
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Learning-Based Robust Observer Design for Coupled
Thermal and Fluid Systems

Koga, S.; Benosman, M.; Borggaard, J.

TR2019-067 July 11, 2019

Abstract
We present a learning-based robust observer design for thermal-fluid systems, pursuing an
application to efficient energy management in buildings. The model is originally described
by Boussinesq equations which is given by a system of two coupled partial differential equa-
tions (PDEs) for the velocity field and temperature profile constrained to incompressible flow.
Using proper orthogonal decomposition (POD), the PDEs are reduced to a set of nonlinear
ordinary differential equations (ODEs). Given a set of temperature and velocity point mea-
surements, a nonlinear state observer is designed to reconstruct the entire state under the
error of initial states, and model parametric uncertainties. We prove that the closed loop
system for the observer error state satisfies an estimate of L2 norm in a sense of locally
input-to-state stability (LISS) with respect to parameter uncertainties. Moreover, the uncer-
tain parameters estimate used in the designed observer are optimized through iterations of
a data-driven extremum seeking (ES) algorithm. Numerical simulation of a 2D Boussinesq
PDE illustrates the performance of the proposed adaptive estimation method.
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Learning-Based Robust Observer Design for
Coupled Thermal and Fluid Systems

Shumon Koga, Mouhacine Benosman, Jeff Borggaard

Abstract— We present a learning-based robust observer de-
sign for thermal-fluid systems, pursuing an application to
efficient energy management in buildings. The model is orig-
inally described by Boussinesq equations which is given by
a system of two coupled partial differential equations (PDEs)
for the velocity field and temperature profile constrained to
incompressible flow. Using proper orthogonal decomposition
(POD), the PDEs are reduced to a set of nonlinear ordinary
differential equations (ODEs). Given a set of temperature and
velocity point measurements, a nonlinear state observer is
designed to reconstruct the entire state under the error of
initial states, and model parametric uncertainties. We prove that
the closed loop system for the observer error state satisfies an
estimate of L2 norm in a sense of locally input-to-state stability
(LISS) with respect to parameter uncertainties. Moreover, the
uncertain parameters estimate used in the designed observer are
optimized through iterations of a data-driven extremum seeking
(ES) algorithm. Numerical simulation of a 2D Boussinesq PDE
illustrates the performance of the proposed adaptive estimation
method.

I. INTRODUCTION

Thermal and fluid systems have been intensively studied
for numerous applications in science and engineering pro-
cesses. For instance, an efficient energy management for
heating, ventilation, and air conditioning (HVAC) systems
has been a priority research topic for many countries due to
its huge energy consumption impact [4].

One of the important problems in HVAC management
is to estimate the entire spatial profile of the airflow and
temperature under a limited number of sensors placed at
some locations in buildings. Such a state estimation for
Navier Stokes (NS) equations has been investigated in a
number of literatures in the recent decade. In [6], an infinite
dimensional Kalman filter is designed for a linearized NS
equation around the velocity field of interest. Their approach
showed good performance as a first contribution to fluid es-
timation, however, there are two issues from the perspective
of real implementation. One is the linearization assumption
of NS equations, can produce a low fidelity fluid model.
A second drawback is the high computational cost for the
discretization of the infinite dimensional filter. To improve
these issues, in [8], the authors developed a POD-based
model reduction for NS equations, and designed extended
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Kalman filter for the state estimation, which illustrated the
effective results on estimated velocity profile. The later work
on state estimation for POD-ROM of NS equations can be
found in [9], [12].

For higher fidelity models of the NS equation which
include the effect of buoyancy forces driven by the density
change via temperature dependence. The dynamics of the
temperature profile is also described from the conservation
of energy, which formulates the Boussinesq equations as a
coupled thermal and fluid systems. Due to the coupled non-
linearity of two PDEs, the design and analysis of Boussinesq
equations is highly challenging problem especially for 2D
and 3D domains. Moreover, as presented in [10], POD-based
model reduction might lose the stability property of the state
variables, which is caused by the truncation of higher order
modes serving as a stabilizing factor.

