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Abstract
Since its introduction more than two decades ago,the particle filter has become an established
technique for nonlinear state estimation, due to its capability to cope with severe nonlineari-
ties and non-Gaussian noise. More recently, there has also been rapid development in particle
filtering for learning, either for real-time estimation of unknown parameters in the system,
or for offline system identification. Due to the increased flexibility the particle filter has
been applied in such diverse areas as meteorology, medical imaging, video analysis, robotics,
self-driving cars, and aerial vehicles. In this paper, we survey particle filters in vehicle appli-
cations, with particular focus on autonomous vehicles. We describe the particle filter and its
relation to marginalization and conjugate priors, which are key enablers in several important
applications. Based on our own research, we present three recent use cases of particle filtering
in the automotive industry and give an outlook on potential research directions.
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Karl Berntorp and Stefano Di Cairano

Abstract—Since its introduction more than two decades ago,
the particle filter has become an established technique for
nonlinear state estimation, due to its capability to cope with
severe nonlinearities and non-Gaussian noise. More recently,
there has also been rapid development in particle filtering for
learning, either for real-time estimation of unknown parameters
in the system, or for offline system identification. Due to the
increased flexibility the particle filter has been applied in such
diverse areas as meteorology, medical imaging, video analysis,
robotics, self-driving cars, and aerial vehicles. In this paper, we
survey particle filters in vehicle applications, with particular focus
on autonomous vehicles. We describe the particle filter and its
relation to marginalization and conjugate priors, which are key
enablers in several important applications. Based on our own
research, we present three recent use cases of particle filtering in
the automotive industry and give an outlook on potential research
directions.

I. INTRODUCTION

The increased demand for autonomous systems in various
forms has scaled up the needs for sensing and estimation
techniques that can support the increasingly complex control
systems that they are to be integrated with [1], [2]. Self-driving
cars in the highest level of autonomy, as an example, should
be able to provide full-time operation of all aspects of driving
under different roadway and environmental conditions. How-
ever, enabling more autonomous features implies that more
information needs to be extracted from the sensor data, which
requires capable estimation algorithms. The ability to share
sensor information between control systems (e.g., through
the CAN bus [3]), together with vehicles being equipped
with sophisticated sensors such as lidars and cameras, has
opened possibilities to provide the information necessary for
the control stack to take sensible actions [1], [4], [5]. However,
the sensor data are noisy and prone to errors stemming from
various sources. Altogether, this puts high requirements on the
estimation algorithms to produce estimates that are both robust
to the increasingly complex estimation models and the error
sources causing imperfect sensor measurements. At the same
time as autonomy highly increases the demands on robustness
and high performance of the estimation algorithms, due to
regulations, cost considerations, and other factors, current pro-
duction automotive control systems are real-time systems with
highly limited computing capabilities of the micro-controllers
that execute the estimation and control algorithms [6]. Hence,
the estimation algorithms must have high performance and
limited computational requirements.

Starting with the work in [7], the theory of particle filters, or
more generally sequential Monte-Carlo methods, has evolved
over the last two decades such that particle filters nowadays
constitute a powerful set of tools for inference in highly

The authors are with Mitsubishi Electric Research Laboratories (MERL),
02139 Cambridge, MA, USA. Email: karl.o.berntorp@ieee.org

nonlinear and possibly non-Gaussian systems [8], [9], such
as those encountered in autonomous systems. Particle filters
are sampling-based estimators that approximate the posterior
density function of the variables of interest conditioned on
the measurement history [7], [9]–[11], by representing the
posterior density function as a weighted particle system. In
the beginning, particle filters were mostly applied to state
estimation, but have recently been proven to be powerful
methods for learning (system identification), both for real-
time parameter estimation [12] and as a key component
in particle Markov chain Monte-Carlo methods [13]–[15].
Particle filters have been successfully applied to numerous
relevant problems; for example, simultaneous localization and
mapping (SLAM) in robotics [16]–[19]; positioning of sea and
airborne vessels [11], [20], [21]; and object tracking [22]–
[24]. For an account of some of the early applications, see
[8]. Particle filters are considered relatively computationally
heavy. However, it is interesting to note that according to
[11], real-time capabilities of the particle filter were shown in
a real-world vehicle positioning application already in 2001,
where a particle filter using 15000 particles executed on a
small handheld computer. Due to its ability to efficiently cope
with complex and inherently uncertain, possibly multimodal,
systems, particle filters have been an integral part in several
successful automotive applications. Particle filters were impor-
tant parts of the vehicles competing in the Darpa Grand and
Urban challenges [25], [26], and were used for camera and
laser based road following [27], object tracking [28], [29],
and map-aided localization [30]. The use of particle filters
in automotive has since then increased and recent use cases
include threat assessment [31], traffic estimation [32], and
motion planning [33].

