
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Analysis of the contribution and temporal dependency of
LSTM layers for reinforcement learning tasks

Lee, T.-Y.; van Baar, J.; Wittenburg, K.B.; Sullivan, A.

TR2019-049 June 29, 2019

Abstract
Long short-term memory (LSTM) architectures are widely used in deep neural networks
(DNN) when the input data is time-varying, because of their ability to capture (often un-
known) long-term dependencies of sequential data. In this paper, we present an approach
to analyze the temporal dependencies needed by an LSTM layer. Our approach first locates
so-called salient LSTM cells that contribute most to the neural network output, by combin-
ing both forward and backward propagation. For these salient cells, we compare their output
contributions and the internal gates of LSTM to see whether the activation of gates precedes
the increasing of contribution, and how far beforehand the precedence occurs. We apply our
analysis in the context of reinforcement learning (RL) for robot control to understand how
the LSTM layer reacts under different circumstances.

IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Explanable AI
Workshop

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2019
201 Broadway, Cambridge, Massachusetts 02139





Analysis of the contribution and temporal dependency of LSTM layers for
reinforcement learning tasks

Teng-Yok Lee, Jeroen van Baar, Kent Wittenburg, Alan Sullivan
Mitsubishi Electric Research Laboratories

Cambridge, MA, USA

Abstract

Long short-term memory (LSTM) architectures are
widely used in deep neural networks (DNN) when the input
data is time-varying, because of their ability to capture (of-
ten unknown) long-term dependencies of sequential data. In
this paper, we present an approach to analyze the temporal
dependencies needed by an LSTM layer. Our approach first
locates so-called salient LSTM cells that contribute most to
the neural network output, by combining both forward and
backward propagation. For these salient cells, we compare
their output contributions and the internal gates of LSTM
to see whether the activation of gates precedes the increas-
ing of contribution, and how far beforehand the precedence
occurs. We apply our analysis in the context of reinforce-
ment learning (RL) for robot control to understand how the
LSTM layer reacts under different circumstances.

1. Introduction

When the input data is sequential and time varying in na-
ture, recurrent neural networks like RNN and LSTM (Long
short-tem memory) [3] are employed to capture the time
dependencies in the data. While various approaches [4, 7]
have been proposed to understand these recurrent units, cur-
rent work has two limitations. First, all output elements of a
recurrent unit are usually treated equally, which can obscure
the significant data and lead to imprecise findings. Second,
existing approaches do not analyze which previous inputs of
the time-varying data are contributing to the current output.

In the remainder of this paper we focus on LSTM, es-
pecially in the context of Sim2Real, i.e., transfer learning
from simulation to real world data. Our goal is to gain an
understanding of what role the recurrent units play and use
this understanding to improve training and ultimately per-
formance. The task we selected is for a robot to learn a cir-
cular ball-in-maze game. Using deep reinforcement learn-
ing (RL) and images as input, we train a robot control pol-
icy (parameterized by a DNN) to predict five discrete ac-

(a) (b) (c)

Conv

ReLU

Conv

ReLU

FC

ReLU LSTM

FC

Time-independent Time-dependent

argmax
Action

(d)
Figure 1. An overview of our robot control system with deep
reinforcement learning [8]. (a): Our target task, which is moving a
ball from the outer ring to the maze center. (b): The marble maze
game on a robot arm. An overhead camera provides observations
of the maze. (c) A rendered image of our simulator to mimic the
real maze in (a). (d): Architecture of our neural network which
represents a control policy for the robot.

tions: four for clockwise and counterclockwise tilt around
the x- and y-axis, and a fifth No-Op(eration) action. The
goal is to bring the ball(s) into the center of the maze. For
details we refer the reader to [8]. To learn in the presence
of complex dynamics the network relies on an LSTM layer
(Fig. 1(d)) [3]. We first train the policy on a simulation
of the maze (Fig. 1(c)), and then transfer and fine-tune this
policy on a real setup (Fig. 1(a, b)).

When transferring our model, we realized that the LSTM
part is more difficult to transfer than previous layers. As the
layers after LSTM are time-dependent, we are especially in-
terested in how the these layers react to the time-related dif-
ferences between the simulation and the real setup. These
parameters can include the duration to finish an action,
frame rates of the captured video frames, the delay to trans-
mit the video frame to the neural network, the computing
time to output the control signals, etc. Further, there could
be more parameters unknown to us yet. If we can more
comprehensively understand the LSTM layer, it can help us
limit the parameters to examine.

1



0 20 40 60 80 100 120 140
Frame

So
rte

d 
ch

an
ne

l

Thresholded channels with high contribution

Action

0

1

2

3

4

Figure 2. Highly contributing channels of our fine-tuned model on the real robot. The x-axis represents time and the y-axis represents the
LSTM channels, which are sorted according to the contributed actions. The colors of non-white pixels represent the actions, as indicated
by the color bar.