The stable model reduction for Boussinesq equations is
developed in [2] by introducing a new closure model, which
robustly stabilizes the reduced order model. The authors
prove the robust stability of the closure model with re-
spect to the parameters uncertainty using Lyapunov analy-
sis. Furthermore, the gains in the closure terms are auto-
tuned by learning-based extremum seeking (ES) algorithm
to minimize the errors between the true model solution
and the ROM solution. The convergence analysis of ES
is established in [11] by means of singular perturbation
and averaging theorem, and an approach to apply ES for
parameter auto-tuning in POD-ROM is originated in [3].
The results in [2] illustrate a good performance in improving
solution prediction for laminar flows, however, the method
relies on the accurate knowledge of the initial velocity and
temperature profiles, which can be relaxed by state estimation
technique utilizing sparse measurements obtained through a
few sensors.

There are two contributions in this paper. First, we have
investigated the robustness of the designed observer for
POD-ROM of Boussinesq equation with respect to the un-
certainty of viscosity by proving input-to-state stability (ISS)
in a local sense using Lyapunov method. The observer gain
is designed via LMI approach to satisfy a condition for
ISS proof. Second, as in [2], the online estimation of the
uncertain viscosity parameter is implemented using a data-
driven extremum seeking.

This paper is structured as follows. In Section II, the
physical model of thermal and fluid systems is introduced
by means of Boussinesq equations, and its POD-ROM is
derived. Section III is devoted to the observer design for
POD-ROM, where we provide the robustness analysis with



respect to parameter uncertainty. In Section IV, the online es-
timation of the uncertain parameter in the designed observer
is performed by ES as an iterative learning estimation, and
Section V presents the numerical verfication of the proposed
method for 2-D Boussinesq equations. The paper ends with
a conclusion and future works, as stated in Section VI.

II. MODELLING OF THERMAL AND FLUID SYSTEMS

A. Boussinesq equations and normalization

We focus on the dynamics of the velocity field v(x, t) :
Ω × R+ → R3 and the temperature profile T (x, t) :
Ω × R+ → R, where x denotes the spatial coordinate
x ∈ Ω, and t ≥ 0 denotes the time. The spatial domain
Ω can be two or three dimensional space. The governing
equations are described by Navier-Stokes equation with the
condition of incompressible flow and the conservation of the
energy through the heat transfer, which leads to the following
coupled system

ρ

(
∂v

∂t
+ v · ∇v

)
=−∇p+∇ · τ(v) + ρg, (1)

∇ · v =0, (2)

ρcp

(
∂T

∂t
+ v · ∇T

)
=∇ (κ∇T ) (3)

where ρ is the density profile, p is the pressure field, τ(v)
is the viscous stress, cp is the constant heat capacity, κ
is the constant thermal conductivity, and g = −ge3 is
the gravitational force. In Boussinesq approximation, the
buoyancy force is driven by changes in density ρ = ρ0 +∆ρ
from the nominal density ρ0, and the density change is
modeled as perturbations from the nominal temperature T0

using the perfect gas law ∆ρg = −ρ0β(T−T0)g, β = 1/T0,
and the constant term ρ0g is absorbed into the pressure. The
viscous stress is governed by τ(v) = ρν(∇v +∇vT ) with
kinematic viscosity ν. By introducing a characteristic length
L, characteristic velocity v0, wall temperature Tw, we define
the following normalized states

x̃ =
x

L
, t̃ =

tv0

L
, ṽ =

v

v0
, (4)

p̃ =
p

ρv2
0

, T̃ =
T − T0

Tw − T0
(5)

Using these variables, PDEs (1)–(3) can be reduced to the
following (we dropped the tilde notation)

∂v

∂t
+ v · ∇v =−∇p+∇ · τ(v) +

Gr

Re2Te3, (6)

∇ · v =0, (7)
∂T

∂t
+ v · ∇T =∇

(
1

RePr
∇T
)

(8)

where we defined Reynolds number Re= v0L
ν , Grashof

number Gr= gβ(Tw−T0)L3

ν2 , and Prandtl number Pr= nu
k/ρ0cp

.