This paper surveys the role of particle filters in automotive
applications and gives more insight into some of the most
prominent applications. We will go through the main steps
in the particle filter and touch upon marginalization [21] and
conjugacy [34], [35] in relation to particle filtering, which
are key ingredients for enabling efficient implementation.
Sec. II discusses particle filtering and some of the key tools
for enabling efficient and robust implementations of particle
filters. In Sec. III, we survey various automotive applications
where particle filters have been used and discuss in slight detail
several previous use-cases of particle filtering, and in Sec. IV
we give three examples from our own research. Finally, Sec. V
gives conclusions and discusses some future research trends
as possible enablers of reliable autonomous systems.

II. PARTICLE FILTERING

Particle filters are sampling-based estimators consisting of a
weighted particle system, where state trajectories are generated



and weighted according to their consistence with the measure-
ments. Particle filters usually assume discrete-time state-space
models relating a hidden state xk at time instant k to the
observation yk,

xk+1 = fθ(xk,wk), wk ∼ pwk
, (1a)

yk = hθ(xk, ek), ek ∼ pek , (1b)

where fθ(·) is the state-transition function parametrized by θ,
h(·) is the observation function, and ’∼’ means ’distributed
according to’. The process noise wk is stochastic and specified
by its density pwk

, which typically is known, at least up
to some parameters. Similarly, the measurement noise ek is
distributed according to pek . The distribution of the initial
state, x0 ∼ px0

, is also considered known but it is usually not a
restriction. A known control input uk can be straightforwardly
included into (1). In terms of density functions, the state-space
model (1) can be expressed as

xk+1 ∼ p(xk+1|xk), (2a)
yk ∼ p(yk|xk). (2b)

The objective in particle filtering is to estimate the poste-
rior density function of the variable zk conditioned on the
measurement history y0:k = {y0, · · · ,yk}, where z = x for
(state) inference and z = {x,θ} for simultaneous inference
and learning. Introducing z provides the possibility to estimate
parts of either the motion model (1a) or measurement model
(1b), or both. For simplicity, here we will use z = x but
the particle filter handles both cases. Oftentimes wk and ek
are assumed independent such that p(wk, em) = p(wk)p(ej).
From this assumption, the Markov property of (1) implies that
p(xk+1|x0:k,y0:k) = p(xk+1|xk) and p(yk|x0:k,y0:k−1) =
p(yk|xk), which are simplifications that are leveraged fre-
quently in derivation of particle filter algorithms.

Particle filters target the posterior distribution p(x0:k|y0:k).
The recursive update equation for this density is [36], [37]

p(x0:k|y0:k) =
p(yk|xk)

p(yk|y0:k−1)
p(x0:k|y0:k−1), (3)

where

p(x0:k|y0:k−1) = p(xk|xk−1)p(x0:k−1|y0:k−1). (4)

Particle filters use the weighted particle approximation

p(x0:k|y0:k) ≈ p̂(x0:k|y0:k) =

N∑
i=1

qikδ(x0:k − xi0:k), (5)

where qik is the weight of the ith trajectory xi0:k, δ(·) is the
Dirac delta mass, and