We propose an approach to address the aforementioned
shortcomings in the analysis for recurrent units. Our ap-
proach first locates so-called salient LSTM channels, which
contribute most to the neural network output. By combining
both forward and backward propagation, we can estimate
the contribution, allowing us to threshold the channels that
contribute most. Given the salient channels, we can per-
form analysis to find the temporal dependencies between
the changes of internal status of LSTM and the degree of
contribution. By jointly analyzing with other information
of our RL settings, we can decompose the LSTM layer into
different functional units, based on its contribution in space
and time. The preliminary results of our analysis show ex-
plainable behaviour that is consistent with our experiments.
Then we conclude this paper with future work to further de-
velop our approach.

2. Background

Here we first review the concept and terminology of
LSTM. We refer readers to the original work by Hochre-
iter and Schmidhuber [3] for the details. An LSTM con-
sists of two states: a cell state and a hidden state, vectors
of length nl, where nl represents the number of channels.
The cell state captures the long term memory. Recurrency
is achieved since the previous cell and hidden state are pro-
vided along with input data. The cell state is updated ac-
cording to so-called gates. The gates include an input gate
for the amount of the input to add to the cell state, a for-
get gate for the amount of the current cell state to retain or
overwrite, and an output gate for the amount of the new cell
state to add to the new hidden states. Our later analysis on
the temporal dependencies will be based on the gates, as
described in Section 4.

3. Channel-wise LSTM contribution

The first step of our approach is to locate LSTM chan-
nels that contribute more than other channels to the network

output, i.e., the action with maximal score. A straightfor-
ward approach is checking the hidden state value of each
LSTM channel [5, 2] to see which ones have larger magni-
tude compared to others. However, activation values alone
are not sufficient to indicate what contributed to the final ac-
tions. Another approach is using backward propagation to
compute the partial derivative of the network output w.r.t.
the LSTM channels, similar to computing saliency maps
[6, 9], where partial derivatives mainly indicate the sensi-
tivity. A LSTM channel with high partial derivatives might
not contribute much if its activation value is too small.

Instead, the propagation results of both directions should
be jointly considered. To make the idea more concrete,
it should be noted that in our model, the mapping from
the LSTM channels to the action scores is achieved via a
fully connected layer, which is a linear transformation. The
weights of the fully connected layer can be expressed as a
na × nl matrix Wa, where na and nl denote the number of
actions and LSTM channels respectively. The relationship,
at time step t, between the action with maximal score at,
and the LSTM hidden state ht can be written as:

at = argmax
i=1...na

s[i] = argmax
i=1...na

nl∑
j=1

Wa[i, j]ht[j]

In other words, the score of at is the sum of the weighted ac-
tivations Wa[at, j]ht[j] of all channels j. Considering one
of the activations ht or the weight Wa separately is insuffi-
cient. If one is large but the other is small, its portion to the
sum is still small.

It should be noted that the weight Wa[at, j] is also the
partial derivative of the score of the at-th action w.r.t to
channel j. Namely, the contribution of a channel to the out-
put should consider both its forward propagated activation
and the backward propagated derivative. Although this is
similar to the algorithm proposed by Balu et al. [1] to com-
pute saliency maps, our goals are different. Instead of com-
puting the saliency maps on the spatial domain of the input

2



data, our goal is to measure the contribution of channels of
layers within a neural network.

Based on the weighted activation Wa[at, j]ht[j] of ev-
ery channel j, we can measure its contribution to the final
output as follows. We first clamp the negative weighted ac-
tivation to 0 (since the output action is the one with maximal
score, and thus prefers positive contributions). By denoting
the clamped weighted activation of each channel j as ct[j],
we compute its contribution as ct[j]/

∑
j ct[j].

Once the contribution is computed, we can filter the
LSTM channels with high contributions. An example is
shown in Figure 2, where a 2D color map indicates the top
LSTM channels that in total contribute to more than 50% of
the action score per time step. Hereafter we use the same
criteria to filter the LSTM channels for later figures. In this
heat map, the rows are sorted in order to place channels that
contributed to the same actions together. This color map re-
veals several properties of the LSTM layer. The first prop-
erty is sparsity: at each time step, very few LSTM channels
(actually less than 10%) are needed to contribute half of the
score. We can also find LSTM channels that contribute to a
single action, as there exists rows of a single color.

By jointly analyzing the contribution and the input im-
ages, we can identify more properties of the LSTM chan-
nels, especially their relationship with the ball locations. In
Figure 3 we plot the trajectory used in Figure 2, as the dis-
tance of the ball to the maze center over time. The steps
correspond to different rings of the maze (Figure 3 bottom).
By horizontally aligning the heat map of Figure 2 and the
distance plot in Figure 3, we found channels that contribute
only when the ball is in a specific region. We pick four
channels, filter them, and show the corresponding ball loca-
tions in Figure 4. Two channels only contribute when the
ball is a a small region, see Figure 4 (a) and (b). The two
other channels only contribute when the ball was in a spe-
cific ring of the maze, see Figure 4 (c) and (d). Thus, with
our measurement of contribution, our approach can group
the LSTM channels based on the contributed actions and
the corresponding inputs. This allows us to further investi-
gate various properties per group.

