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Abstract
Component insertion is a common task in robotic assembly, and is widely used for manufac-
turing a variety of electronic devices. This task is generally characterized by low tolerances,
thus requiring high precision during assembly. An early detection of a fault in the mating
during the insertion process enables quality control of the end products, as well as safeguards
the robotic equipment. We propose to use Gaussian Process Regression-based methods to
learn the force profile during successful insertions, as well as quantify permissible deviations
from this profile. The GPR model is then used to detect anomalies in case the observed
force profile deviates significantly from the expected range. Apart from the standard GPR
formulation, we consider two other variants – the Heteroscedastic GPR and the local GPR
for better modeling accuracy and computational time efficiency, respectively. We report an
accuracy of 100% in differentiating between normal and faulty insertions. The modeling and
detection results indicate that our approach is accurate and robust to severe uncertainties
due to process (e.g., force drift) and measurement noise.
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Anomaly Detection for Insertion Tasks in Robotic Assembly Using
Gaussian Process Models

Diego Romeres1, Devesh K. Jha1, Hoang Anh Dau2, William Yerazunis1, Daniel Nikovski1

Abstract— Component insertion is a common task in robotic
assembly, and is widely used for manufacturing a variety of
electronic devices. This task is generally characterized by low
tolerances, thus requiring high precision during assembly. An
early detection of a fault in the mating during the insertion
process enables quality control of the end products, as well as
safeguards the robotic equipment. We propose to use Gaussian
Process Regression-based methods to learn the force profile
during successful insertions, as well as quantify permissible
deviations from this profile. The GPR model is then used to
detect anomalies in case the observed force profile deviates
significantly from the expected range. Apart from the stan-
dard GPR formulation, we consider two other variants – the
Heteroscedastic GPR and the local GPR for better modeling
accuracy and computational time efficiency, respectively. We
report an accuracy of 100% in differentiating between normal
and faulty insertions. The modeling and detection results
indicate that our approach is accurate and robust to severe
uncertainties due to process (e.g., force drift) and measurement
noise.

I. INTRODUCTION

Improvements in actuation, sensing, and computing capa-
bilities have allowed robots to play an increasingly important
role in automated assembly [1], [2]. Robotic assembly is
widely used in many industrial areas such as the manu-
facturing of automobiles, mobile phones, and even delicate
components such as surface-mount circuit boards. The robot
typically operates in a repetitive fashion, following a se-
quence of operations to assemble products from a set of parts.
However, these predefined actions generally do not take into
account the uncertainty and imprecision in robots behavior.

Even though industrial robots are highly reliable, and ab-
normal behaviors are rare, the consequences of abnormalities
can be extremely costly. Most of the parts that are assembled
in robotic assembly have small tolerances, and an abnormal
operation can result in assembly line downtime, damage to
the manufactured device or to the robot itself. Thus, timely
detection and recovery from these errors is essential for
assembly automation. In this paper, we present experiments
on robotic insertion assemblies. However, our approach could
be applied just as well to other trajectory-centric automation
processes. Our particular assembly task is connector mating,
and is ubiquitous in manufacturing. Fig. 1 shows an example
setup for insertion task. The male part of the connector is
held fixed on a surface. The female part of the connector
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Fig. 1. Experiment setup. left) the Mitsubishi Electric RV-4FL model robot,
middle) 15-pin Molex connector and its fixture, right) a close-up view of
connector blocks
is attached to the end of a robot arm. Successful insertions,
which consist in fully mating the two connectors, rely on
precision in the connector approach path, the connector
grasp, and the accuracy of the connector housing and elec-
trical contacts. Unknown nonlinearities, such as tool and
grip dynamics, complex friction inside the connector, and
environmental factors make it challenging to model the
force profile using rigid dynamics. An additional interesting
phenomenon that we observed after an extended period of
data collection is the presence of force drift in consecutive
normal runs, which will be explained in Section V-B.

We propose to combine the expressiveness of the data-
driven approach with a probabilistic technique to model the
force profile along the trajectory of the robot during a normal
mating process. We verified that the insertion force applied
by the robot is a well-behaved function of the vertical dis-
tance between the parts being mated. We model the insertion
force as a probabilistic function of the end-effector’s vertical
positions, and then use the confidence interval obtained from
the probabilistic map to detect anomalies.