B. POD Model Reduction

Following Galerkin projection onto the subspace spanned
by the POD basis functions, we have

vpod(x, t) =v0(x) +

rv∑
i=1

qi(t)φ
v
i (x), (9)

T pod(x, t) =T0(x) +

rv+rT∑
i=rv+1

qi(t)φ
T
i (x) (10)

where v0(x) and T0(x) are the steady-state solution to (1)–
(3), φvi (x) and φTi (x) are POD basis functions given by

φvi (x) =
1

tf

∫ tf

0

(vsim(x, t)− v0(x))wi(t)dt, (11)

for i = 1, · · · , rv , and

φTi (x) =
1

tf

∫ tf

0

(Tsim(x, t)− T0(x))wi(t)dt, (12)

for i = rv + 1, · · · , rv + rT , with the orthogonal
weight functions wi(t) satisfying

∫ tf
0
wi(t)wj(t)dt = 0

if i 6= j. The coefficients qi(t) in (9) and (10) are
the dynamical states representing the POD-ROM of the
Boussinesq equations. By defining the state vector q(t) =
[q1(t), q2(t), · · · , qrv+rT (t)]T , we obtain the following ODE
(see [2] for the detailed derivation)

q̇(t) = µDq(t) + [Cq(t)]q(t) + b (13)

where µ > 0 is the viscosity µ = 1
Re , D is a negative

definite diffusion matrix with diagonal blocks corresponding
to the viscous stress and thermal diffusion, and C is a three-
dimensional tensor corresponding the convection terms in (6)
and (8).

Remark 1: While the original PDEs (1)–(3) is a stable
system (in the sense of boundedness) from our knowledge
on thermal and fluid dynamics, the obtained POD-ROM (13)
might become unstable depending on the strength of the
quadratic nonlinearity [Cq(t)]q(t) and the constant term b
relative to the damping effect µDq(t). We study the effect
of µ on the boundedness of the solution to (13) in the next
lemma.

Lemma 1: For a viscosity coefficient satisfying

µ ≥ 2

d
max

{√
cmaxbmax, cmax||q0||

}
(14)

where d := λmin(−D) > 0, cmax = ||C||F , bmax = ||b||,
the following explicit bound holds

||q|| ≤ Y ∗ +
b̄

cmax +
(

b̄
||q0||−Y ∗ − cmax

)
eb̄t

(15)

where b̄ =
√
µ2d2 − 4bmaxcmax, and Y ∗ = µd−b̄

2cmax
. More-

over, the solution is uniformly bounded by a positive constant
M = µd

2cmax
, i.e., ||q|| ≤M .

Proof: The proof has been omitted due to space
constraints, however, it will be included in a longer journal
version of this work.



III. ROBUSTNESS OF NONLINEAR OBSERVER IN LOCAL
ISS SENSE

To solve for the POD-ROM in (13), the values of the
viscosity parameter µ and the initial conditions q(0) are
needed, however, in most applications they are uncertain.
Instead, we can allocate thermal and velocity sensors to
measure some partial states of the system, which can be
formulated as a linear map from the POD states

y(t) = Hq(t), (16)

where H ∈ Rm×n is a measurement matrix given by the
sensor placement. Then, to assimilate the model (13) with
the acquired sensor data, the state estimator is designed to
reconstruct the entire state q(t) from the measured data,
which enables to estimate the velocity field vpod(x, t) and
the temperature profile T pod(x, t) for all x. A well-known
design is Luenberger-like observer which is constructed as a
copy of the plant plus the injection of the measurement error
states, written by

˙̂q(t) =µ̂Dq̂(t) + [Cq̂(t)]q̂(t) + b+ L(y(t)−Hq̂(t)), (17)

where q̂(t) is the estimation of states q(t), µ̂ is the estimated
values of µ, and L ∈ Rn×m is the observer gain to be
determined. For analysis purposes, we impose the following
assumption.

