposed method is suitable
for parking scenarios because occupancy maps can easily
contain both start and goal poses. Although we worked on
the fully observable environments in this study, the proposed
method can easily create new heuristic values given the new
information because feed-forward computation of the neu-
ral network is fast thanks to high-performance GPUs. Thus,
it should be able to deal with partially observable environ-
ments by replanning. We can also easily change the inputs
to multiple frames of occupancy maps to deal with dynamic
objects. Therefore, we would like to work on modifying
the proposed approach for partially observable environments
and dynamic environments as future work.
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Figure 7: A successful example in the continuous domain. Left figures show results of Euclidean distance and the right figures
show results of piecewise loss. We use 32 orientations in the hybrid A∗, and each figure corresponds to each orientation. Start
orientation is about θ = 22.5◦ and the goal orientation is about θ = 0◦. The red circle is the start position (first row, third
column) and the red cross is the goal position (first row, first column). Each figure represents the expanded nodes. Cells with
dark blue are non expanded nodes. Cells with other colors represent the expanded nodes. The learned heuristic does not need to
expand many nodes. The figures titled with path represents an path generated with the heuristics. Red lines indicate paths and
black lines indicate either contours of a robot and obstacles. Yellow cells indicate obstacles in an occupancy map.

Loss functions

Complexity Evaluation
Comparison against baselines Ratio of the number of expanded nodes

130 test tasks q th percentile
N : The number of expanded Nodes Ratio= N

NEuclidean

Nb:Baseline, N : Learned
Euclidean Scaled Euclidean 25th Median 75th 90th 95th

Nb < N Nb > N Nb < N Nb > N
MSE 76 44 102 15 0.650 1.939 4.348 8.256 12.380
MSE, lossgrad 60 62 90 32 0.423 1.014 2.397 6.314 9.527
MAE 34 87 69 51 0.145 0.383 1.095 2.351 5.272
MAE, lossgrad 21 99 53 67 0.084 0.179 0.859 1.456 4.292
Piecewise 13 107 36 83 0.035 0.081 0.248 0.770 1.082
Piecewise, lossgrad 16 105 37 83 0.046 0.109 0.307 0.908 1.656
Baseline (Euclidean) NA NA 87 42 1.00 1.00 1.00 1.00 1.00
Baseline (Scaled Euclidean) 42 87 NA NA 0.122 0.265 0.641 0.888 1.500

Table 2: Results of experiments in the continuous domain. The numbers in the comparison against baselines show the number
of tasks that are better than the other method. For example, Nbase < N shows the number of tasks where the baseline has less
number of expanded nodes than that of the learned heuristic. The bold numbers indicate that the leaned heuristic is statistically
better than the baseline (χ2 test, p < 0.05). Outliers dominate the mean and the variance. Instead, we show q th percentile.
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