Contributions. First, we propose a general-purpose
anomaly detection algorithm for the problem of insertion-
type assembly using Gaussian Process Regression-based
models (GPR) [3]. Second, we test the proposed algorithm
using a real robotic test bed with an industrial grade robot
under the presence of several uncertainties, such as force
drift due to repeated long-term usage of the robot. Third,
the GPR-based detection method is compared against several
competing machine learning techniques, such as random
forests and gradient-boosting regression.

Related Work. Anomaly detection in assembly or robotic
manipulation kind of problems has received active interest
because of the ubiquity of robotic assembly [4]. Two main
types of approaches can be distinguished: model-based and
data-driven. The model-based approach attempts to create
a model using an accurate physical knowledge of the pro-



cess [5], [6]. Furthermore, creating physics-based models
requires substantial domain knowledge, which might not be
feasible for many complex applications. Some examples for
these approaches could be found in [7], [8], [9], which model
the force profile by means of physical models, and then
declare an anomaly based on any deviation from the model.
However, it is not clear how difficult it would be to systemat-
ically model the noise and uncertainty that inevitably appear
during deployment. For these reasons, many prefer a data-
driven approach, either using a classification or regression
approach to model the process. On the other hand, Gaussian
processes have been used for anomaly detection in many
different applications, e.g. videos [10], surveillance [11],
prognostics [12], etc. for its non-parametric property and
ability to model temporal correlations. However, they have
never been used for insertion-type assembly problems.

Furthermore, for the best of our knowledge, none of
the existing methods explicitly considers the uncertainties
associated with the mating process, and thus these methods
are not robust to process noise. The data-driven approach
is based on data to model successful and faulty insertion
runs. Perhaps the simplest and most widely used technique
based on this approach is threshold-based anomaly detection,
where a mating is classified as faulty if the instantaneous
force or torque exceeds the maximum values observed in
the past. Despite being a simple and effective in some cases,
this method does not generalize well to different settings.

II. BACKGROUND

In this section, we briefly describe Gaussian Process
Regression (GPR) and two of its variations namely, Het-
eroscedastic GPR (HGPR) and Local GPR (LGPR).

A. Gaussian Processes

A Gaussian process (GP) is completely specified by its
mean and covariance function [13]. We define the mean
function m(x) and covariance function k(x,x′) of a real
process f(x) as follows:

m(x) = E[f(x)]

k(x,x′) = E[(f(x)−m(x))(f(x′)−m(x′))]

and the Gaussian process is written as follows:

f(x) ∼ N (m(x), k(x,x′)) (1)

The GP predictive distribution at a test point x? is given by

pGP (f(x?)|D,x?) = N (µ(x?),Σ(x?)) (2)

µ(x?) = kT? (K + σ2I)−1Y (3)

Σ(x?) = k?? − kT? (K + σ2I)−1k? (4)

where D = {X,Y} is the training data, K is the kernel
matrix, where the individual elements are given by Kij =
k(xi,xj), k?? = k(x?,x?), k = k(X,x?) and σ2 is the
measurement noise covariance. There are several choices for
the kernel function k which are commonly used in literature.
The inference problem in GP is to learn the parameters of

the kernel function, called hyperparameters, maximizing the
log marginal likelihood [13]. A Gaussian process is a non-
parametric technique for modeling probabilistic relationships
known for its flexibility and accuracy to infer data. One of
its main drawbacks is that the computational cost scales as
O(N3), where N is the number of data points used to train
the GP. Thus, it is relatively computationally intensive.

B. Local Gaussian Process Regression

Local Gaussian Process Regression was introduced in [14]
and it consists of a local approximation of GPR with the aim
to speed up the training and prediction process.

In the training phase this method consists on clustering
the training data set using for example a K-mean algorithm
and then a GP is learned for each cluster with the procedure
describe in Section II-A. Since each cluster has a reduced
number of data the computational time is lower. In the test
phase of the method, the proximity between any query point
and all the cluster centroids is computed and used as the
weight associated to the local model. A kernel function, e.g.,
the RBF kernel can be used to define this proximity metric.
Finally, the LGP posterior distribution can be computed as
the weighted average of local models’ prediction.

pLGP (f(x?)|D,x?) = N (µLGP (x?),ΣLGP (x?)) (5)

µLGP (x?) =

∑M
i=1 wiµi(x

?)∑M
i=1 wi

(6)

ΣLGP (x?) =

∑M
i=1 w

2
iΣi(x
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i=1 w

2
i

(7)

where M is the number of local models, wi is the weight of
model i given by the proximity metric and, µi(x?), Σi(x

?)
are the posterior mean and covariance of the ith model.