Assumption 1: The lower bound of the viscosity µ is
known, i.e., µ ≤ µ. Furthermore, our estimated value of
the viscosity also satisfies µ ≤ µ̂.

Let q̃(t) be the estimation error state defined by

q̃(t) := q(t)− q̂(t). (18)

The ideal performance of the observer is characterized by
some sort of the stability property of the estimation error
q̃(t). Subtraction of the estimator (17) from the system (13)
yields the following estimation error dynamics

˙̃q(t) =(µD − LH)q̃(t) + µ+Dq̃(t) + µ̃Dq(t)

+ [Cq̃(t)]q(t) + [Cq(t)]q̃(t)− [Cq̃(t)]q̃(t). (19)

where µ+ := µ− µ > 0, and µ̃ = µ− µ̂. Our main result is
presented in the following theorem.

Theorem 1: Consider the estimation error system (19). Let
the observer gain L be designed so that the matrix µD−LH
is Hurwitz and satisfies the following property

λmin(Q) ≥ 16cmaxMλmax(P ), (20)

where P = PT > 0 and Q = QT > 0 are the solutions of
Lyapunov equation P (µD−LH)+(µD−LH)TPT = −Q.
Then, there exist positive constants ρ0 > 0, ρu > 0, and a
class KL function β and a class K function γ such that if
|q̃(0)| < ρ0 and |µ̃| < ρu then the following estimate of the
norm holds :

||q̃(t)|| ≤ β(||q̃(0)||, t) + γ (|µ̃|) , (21)

which guarantees the local input-to-state stability (LISS) of
the estimation error system with respect to the parameter un-
certainty. Moreover, by defining σ̄ = λmin(Q)

4
√
λmin(P )

√
λmax(P )

,

δ̄ = cmax
λmax(P )
λmin(P )3/2 , and ᾱ = Mλmax(P )√

λmin(P )
λmax(−D) , the

explicit formulation for the constant bound and functions are
obtained by ρu = λmin(Q)

4
√
λmin(P )

√
λmax(P )

, ρ0 = σ̄
4δ̄

, and

β(||q0||, t) =4||q0||e−
σ̄
2 t, (22)

γ(u) =5
σ̄ −

√
σ̄2 − 4

√
2δ̄ᾱu

2δ̄
, (23)

which ensures the exponentially LISS.
Proof: We consider the candidate of LISS Lyapunov

function V defined by

Ṽ = q̃TP q̃ (24)

Note λmin(P )q̃T q̃ ≤ Ṽ ≤ λmax(P )q̃T q̃. Taking the time
derivative of (24) along the solution of (19), we obtain

˙̃V =− q̃TQq̃ + 2µ̃qTDTP q̃ − µ̃q̃T (DP + PD)q̃

+ 2µ+q̃
TDq̃ + 2 ([Cq̃]q)

T
P q̃ + 2 ([Cq]q̃)

T
P q̃

− 2 ([Cq̃]q̃)
T
P q̃ (25)

Owing to the negative definiteness of D < 0 and positivity
of µ+ > 0, it holds µ+q̃

TDq̃ < 0. Furthermore, by Cauchy-
Schwarz inequality,

([Cq̃]q)
T
P q̃ ≤ ||[Cq̃]q|| · ||P q̃||
≤ cmaxλmax(P )M ||q̃||2 (26)

where we used ||q|| ≤M given in Lemma 1. Using the same
technique to all terms in the last line in (25), and defining
d̄ := λmax(−D) > 0, the inequality (25) leads to

˙̃V ≤− λmin(Q)||q̃||2 + 2Md̄λmax(P )||q̃|||µ̃|
+ 4cmaxλmax(P )M ||q̃||2 + 2cmaxλmax(P )||q̃||3