∑N
i=1 q

i
k = 1. Particles are propagated

forward by sampling the next state. However, instead of
sampling directly from (4), which is difficult, particle filters
use the concept of importance sampling [38] and introduce
a user-designed proposal density to sample from xik+1 ∼
π(xk+1|xk,yk+1). By using the proposal density in (3)–(5)
and identifying terms,

qik =
1

ck

p(yk|xik)p(xik|xik−1)

π(xik|xik−1,yk)
, (6)

where ck is a normalization constant. There are many different
implementation aspects that are crucial to consider in any
realistic implementation, such as resampling, numerical eval-
uation of the weights, divergence monitoring, and dependent
noise. For coverage of those topics, see for example [37],
[39]–[41]. A key aspect of particle filters is the choice of
proposal π(xk|xk−1,yk), because the proposal determines
how well the predicted particles will reflect the distribution
to be estimated. A widely used proposal is the prior, that is,
π(xk|xk−1,yk) = p(xk|xk−1). This choice ignores the in-
formation provided by the current measurement and is clearly
suboptimal. However, it is rather intuitive and, moreover, it
leads to a particularly simple weight update (6),

qik =
1

ck
p(yk|xik). (7)

There is a wide range of proposals that have been exploited in
literature, see [10], [37] for a few of them. Algorithm 1 gives
a basic implementation of the particle filter. The particle filter
has complexity O(N), N being the number of particles, but
a concern is the poor scaling with the state dimension, which
prohibits the use of the standard formulation of particle filters
in many realistic automotive applications. Fortunately, there
are several techniques available to allow particle filtering in
higher-dimensional spaces, two of which are introduced next.

Algorithm 1 Particle filter algorithm
1: Generate {xi0}Ni=1 ∼ px0 and set {qi0}Ni=1 = 1/N .
2: for k ← 0 to T do
3: Determine weights using (6) for i ∈ {1, . . . , N}.
4: Optionally, draw with probability qik N samples

from {xik}Ni=1 and set {qik}Ni=1 = 1/N .
5: Generate xik+1 ∼ π(xik+1|xk,yk+1), i ∈ {1, . . . , N}.
6: end for

A. Marginalization

To reduce computational complexity, it is advantageous to
exploit model structure. This is the idea behind marginaliza-
tion, where the subset of the state space that allows for analytic
expressions is marginalized out [21], [42]. Marginalized par-
ticle filters rely on the decomposition of a vector of variables
into zk = [xk ηk]T and the corresponding decomposition of
the posterior density as

p(z0:k|y0:k) = p(ηk|x0:k,y0:k)p(x0:k|y0:k), (8)

where p(x0:k|y0:k) is approximated with a particle filter,
which involves marginalizing (integrating out) ηk from the
particle filter. The density p(ηk|x0:k,y0:k) is computed an-
alytically by exploiting structure, either model structure or
assumptions on the prior distribution of ηk. A common and
fairly general model structure that appears in many automotive
estimation problems is

ηk+1 = f(xk) +A(xk)ηk + F (xk)wηk , (9a)
xk+1 = g(xk) +B(xk)ηk +G(xk)wxk , (9b)
yk = h(xk) +C(xk)ηk + ek, (9c)



where all involved noise sources are assumed Gaussian dis-
tributed, although for some special cases this assumption may
be excessively restrictive [21]. For a given xk, (9) is a linear
Gaussian model. Hence, (9) makes it possible to estimate the
distribution of η with N Kalman filters, where each Kalman
filter is conditioned on a state trajectory xi0:k. The more states
that can be analytically estimated the better [21], [40], and a
special case of the marginalized particle filter can be found
in state-of-the-art SLAM methods [16]–[18], where the state
vector contains many thousand variables. Marginalized particle
filters using (9) have frequently been used in the automotive
applications, including slip estimation [43], road and target
tracking [40], [44]–[46], and vehicle positioning [37].