C. Heteroscedastic Gaussian Processes

The Heteroscedastic Gaussian Process (HGP) is a GP in
which the noise model is input data dependent [15], [16],
[17]. This gives more degree of freedom to the model to
characterize more accurately the data. In particular, the model
of the noise becomes ε(x) ∼ N (0, σ2

HGP (x)).
Solving the full HGPR problem could be computationally

expensive, since the number of hyperparameters to optimize
might depend on the number of input data. For this reason,
parametrizations of the covariance σ2

HGP (x) are used. In
this work, we consider that the noise levels are clustered in
M � N clusters which corresponds to M noise levels σ2

i

with i ∈ {1, . . . ,M} and N is the number of data points.
The noise variance of each input data point is the weighted

average of the noise level of each cluster.

σ2
HGP (x) =

∑M
i=1 wi(x)σ2

i∑M
i=1 wi(x)

(8)

where M is the total number of clusters, wi =
exp{−0.5(x−ci)>C(x−ci)} is the weight of the ith cluster,
σ2
i is the noise level of the ith cluster. The noise levels of

each cluster and the length scales C are hyperparameters



of the heteroscedastic kernel, and thus can be optimized by
standard marginal log-likelihood maximization.

The posterior distribution obtained with heteroscedastic
noise is like in the standard GPR (2) with noise covariance
defined in (8). Which at a test point x? is given by

pHGP (f(x?)|D,x?) = N (µ(x?),Σ(x?)) (9)

µ(x?) = kT? (K + ΣHGP )−1Y (10)

Σ(x?) = k?? − kT? (K + ΣHGP )−1k? (11)

where ΣHGP := diag
(
σ2
HGP (x1), . . . , σ2

HGP (xN )
)

is
the noise covariance matrix.

III. PROBLEM FORMULATION

The objective of this work is to detect normal and abnor-
mal runs in insertion-type robotic assembly processes. Runs
are executed multiple times during the process. A run is
assumed to consist of one vertical insertion actuated by a
robotic arm, starting from a predetermined position. Each
run is described by a data set, i.e., the i − th run consists
of {Xi, Y i} where Xi :=

[
xi1, . . . , x

i
r

]
are the vertical z−

positions of the end effector of the robot, Y i :=
[
yi1, . . . , y

i
r

]
are the force sensor measurements and r ∈ R is the number
of sampled points in the run. Given a training data set of
normal insertion runs {X,Y } defined by stacking the data
sets Xi, Y i of n runs in X and Y , respectively, we assume
that there exists a probabilistic model such that

Y = f(X) + ε (12)

where ε is an additive independent Gaussian noise with zero
mean and covariance σ2, and f is an unknown function.
We want to determine a probabilistic estimator f̂ of f , such
that an appropriate anomaly measure can be defined with the
help of the posterior distribution p(f |D), in order to judge
any unseen runs to be either normal or abnormal.

IV. ANOMALY DETECTION

In this section, we present the proposed approach to solve
the anomaly detection problem described in Section III.

In order to estimate the probabilistic model in (12), we
follow the three paradigms described in Section II which
belong all to the GPR framework, and therefore for each
of them, the posterior distribution is known and Gaussian
(or locally Gaussian for LGP) when the hyperparameters
are fixed to their marginal likelihood estimate. Hence, the
confidence intervals of the final estimator are described
by the estimate of the posterior density p(f |D), and are
ellipsoidal sets. In the case of GPR described in Section II-A,
the confidence sets are defined for any input point x∗ by

Eα(x∗) = {h ∈ R : (h−µ(x∗))Σ−1(x∗)(h−µ(x∗)) < χ2
α}

(13)
where µ(·) and Σ(·) are defined in (3) and (4), respectively.
For a fixed probability level α, χ2

α is the value for which
Pr(χ2 < χ2

α) = α. Eα defines the region in which a sample
from p(f |D) will end up with probability α. Analogous ex-
pressions can be defined for the estimators in Sec. II-B, II-C.