+ 2λmin(P )d̄|µ̃|||q̃||2

≤− λmin(Q)

2
||q̃||2 + 2cmaxλmax(P )||q̃||3

+

(
2Md̄λmax(P )|µ̃| − λmin(Q)

4
||q̃||

)
||q̃||

+

(
4cmaxλmax(P )M − λmin(Q)

4

)
||q̃||2

+ 2λmin(P )d̄|µ̃|||q̃||2. (27)

Therefore, by designing the observer gain L such that the
condition (20) holds, we can state that if

|µ̃| ≤ p||q̃|| (28)

where p := λmin(Q)

16Md̄λmax(P )
, then (27) leads to

˙̃V ≤ −σ||q̃||2 + δ||q̃||3, (29)

where σ = λmin(Q)
2 , δ = 2λmax(P )

(
cmax + d̄p

)
. Applying

Theorem 1 in [7], we can conclude the local ISS w.r.t. the
parameter uncertainty µ. Applying the similar technique in
proof of Lemma 1 to (27), we can further obtain the explicit
bound by the solution of Riccati differential equation, which
derive the explicit formulation of the functions β and γ in
LISS.



IV. PARAMETRIC UNCERTAINTY ESTIMATION BY AN
EXTREMUM SEEKING ALGORITHM

To enhance the performance of the state observer based
on the measured value, the uncertain viscosity parameter
estimate used in the observer should be corrected through
learning iterations. The learning cost function to minimize
at every iteration is an error between the measured value
and its estimate, which is formulated as

Q(µ̂) =

∫ tf

0

(y(t)−Hq̂(t))TR(y(t)−Hq̂(t))dt, R > 0.

(30)

Since the estimate of the parameter µ̂ affects the observer
state q̂, the cost function Q is an implicit function of µ̂.
Following [3], we impose the following assumptions on the
cost function.

Assumption 2: The cost function Q(·) in (30) has a local
minimum at µ̂ = µ.

Assumption 3: The cost function in (30) is analytic and its
variation with respect to µ̂ is bounded in the neighborhood
of µ, i.e., ||∇µ̂Q(δµ)|| ≤ ξ2, ξ2 > 0, for all δµ ∈ N (µ),
where N (µ) denotes a compact neighborhood of µ.

We apply an extremum seeking algorithm as a learning
method for parameter identification. Let µ̂(i) be the estimate
of the parameter µ at i-th iteration, and we introduce an
internal variable z(i) with initial value z(1) = µ̂(1). The
parameters update through ES algorithm is given by

z(i+1) =z(i) + aδ sin
(
ωiδ +

π

2

)
Q(µ̂(i)) (31)

µ̂(i+1) =z(i+1) + a sin
(
ωiδ − π

2

)
, (32)

where the tuning parameters are (a, ω, δ) which are the
amplitude, the frequency, and the iteration increment δ >
0, respectively. Owing to the convergence analysis of the
extremum seeking algorithm as presented for example in
[11], [3], the performance of the learning-based observer is
addressed in the following lemma.

Lemma 2: Let Assumptions 1–3 hold. Consider the POD-
ROM (13) and the designed observer (17) satisfying (20).
Furthermore, where the viscosity estimate µ̂ is tuned by the
ES algorithm (31) and (32) associated with the cost function
(30) at the iteration step i ∈ N. Then, there exists ξ1 > 0
such that the norm of the parameter estimation error and the
learning cost function admit the following bounds

lim sup
i→∞

|µ̂(i) − µ| ≤ξ1
ω

+ |a|, (33)

lim sup
i→∞

|Q(µ̂(i))−Q(µ)| ≤ξ2
(
ξ1
ω

+ |a|
)

(34)

Moreover, if ||q̃(0)|| < ρ0 and |µ̃| < ρu then the norm of
the state estimation error admits the following bound

lim sup
i→∞

||q̃(i)(t)|| ≤ β(||q̃0||, t) + γ

(
ξ1
ω

+ |a|
)

(35)

where q̃(i)(t) = q(t)− q̂(i)(t) with the observer state q̂(i)(t)
in i-th iteration, ρ0, ρu, β, and γ are defined in Theorem 1.