B. Conjugate Priors in Particle Methods

Together with marginalization, conjugate priors [34], [47]
are key for some recent applications of joint state and param-
eter estimation in the automotive domain [48]–[50]. A typical
use-case for conjugate priors in particle filtering is to utilize
the decomposition (8), with η = θ,

p(z0:k|y0:k) = p(θk|x0:k,y0:k)p(x0:k|y0:k). (10)

If a prior distribution belongs to the same family as the
posterior distribution, the prior is conjugate to the likelihood.
Conjugate priors are useful because they allow closed-form
computations of the posterior densities [12], [34], [35], which,
similarly to the marginalized particle filter, increases estima-
tion performance and at the same time reduces computational
load. There are different prior distributions that are conjugate
for different likelihoods, but perhaps the most common prior
distribution is the inverse-Wishart prior. For multivariate Gaus-
sian distributed data w̄ ∈ Rd with unknown mean µ and co-
variance Σ, a Normal-inverse-Wishart distribution defines the
conjugate prior [34], p(µk,Σk) := NIW(γk, µ̂k,Λk, νk),
through the hierarchical model

µk|Σk ∼ N (µ̂k,Σk),

Σk ∼ IW(νk,Λk)

∝ |Σk|−
1
2 (νk+d+1)e(−

1
2 tr(ΛkΣ

−1
k ),

where tr(·) is the trace operator. Thus, for a Gaussian dis-
tributed likelihood and a NIW distributed prior, the posterior
is also NIW distributed. An example of another frequently
used conjugate prior is the gamma distribution, which is a
conjugate prior for an unknown Poisson rate and has been
used in extended object tracking for cars using lidar [23].

III. PARTICLE FILTERING IN AUTOMOTIVE APPLICATIONS

In this section we survey some important applications of
particle filtering in automotive applications. We highlight dif-
ferent types of applications, ranging from high level estimation
of groups of vehicles to estimation of specific parameters in
the vehicle dynamics models.

A. Positioning

Particle filters were adopted early on for automotive ap-
plications. They were used quite substantially in the Darpa
Grand and Urban challenges [25]–[30]. However, the history

of particle filters in automotive started earlier than that [51].
An early driver for adoption of particle filters were positioning
applications. Contributions in this area are [37], [51], which
consider map-aided positioning. In [51], the main difficulty
of the estimation problem is not the motion model, since
it is linear and consists of the position integrated using the
velocity, which is measured (e.g., from the wheel speeds).
Instead, the measurement function is highly nonlinear and is
composed of a road map and GPS or base station measure-
ments. Subsequently, map matching [52] is used to map a
position measurement onto the road. This is a highly multi-
modal estimation problem, especially in the transient phase.
Using marginalization [37], it is possible to include more
sophisticated motion models while retaining nice computa-
tional properties, where some states are analytically computed
and the few remaining ones are treated in the particle filter.
This reasoning has been extended in [53], where a general
framework for map-aided positioning for both indoor and
outdoor areas is presented. The main advantage of using a
particle filter is that the entire multimodal probability density
is exploited to get accurate positioning. Furthermore, modern
camera based vehicles can be equipped with traffic sign
recognition, which can be used together with a sign location
database as an additional measurement.

B. Traffic State Estimation

Another application where particle filters have been largely
researched is in traffic state estimation (TSE), which refers
to inference of variables associated with traffic, such as flow,
density, and speed, see [32], [54] for two overview papers.
Due to the increased automation and more sophisticated traffic
operations for large traffic networks and the need to limit
effect of congestions, the importance of TSE is a heavily
researched field. TSE is a complex problem that lends itself
very well to particle filtering because of its ability to handle
nonlinear multimodal systems, and it is quite common to
employ macroscopic models, which are models that represent
the average traffic behavior [55]. A problem is that the number
of variables to estimate is considerably larger than the number
of variables that are measured, since the sensors are usually
located at the boundaries of traffic segments. Typical sensor
measurements include radar detectors and cameras. For an
overview of different models, see [32]. In [56], a mixture
Kalman filter is employed using models of the traffic density.
This has been extended in [57] to also consider speed and
uses a particle filter to estimate the density and speed of the
flow. Particle filters lend themselves well to parallellization,
and this has been explored in [58]. Work along increasing
performance in very sparse sensor environments is found in
[59]. A test study on data from Chicago’s interstate I-55
highway is done in [60]. Here, a particle filter methodology
is applied to estimate the state of the density, as well as
incorporating a MCMC sampler for estimating the parameters
involved in the employed models.