After a posterior distribution p(f |D) is estimated in a
training data set composed only of normal runs, the anomaly
detection algorithm computes a score for each data point xji
of any new run j based on whether the prediction f̂(xji ) falls
within the expected confidence interval Eα(xji ). The scores
for each data point i ∈ {1, . . . , r} are then combined to
assign one final anomaly score to the entire run. Finally a
threshold decides whether the run is normal or abnormal as
described in Algorithm 1. Algorithm 1 takes as inputs the

Algorithm 1 Algorithm for Anomaly Detection
Input: run = {Xi, Y i}, D training dataset, p(f |D), α, thr
Output: anomaly flag

Initialisation :
1: anomaly flag = 0, anomaly score = 0
2: for j = 0 to r do
3: Compute f̂(xij)
4: Compute Eα(xij)

5: if (f̂(xij) /∈ Eα(xij)) then
6: anomaly score += 1
7: end if
8: end for
9: anomaly score = anomaly score/r, r = |Xi|

10: if (anomaly score ≥ thr) then
11: anomaly flag = 1
12: end if
13: return anomaly flag

data points of the run that has to be detected, the probability
of inclusion of the confidence set α, the threshold thr and
the posterior distribution p(f |D) estimated on a training data
set D of all normal runs and computed with any of the
methods described in Section II or any other probabilistic
modeling technique. Step 3 might be computed using the
posterior means (2), (5), (9) and Step 4 might be computed
using Eq. (13) and one of the posterior means (3),(6),(10)
and posterios covariances (4),(7),(11). The percentage of
inclusion of the confidence interval, α, is set at 99.9%.
The anomaly score, ‘anomaly score’ and the choice of the
threshold, ‘thr’ are described in the following section.

A. Binary Anomaly Score

Given a predictive posterior distribution it is possible to
compute an anomaly score for each individual observation in
a run, which means that an anomaly score will be associated
to any force sensor measure at any given z−position location.
This will give us an informative picture of the machine health
during the mating process. To get the final anomaly score
of an entire run, we average the anomaly scores of each
individual observations within that run. A higher anomaly
score means higher abnormality. With an appropriate thresh-
old value, we can turn this anomaly score into an anomaly
label (normal or abnormal). The anomaly score for each data
point is based on whether the prediction falls within the
expected confidence interval (13). Considering the properties
of GPR and the uncertainty level α = 99.9% and given a



pair of points {x∗, f̂(x∗)} the anomaly score for each data
can be computed as:

anomaly score(x∗, f̂(x∗)) ={
0, if (µ(x∗)− 3.29σ(x∗)) ≤ y∗ ≤ (µ(x∗) + 3.29σ(x∗))

1, otherwise

After the anomaly score is defined we need to define a
threshold in order to declare when a run is normal or
abnormal. A standard and informative way to evaluate the
performance of an anomaly detection method is to compute
its Receiver Operating Characteristic (ROC) curve. The ROC
curve is created by plotting the true positive rate vs. the
false positive rate at various threshold values on the anomaly
score. In this way it is possible to analyze and the evaluate
the performance of several methods at a different values of
threshold and choose a best threshold value.

V. EXPERIMENTS AND DATA ANALYSIS

In order to verify the accuracy of Algorithm 1, a robotic
arm was used to automatically insert a Molex 3x5 0.250”
15-pin connector repeatedly, while gathering precise force
and position information, see Figure 1.

A. Data Gathering

Force was measured by a six-axis load cell directly be-
hind the connector mount on the robot, while position was
measured by the robot’s built-in encoders. The connectors
were held fixed by 3D-printed fixtures; the moving (female)
connector is secured by 3mm capscrews, while the male
fixture is C-clamped to the steel robot platform.

Each data acquisition trial starts with loading a new
connector set. Then the robot is manually steered to complete
the connector mating insertion. By monitoring the real-time
forces from the load cell, the connector is centered on the
location which requires minimum force while mated, i.e.,
the location which has the least contacts between the walls
of the connectors. This position is defined as the “fully
mated” (FM) position. The robot and moving connector is
then withdrawn vertically in the z+ direction, and this second
position is defined as “prepare to mate” (PM) position.

A normal run is defined by the following sequence of
movements: move the robot to the PM position, start logging
z−positions and load cell forces measurements, wait a short
amount of time, then move to the FM position, wait for
a short amount of time, then stop logging. Then the robot
moves upward back to the PM position.

An abnormal run is defined as a normal run except the PM
position is shifted from its original position by an offset. The
robot is then commanded to the FM position with a diagonal
motion causing the two connectors surfaces to hit and slide
against each other, then finally completing the insertion.