Fig. 1. Sensor placement for both temperature (red) and velocity (blue).

Proof: The proof of (33) and (34) is the same derivation
as in [2], and hence is omitted here. Finally, taking the
supremum limit in the norm bound (21) in Theorem 1, we
obtain

lim sup
i→∞

||q̃(i)(t)|| ≤ β(||q̃0||, t) + lim sup
i→∞

γ
(
|µ− µ̂(i)|

)
(36)

from which the norm estimate (35) is derived with the help
of (33).

V. NUMERICAL SIMULATION

A. Input parameters

We implement the numerical simulation by setting the
spatial domain as a 2-D rectangular shape, namely, Ω =
(0, 8) × (0, 1). The non-dimensional parameters are chosen
as Re = 104, Pr = 1, and Gr = 4 × 108. The setup of this
experiment, e.g., [2] , is as follows: Two fluids of different
temperatures are separated by a vertical barrier at x = 4.
On the right side of the barrier we have low temperature set
to 1, whereas, on the left side of the barrier we have high
temperature, set to 1.5. When we remove the barrier between
the two fluids, we expect the low density, warmer fluid to
rise, while the high density, cooler fluid sinks. The flow is at
rest initially (i.e., the vorticity and stream functions are set
to zero at t = 0) with constant temperature values for the left
and right fluids. The 2-D equations were simulated using a
vorticity-streamfunction formulation with no-slip boundary
conditions for vorticity and adiabatic boundary conditions
for temperature. We use 10 POD basis functions for the
vorticity and 10 POD basis functions for the temperature
variables computed from snapshots taken every 2× 10−2[s].
The simulation time is set as tf =10 [s]. The observer gain
is obtained using an LMI solver in MATLAB to ensure the
existence of a positive solution to the Lyapunov equation
stated in Theorem 1. The initial observer state is set as
q̂(0) = (1 + ε)q(0), with setting ε = 0.1, which implies
that the observer state has 10 % error on initial condition.
The true viscosity is normalized as µ = 1.05, while the initial
guess of the estimated viscosity is set as µ̂(1) = 1.00, which
has 5% error. The learned parameter is updated through
1000 iterations. For measurements, we consider 5 sensors for
temperature and 5 sensors for velocity, and they are placed ,
using Q-DEIM method, e.g., [5], at the locations which are



Algorithm 1: Iterative learning for online parameter
estimation in state observer
Input : {yt}

tf
t=0 , µ̂(1) , q̂0;

z ← µ̂(1);
for i = 1, 2, · · · , I , do

for t = 0, · · · , tf − 1, do
q̂t+1 ← f(q̂t, yt, µ̂

(i));
ỹt ← yt −Hq̂t;

end for
Q← Trapz(ỹTt ỹt) ;
z ← z + aδ sin

(
ωiδ + π

2

)
Q;

µ̂(i+1) ← z + a sin
(
ωiδ − π

2

)
;

end for
µ̂ave ← Mean

(
{µ̂(i)}Ii=0.9·I

)
;

for t = 0, · · · , tf − 1, do
q̂t+1 ← f(q̂t, yt, µ̂

ave);
end for
Output : µ̂ave, {q̂t}

tf
t=0

depicted in Fig. 1. Then, the measurement matrix H in (16)
is obtained through the POD basis functions.