C. Object Tracking

Object tracking is a rich field that dates back to the second
world war with extensive research that includes several types



of tracking problems,
• Point object tracking: Each object generates at most a

single measurement per time step.
• Extended object tracking: Each object generates multiple

measurements per time steps and the measurements are
spatially structured around the objects.

• Group object tracking: Each object generates multiple
measurements per time step, and the measurements are
spatially structured around the object. A group object
consists of two or more subobjects that share some com-
mon motion, which implies that the objects are tracked
in groups.

Extended object tracking is an increasingly common tracking
problem in automotive due to the increased resolution of on-
board sensors such as radar and lidar, which generate multiple
measurements of an object. For an overview of extended object
tracking in general and particle filters in particular, see [23]
and [61], respectively. The minimum set of states to estimate
in exended object tracking is the position and heading of the
vehicle, in addition to its geometry (e.g., length and width
for rectangular objects). Due to the multiple hypotheses and
multiple possible targets available, this problem is usually
multimodal. At the Urban Grand challenge, Stanford’s vehicle
Junior was equipped with a marginalized particle filter based
object tracking module that used 3D range data to execute
a particle filter at 40 Hz [45], with successful execution for
a number of nontrivial situations. More recent applications
are the work from Denso [62], which considered multi-target
tracking using automotive fast chirp modulation (FCM) radars
using particle filtering, the Guassian process convolution par-
ticle filter with nonregular shape [63], where the shape of the
object is modeled using a Gaussian process, and the evaluation
study [64], which compared different approaches on radar
and lidar data for autonomous driving applications. Gaussian
mixture approximations of the measurement likelihood, which
are reminiscent of traditional particle filters, are used in
numerous target tracking applications [65], [66].

D. Parameter Estimation

Recently, efficient particle-filter based techniques for es-
timating various parameters associated with vehicle safety
have started to emerge. There are well established vehicle
models for many different types of vehicle control appli-
cations [67]–[70], but oftentimes several of the parameters
included in the models are uncertain at runtime, which makes
sophisticated control a hard task. Parameter estimation can
be done by augmenting the vehicle state with the parame-
ters of interest. However, this implies introducing artificial
(incorrect) dynamics of the parameter evolution, and it also
implies increased computational load, since the state vector
grows significantly in size. With the recent developments in
adaptive particle filtering and particle Markov-chain Monte-
Carlo methods that leverage marginalization and conjugate
priors, efficient and cheap software solutions can be developed.
An interesting application of adaptive particle filters is tire
pressure monitoring [71]. It is possible to equip the wheels
with pressure sensors, however, this is expensive and error

prone. To this end, [48] proposed an approach where the tire
radii are treated as external disturbances acting on a nonlinear
kinematic vehicle model. Using conjugate priors, the radii can
be integrated out from the state equations, resulting in an
efficient implementation where the particle filter estimates the
position and heading of the vehicle using GPS measurements.
In Sec. IV we will show two examples from our own research
leveraging adaptive particle filtering for real-time tire-friction
estimation [50], [72] and sensor calibration [49], [73]. Based
on recent PMCMC methods [13], [14], we developed a method
for offline tire calibration with convergence guarantees [74].

E. Threat Assessment

Threat assessment and the accompanying theme of motion
prediction is the task of predicting future behavior of traffic
participants and assessing the risk of, for instance, impact. In a
probabilistic context, the considered problem is highly nonlin-
ear and non-Gaussian and can be confronted in several ways,
where sequential Monte-Carlo is one possible approach [31].
Work in this direction is [75], where Monte-Carlo sampling
was used for determining the probability of collision. A related
approach is found in [76], where reachable sets of vehicles
were computed using a biased driver-preference distribution
incorporated into a Monte-Carlo framework. A comparison
study including Monte-Carlo approaches were undertaken in
[77], and particle filtering with driver-preference proposal was
used in [78] for predicting the behavior of traffic participants.