Two data sets obtained from two independent data collec-
tions performed on different days are considered, see Fig. 2.
The first data set is composed of 4, 000 normal insertions
collected in an unbroken rapid sequence. In order to limit the
computational cost in training we down-sampled this dataset

to 1 every 10 runs, this data set will be called Dtr. The force
profile is nearly flat until the end of the insertion where
the two connectors enter in contact and the force rapidly
increases. However, notice that there is a drift on the force
measurements after each run given by the force sensor drift
(this is a known phenomenon). The drift is higher at the end
of the insertion with a delta in forces of 16[N] while at the
beginning the delta is of 8[N]. The second data set is used

Fig. 2. Force profile of the insertion phase as a function of the end-effector’s
z coordinate. In blu there are the training trajectories, normal runs, and in
green the test trajectories, a mix of normal and faulty runs. Data was sampled
at 140 Hz. Note that the x-axis displays decreasing vertical distances as the
robot moves downward to insert two components.

for testing, Dtest, and is composed of 100 normal runs and
600 abnormal runs, also collected in sequence. The abnormal
runs are obtained by two type of faults, either repeatedly
shifting the PM position in steps of 0.5mm up to 6mm along
a direction perpendicular to the z−axes or repeatedly rotating
the PM position in steps of 0.5 degrees up to 4 degree. The
misalignment is an important anomaly to detect because it
could either damage the part where the connector is hold
or break one pin but still performing the full mating. This
would cause the final product to fail without realizing it.

B. Z−force drift

Several experiments have been conduced in different con-
ditions such as changing the temperature of the environment
and changing the control mode of the robot. In one condi-
tion the data set sequences in our collections presented an
interesting challenge: Z-force drift. As can be seen in Fig. 3,

Fig. 3. Force profile of insertion phase as a function of the end-effector’s
z−coordinate. The blue lines show 1000 normal runs and the red line
highlights the force profile of the first run. Apparent in the plot is force
drift, appearing after the first contact of the two connectors.



on top of the known measurement drift given by the sensor,
a systematic, although irregular, drift can be observed in the
force profile. This causes each normal run in the data set
to have a different force profile, and thus even normal runs
could rightfully considered to be an abnormal run w.r.t. the
prior runs of this sequence.

We investigated the causes of this force drift. Several
hypotheses were tested and rejected by means of a set
of experiments, including connector wear out, connector
expansion due to frictional heating, connector slipping in the
mounting clamps, and robot encoder drift during execution.
Ultimately, the force drift was empirically proven to be
caused by internal thermal expansion of the robot due to
the repeated movement, which causes a minor shift in the
position of the end effector. This phenomenon corresponds
to a misalignment between the two connectors that creates
an increase in the frictional forces between the walls of the
two connectors during the insertion, and a corresponding
increase in the measurements of z−force. Note in Fig. 3
how the force drift appears only at the z−position when the
two connectors are in contact. We confirmed this with an
independent laser positioning sensor ( resolution of 10µm)
taking measurements of the PM position, while the robot
is performing normal runs repeatedly. The measurements
showed an intermittent and non-negligible drift in the PM
position; thermal infrared imaging showed parts of the robot
arm reaching 39 degC versus 20 degC ambient in the test
cell. Also note that the effect of this drift in position on the
measured z−force would be very difficult or impossible to
model from physical principles. This finding further favors
the use of a data-driven approach instead of physical model-
ing. For space reasoning we could not show all the analysis
for also this case but will be summarized in the end.

C. Results

In this section, we will analyze the performance in
anomaly detection obtained by applying the three posterior
distributions described in Section II namely pGP (f |Dtr),
pHGP (f |Dtr) and pLGP (f |Dtr) to Algorithm 1. For com-
pleteness, we will compare these methods with two other
standard methods popular in the machine learning literature:
Random Forests (RF) see [18] and Gradient Boosting Re-
gression (GBR). The estimator of pLGP (f |Dtr) is computed
considering 5 clusters. All models have been trained on the
data set Dtr and tested on the data set Dtest.

The ROC curve described in Section IV-A is used as a first
comparison among the methods using the binary anomaly
score defined in Section IV-A. Fig. 4 provides a comparison
between all tested methods as their threshold values vary.
From Fig. 4, it is evident that HGPR and LGPR are the
only methods able to correctly separate all the normal and
abnormal runs, for some suitable threshold value. For GPR,
GBR and RF, no such threshold exists – for these methods,
there is always some classification error, either as a false
positive, or as a false negative. Fig. 4 shows the same
performance for two of the GP-based models, in order to
determine which method appears to be most suitable for

Fig. 4. ROC curve computed for all the proposed models GPR, HGPR
and LGPR and compared with other machine learning techniques such as
GBR and RF. The curves obtained with GPR, HGPR and LGPR overlap.