B. Algorithm for ES-based observer

After time discretization, the dynamics of the POD ROM
(13) and the designed observer (17) are described by the dif-
ference equation in the form of q̂t+1 = f(q̂t, yt, µ̂), for t =
0, 1, · · · , Tf , with q̂t = q̂(t∆t). In numerical experiment,
the mesured values {yt}

Tf
t=0 are obtained through forward

simulation of the model. Using the collected measured data
as inputs, we calculate the observer state {q̂t}

Tf
t=0 with an

initial guess of µ̂. Once {q̂t}
Tf
t=0 has been obtained, the ES al-

gorithm is implemented to update the learned parameter. We
repeat this process (“run observer” ↔ “parameter update”)
up to I-th iterations, where I is a chosen iteration number.
After that, the averaged value of the learned parameter over
the last 10 % steps is calculated, which serves as the value for
the uncertain parameter estimate. Finally, we run the observer
dynamics again, using the learned parameter. This procedure
is stated in Algorithm 1.

C. Simulation result

The simulation of the learning-based observer is imple-
mented. Fig. 2 depicts the time evolution of the first two
modes in both velocity and temperature for the: true value
(red), estimate before learning (green), and the estimate after
learning (blue), respectively. For all of these four states, we
can observe that the estimated value becomes much closer
to the true value after ES-based learning of the uncertain
parameter. As depicted in Fig. 3, the norm of the estimation
error is converging to zero after learning (blue), while the
estimation error norm before learning shows a diverging
behavior. We underline here that, once the POD modes or
time-coefficients have been estimated, one can easily recon-
struct the full velocity and temperature profiles by lifting
the time-coefficients to the x-domain via the parametrization

Fig. 2. Evolution of first and second modes in both velocity and temperature
states of POD-ROM: True value (red), estimate before learning (green),
and estimate after learning (blue). For all of the modes given here, we
can observe that the estimate value is highly improved after learning the
uncertain parameter.

given by (9 ), and (10). We have not reported here the
graphs corresponding to these reconstructions, due to space
limitation, however, we will report them in a longer journal
version of this work.

The update of the learned parameter µ̂(i) over the learning
iterations is depicted in Fig. 4. While the initial guess of the
parameter has 5% error, by employing ES we can observe
that after 200 steps the learned parameter µ̂(i) converges
to the neighborhood of the true value µ̂. The amplitude of
the learned parameter around the averaged value directly
depends on the amplitude a of the dither signal for ES,



Fig. 3. Evolution of the norm of the estimattion errror before learning
(green) and after learning (blue), which illustrates high improvement of the
estimater performance through ES-based auto-tuning of parameter.

Fig. 4. Iterative learning of parameter by ES. After 200 steps, the learned
parameter µ̂(i) stays on neighborhood of the true value µ = 1.05. The
averaged value of the learned parameter over the last 100 steps becomes
µ̂ave = 1.05, same value as the true value.

Fig. 5. Update of the cost function Q at each iteration. The value of the
cost is largely decreased during the first 100 steps, and after that it almost
maintains the minimum value with having a little osscilation.

which can be tuned by the user. Smaller choice of a
decreases the amplitude of the learned parameter, however,
the convergence speed becomes slower in general. Such a
tradeoff can be dealt by performance improvement of the
ES algorithm proposed in [14], which provides convergence
to global optima in the presence of local extrema, this will
be considered in a future work. Finally, the iterative update
of the cost function is shown in Fig. 5, from which we
observe the convergence to the minimum value of Q after
100 steps. Overall, the proposed method for a learning-based
state estimation shows a good performance in this numerical
study of the challenging 2-D Boussinesq equations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we develop a learning-based robust observer
design for POD-ROM models of the Boussinesq equations.
We prove ISS between the states estimation error and the
uncertain parameters estimation error. Then, we use ES for
online estimation of model parametric uncertainties. The
proposed method is applied to the 2-D Boussinesq equa-
tion, which illustrates the good performance in estimating
the entire POD time coefficients, i.e., the entire profile of
temperature and velocity which can be obtained by lifting
the POD time coefficients to the x-domain by using the
POD basis functions parametrization of the temperature and
velocity. In future works, we will study the case of 3-D
Boussinesq equations, which correspond to a more realistic
model of indoor airflows related to practical applications
in HVAC systems. Another interesting, but challenging,
research direction would be to bound the errors between the
ROM-based estimates and the true solutions of the original
PDE.
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