IV. RECENT AUTOMOTIVE APPLICATIONS

In this section we highlight three successful applications of
particle-filter techniques based on our own research.

A. Road-Friction Estimation

Reliable knowledge of at least parts of the tire-road friction
function is critical in several control systems for autonomous
driving capabilities [79]–[82]. The tire stiffness is the initial
linear slope of the tire-force curve, when expressing the tire
force as a function of wheel slip (either longitudinal or lateral).
Estimation of the whole force-slip curve is intractable in
online implementations. However, knowledge of the slope of
the force curve provides information on the available total
friction. For production vehicles, real-time estimation of the
tire stiffness is challenging because the available sensors only
measure a subset of the vehicle state, they are error prone and
noisy, and the vehicle dynamics, whose state are also only
partially measured, is largely affected by the tire stiffness,
which is highly uncertain and varies with surface. Here, we
opt for a sensor-fusion approach and estimate the vehicle
state jointly with the tire stiffness components of front and
rear tire, assuming a single-track vehicle model. The states
to estimate are longitudinal and lateral velocity, and yaw rate,
that is, x = [vX vY ψ̇]T. However, we assume normal driving
conditions, meaning that the tire forces can be expressed as

F x ≈ Cxλ, F y ≈ Cyα, (11)



where Cx and Cy are the longitudinal and lateral stiffness,
respectively. Inserting (11) into the equations of motion for
the single-track model gives

m(v̇X − vY ψ̇) = Cxf λf + Cxr λr − Cyfαfδ, (12a)

m(v̇Y + vX ψ̇) = Cyfαf + Cyrαr + Cxf λfδ, (12b)

Iψ̈ = lfC
y
fαf − lrCyrαr + lfC

x
f λfδ. (12c)

The wheel slip and the slip angles are computed as

λ :=
vX −Rwω

vX
if vX ≥ Rwω,

λ :=
vX −Rwω
Rwω

if Rwω > vX ,

αf ≈ δ −
vY + lf ψ̇

vX
, αr ≈

lrψ̇ − vY
vX

,

where ω is the wheel rotation rate and Rw is the effective
wheel radius. The wheel rotation rates and steering angle
are treated as known inputs. This is consistent with many
navigation systems, where dead reckoning is used to decrease
state dimension. We treat the tire stiffness parameters as
deviations from a nominal component,

Cx ≈ Cxn + ∆Cx, Cy ≈ Cyn + ∆Cy, (13)

where Cn is the nominal value of the stiffness. We consider
a front-wheel drive vehicle and the process noise wk =
[∆Cxf ∆Cyf ∆Cyr ]T Gaussian distributed according to wk ∼
N (µk,Σk), with µk and Σk unknown. Hence, by putting a
normal-inverse-Wishart prior on the mean and variance of the
process noise, we can utilize conjugate priors and estimate the
tire stiffness using adaptive particle filtering techniques [50].
We use the longitudinal and lateral accelerations aXm, aYm, and
the yaw rate ψ̇m as measurements, forming the measurement
vector yk = [aXm aYm ψ̇m]T. The measurement model has the
same form as (9c). Altogether, the estimation problem consists
of three vehicle states, three mean values of the Gaussian
process noise, and a symmetric 3 × 3 matrix. Estimating all
these states in a naive particle filter implementation would
be computationally prohibitive. However, since we leverage
conjugate priors and marginalize out the parameters from the
particle filter equations, the particle filter only estimates the
three vehicle states, and the rest is done using closed-form
expressions [50].

We have used a mid-size SUV, equipped with industry-grade
validation equipment to gather data, and collected several
different data sets, on both snow and asphalt. The parameters
of the vehicle model and the tire-stiffness parameters are ex-
tracted from data sheets and extensive experimental validation.