Fig. 5. Comparison of the mean and confidence interval predictors of
GPR, HGPR and LGPR. Notice the force drift on the training data (blu)
and how HGPR and LGPR estimates accurately the confidence set, while
GPR confidence set is too high in the initial phase of the insertion. One
faulty run from Dtest is also shown.

anomaly detection problems, we are interested in analyzing
the models further by inspecting their confidence sets and
the computational time.

In Fig. 5 we compare the prediction accuracy of
pGP (f |Dtr), pHGP (f |Dtr) and pLGP (f |Dtr) on one single
faulty test run. While in terms of predictive mean there
are not significant differences between the three methods,
pHGP (f |Dtr) and pLGP (f |Dtr) outperform pGP (f |Dtr) in
estimating the confidence set. This is because the drift in the
force measurements affects the data differently in different
regions of the space (small variations in the initial phase
of insertion and large variations towards the end) and this
translates to different levels of noise from a modeling point
of view, i.e., the data is generated from a non stationary
process. However, pGP (f |Dtr) does not have the capability
of describing different levels of noise yielding a large con-
fidence set (the thick red band in Fig. 5) in the initial part
of the insertion. On the other hand, pHGP (f |Dtr) is based
on a non-stationary kernel where the noise level depends on
the input space and the confidence sets accurately describe
the variability of the training data for all z−positions of
the insertion phase. LGPR can also describe accurately
the variability given by the z−force drift because it can
assign a different level of noise to each cluster. However,
LGPR confidence sets loose accuracy in some area of the
insertions e.g. around z = 117 in Fig 5. Indeed, LGPR is an



approximation of HGPR.
Additionally, we tested a down-sampled version of Dtr

called, DDStr , where the runs are down-sampled to 1 run
out of every 20 runs. We observed that also in this case
the accuracy does not change and the ROC curves are as
in Fig. 4. We believe this is because all the runs are a
noisy representation of the same process and the sampled
points of DDStr are enough to cover the z−position domain
and the variance of the noise, guaranteeing good prediction
performance. However, it is fundamental that DDStr includes
at least one initial and one final run for the algorithm to
work, so that all the possible force range generated by the
drift is spanned. Finally, the computational time required to
train all the models in Dtr and in DDStr are compared in
Table I. In Dtr, GBR and RF are one order of magnitude

TABLE I
COMPUTATIONAL TIME REQUIRED TO TRAIN ALL THE MODELS.

GPR HGPR LGPR GBR RF
Time [s] - Dtr 275.97 685.21 101.63 7.06 8.09

Time [s] - DDS
tr 13.58 59.71 2.28 1.59 5.4

faster than the GP-based models. However, GBR and RF are
not able to correctly classify all the normal and abnormal
runs, which may make them unsuitable for high-confidence
manufacturing anomaly detection purposes. Among the GP-
based methods, HGPR is the slowest one, because it has
the most complicated model with the highest number of
hyperparameters to estimate. LGPR is the fastest one because
trains independent GPs in each cluster with a smaller number
of data, thus minimizing the O(N3) complexity. Considering
DDStr the computational time is reduced dramatically making
the GP-based methods speed competitive with GBR and RF.

Regarding the case described in Section V-B with z−force
drift the obtained results reflected the conclusions already
derived: HGPR and LGPR are the only methods with 100%
accuracy in anomaly detection and LGPR is the fastest GP-
based method slightly slower than GBR.

VI. CONCLUSIONS

We propose an anomaly detection algorithm based on
probabilistic models belonging to the Gaussian Process
Regression framework. We analyzed three varieties of GP
models both in terms of prediction accuracy in detecting
the anomalies and in terms of computational time. These
methods are also compared with other two machine learning
techniques, GBR and RF.

Our analysis showed that the most promising methods for
anomaly detection are HGPR and LGPR. With advantages
that the former is possibly the most accurate in estimating the
confidence intervals and the latter is faster to train. However,
both these methods are able to correctly detect all the
normal and abnormal runs. Our approach solves the problem
of undesired effects that can be found in real industrial
applications such as the z−force drift. To further explore
this kind of problems, in future works we want to estimate
the confidence intervals within which the next run should

belong to knowing the last normal run. Suppose that the robot
is performing in sequence multiple runs, after one normal
run is executed instead then expecting the following run to
be included in the whole admissible confidence interval we
want to learn an appropriate probabilistic model that will
infer where only the next run will be. This should reduce
considerably the size of the expected confidence intervals.

Further extensions of the proposed approach might include
solving the anomaly detection problem in real time (i.e.,
while the run is performing and not complete), consider
faulty and uncertain sensors and classifying different faults.
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