The data set consists of normal driving on a regular dry
asphalt road and is about 400 s long. This data set is collected
from a period of regular driving on a standard two-lane road
and the test was not specifically designed for this experiment.
The road requires only light steering, which reduces observ-
ability, and it has nonzero inclination and bank angles, which
is not explicitly accounted for in the current implementation.
Thus, the dataset also tests how robust the algorithm is to these
unmodeled effects.
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Fig. 1. Upper two plots show the estimated normalized tire stiffness (black)
and associated standard deviation (gray) using 500 particles on one realization
for the data set collected on dry asphalt. The true values are in dashed. Lowest
plot shows the steer angle δ.

For the results, we use N = 500 particles. On a dSPACE
MicroAutoBox-II rapid prototyping unit, this results in a
computation time of slightly less than 5 ms, which scales
linearly with the number of particles. Fig. 1 displays the results
for one realization. The first 67 s of the experiment consists
of constant-speed driving on a straight road, and, because of
that, the estimator is inactive. At activation, the uncertainty of
the estimate (gray) is initially large but decreases rapidly until
it approximately reaches steady state.

B. Sensor Calibration

The recent surge for enabling novel autonomous capabilities
[1], [2], [83], [84] induces the need for sensor information
that can be used over longer time intervals to reliably predict
the vehicle motion. However, production vehicles are typically
equipped with low-cost sensors that are prone to time-varying
offset and scale errors, and may furthermore have relatively
low signal-to-noise ratio [4]. For instance, the lateral accel-
eration and heading-rate measurements are known to have
significant drift and noise in the sensor measurements, leading
to measurements that are only reliable for prediction over a
very limited time interval. Similarly, the sensor measuring the
steering-wheel angle has an offset error that, when used for
dead reckoning in a vehicle model, leads to prediction errors
that accumulate over time.

By leveraging conjugate priors and marginalization, in this
application we estimate the bias and noise variances of the
inertial sensors (acceleration and heading rate) and steering
wheel sensor, which are often considered the most important
sensors for ADAS applications, the steering wheel because it
is the main actuator of the vehicle in terms of lateral dynamics,
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Fig. 2. The estimated steering-wheel offset (black solid) for four different data
sets and the ground truth (gray dashed), as obtained by an offline optimization-
based procedure, in experiments.

and the inertial sensors because they are related to the vehicle
speed and heading through integration, which causes large drift
when bias is present.

We use the same vehicle model (12) and measurement setup
as in Sec. IV-A. However, in this scenario we model the
steering wheel measurement, which is an input to the vehicle
model, and the measurement noise as Gaussian distributed
with unknown mean and covariance. Again, by leveraging
the normal-inverse-Wishart as conjugate prior and marginal-
ization, we can decrease the dimensionality of the particle filter
considerable, thus enabling real-time feasibility.

Fig. 2 displays the estimated steering-wheel angle offset for
four different data sets. We have used the same experimental
setup as in Sec. IV-A. After the initial transients, the estimated
bias converges to values very close to the true offset for all
data sets. This indicates that the method is reliable for different
types of driver behaviors. The true steering offset has been
determined from an offline optimization procedure using a
PMCMC method, see [74] where it was used for calibration
of tire-friction parameters.

C. Motion Planning

The objective of a motion planner is to determine a motion
plan and the corresponding input sequence over a planning
horizon Tf to navigate the road safely while satisfying input
constraints, road constraints, and obstacle constraints, while
typically minimizing some objective function [1]. Formulated
in a statistical framework, this problem is nonlinear (due to
the vehicle kinematics and dynamics) and non-Gaussian (due
to obstacles, environment, and multiple solutions), which is
exactly the type of problems particle filters are tailored for.
Hence, by interpreting the motion-planning problem as an
estimation problem, we can apply particle filtering for solving
this complex task [33], [85], [86].

For a motion planner operating normal driving maneuvers,
we can use a kinematic nonlinear single-track model, which
can be written as (1a), and we model the objective of driving,
such as safety distances, mid-lane deviation, and preferred
vehicle speed, as nonlinear probabilistic driving requirements
on the form (1b), where the measurement noise takes the form
of allowed deviations from the objectives.

We have conducted extensive validation in full-size vehicle
tests and on a scaled vehicle platform [87] to verify the
approach. Fig. 3 shows snapshots of one such experiment in
the scaled vehicle platform for a 135 s excerpt of an eight

minutes long data set, where there are two other vehicles,
one in each lane, in front of the ego vehicle initially driving
with considerably slower speed than the ego vehicle. The
other vehicles change their respective speeds at time instants
unknown to the ego vehicle. First, a trajectory that makes the
vehicle to slow down to satisfy the predefined safety distance
is computed (t = 121 s). The motion planner computes
trajectories for both lanes, but determines that it is preferable
to stay in the inner lane. Between t = 121 s and t = 160 s,
the other vehicle in the outer lane has increased its speed,
which makes the motion planner to change lane. At t = 199 s
the other vehicle in the inner lane speeds up, which leads the
motion planner to decide to change lane again. The motion
planner determines that it is safe to overtake the other vehicle
in the inner lane (t = 213 s). Finally, the ego vehicle moves
back to the preferred lane. In several of the snapshots, the non-
Gaussianity of the estimation problem is clearly seen, where
the distribution of the particles spread out in two distinct paths.

V. CONCLUSION

The advancements in particle filter theory in combination
with more sophisticated sensors, improved computing plat-
forms, and increasing demands on the estimation algorithms
led to particle filters being used in many different automotive
applications. An early application was positioning, but as
discussed in the paper, particle filters are now used in diverse
areas such as traffic state estimation, object tracking, motion
planning, threat assessment, and road surface estimation. The
demand for more capabilities on the sensing and estimation
side is likely to increase in coming years, and therefore new
opportunities for particle filtering will appear. For example,
with the increased communication between vehicles and the
possibility to perform computations remotely [53], tasks that
are not real-time critical but still important for proper operation
of the vehicle can preferably be done remotely and then
transferred to the vehicle. This can open up more possibilities
for batch methods such as some of the recent developed
model-based learning methods, where particle filters play an
important role [13]–[15], [88].

Particle filters have shown large potential for automotive
applications where Gaussian-assumed type filters do not suf-
fice. They are easy to implement and with adaptive particle
filtering techniques, they are easy to tune. However, there
are still several challenges remaining. First, particle filters
are still relatively computationally complex, especially for
higher-dimensional spaces unless model structure, such as
linear Gaussian substructures [21], can be exploited. Here,
enabling software-based services for edge computing and
parallellization of particle filters are two promising ideas [58].
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[24] C. Hue, J.-P. Le Cadre, and P. Pérez, “Tracking multiple objects with
particle filtering,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3,
pp. 791–812, 2002.

[25] M. Buehler, K. Iagnemma, and S. Singh, The 2005 DARPA Grand
Challenge: The Great Robot Race, 1st ed. Springer Publishing
Company, Incorporated, 2007.

[26] ——, The DARPA Urban Challenge: Autonomous Vehicles in City
Traffic, 1st ed. Springer Publishing Company, Incorporated, 2009.

[27] L. B. Cremean, T. B. Foote, J. H. Gillula, G. H. Hines, D. Kogan, K. L.
Kriechbaum, J. C. Lamb, J. Leibs, L. Lindzey, C. E. Rasmussen et al.,
“Alice: An information-rich autonomous vehicle for high-speed desert
navigation,” J. Field Robotics, vol. 23, no. 9, pp. 777–810, 2006.

[28] J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore,
L. Fletcher, E. Frazzoli, A. Huang, S. Karaman et al., “A perception-
driven autonomous urban vehicle,” J. Field R., vol. 25, no. 10, pp. 727–
774, 2008.

[29] I. Miller, M. Campbell, D. Huttenlocher, F.-R. Kline, A. Nathan, S. Lu-
pashin, J. Catlin, B. Schimpf, P. Moran, N. Zych et al., “Team cornell’s
skynet: Robust perception and planning in an urban environment,” J.
Field Robotics, vol. 25, no. 8, pp. 493–527, 2008.

[30] I. Miller and M. Campbell, “Particle filtering for map-aided localization
in sparse GPS environments,” in Int. Conf. Robotics and Automation,
Pasadena, CA, May 2008.
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