4. Time dependency between LSTM gates and
contribution

Based on the channel-wise contribution, the next step
is to examine the preceding context when the contribution
of an LSTM channel increases. We are interested in how
the prior LSTM internal states change, especially the gates,
and how far ahead of the contribution they change. As the
gates control the updating of the hidden state, which are
transformed to the action scores, we hypothesize that there
should exist correlation between the LSTM gates and the
contribution.

The gating scheme of LSTM has a few interesting prop-

0 20 40 60 80 100 120 140
Frame

10

15

20

25

Di
st
an

ce
 (p

ix
el
s)

Distance from the ball to maze center

Step 0
Ring 1

Step 10
Ring 2

Step 53
Ring 3

Step 142
Ring 4

Figure 3. (top) The distance from the ball to the maze center
over time, indicating changing of rings within the maze. (bottom)
Images corresponding to the four red points in the top figure. Note
that the ball is in different rings of the maze.

Channel 129 Channel 147 Channel 239 Channel 116

(a) (b) (c) (d)
Figure 4. Corresponding ball locations when four channels are
filtered in Figure 2. The contributed actions are encoded as the
marker color based on the color bar of Figure 2.

erties. First, each LSTM channel has its own gates to update
its corresponding hidden state and cell state. Second, the
values of gates are bounded. For the input and output gates,
the value range is always between 0 and 1. A high value of
input gate means that the new input is being added to the
memory, and a higher value of output gates means that the
long term cell state starts to contribute to the hidden state.

Currently we apply a simple thresholding scheme to see
whether there is any offset between the time steps when the
gate value goes high and when the channel starts to con-
tribute. First, we find time intervals when the gates’ value
is always higher than a threshold θg . Within a thresholded
interval, says [t0, t1], we find the first time step t when its
contribution is higher than another threshold θc. If such a
time step t exists, the difference between t and t0 represents
the number of time steps needed for the gates’ change to be
effective. We call this difference the preceding offset. An
example is shown in Figure 5, which lists the contribution
and output cell value of a channel in Figure 2. It can be
seen that when this channel is filtered, there indeed exists
an offset to when the output gate value starts to increase.

Meanwhile, as suggested in Section 3, the LSTM chan-
nels can contribute differently. Thus we need to measure
and compare the preceding offset for all channels. Also, the
contribution made by a LSTM channel can depend on the
spatial contents of the image, such as the location of the ball

3



0 20 40 60 80 100 120 140
Time

0.0
0.2
0.4
0.6
0.8
1.0

Ga
te
 v
al
ue

/C
on

tri
bu

tio
ns Channel 32

10

15

20

25

Ra
di
us

Figure 5. Comparison of the value of the output gate (blue) of a
channel and its contributions. The values were measured from the
same trajectory as in Figure 2 (black dotted line). The red vertical
bars indicate when this channel is filtered. Each green horizontal
line indicates the offset from a red bar to the preceding time step
when the output gate value exceeds the threshold 0.5.

in our application. To comprehensively understand the pre-
ceding effect, our approach tests the model multiple times.
By changing the initial location of the ball in every test, we
can measure the preceding effect from different locations in
the maze and see whether there exists a correlation between
the length of preceding effect and the ball locations.

Figure 6 shows the joint histogram of the preceding ef-
fect and the distance from the ball to the maze center, which
was measured according to all LSTM channels from 40 tests
with the simulator. The color represents occurrence. High-
est occurrence (in red) imply that the distances can be clus-
tered into four groups (one per ring of the maze).

In Figure 6, we can see that when the distance to the
maze center becomes small, more samples have longer pre-
ceding offsets. For instance, when the distance is 9 pixels,
there could be samples with offsets more than 20 time steps,
while the offsets at larger distances are 10 time steps or less.
This can be explained as follows: the tilting angle to adjust
the maze is fixed, therefore the ball will be accelerated faster
when closer to the maze center, and thus more time steps are
needed to decrease the ball velocity in order to turn. Never-
theless, we are still further evaluating this approach.

This is consistent with the finding of another experiment,
where we did not pass the previous hidden states and cell
states to the LSTM layer. In other words, the memory of
previous time steps was totally ignored. We found that the
neural network can still move the ball towards the inner
rings. However, when the ball was one ring away from the
center, it took longer to move the ball to cross the gate com-
pared to the outer rings. Hence, the LSTM layer utilizes the
memory to generate optimized actions when the ball is in
the inner ring.

5. Conclusion
In this paper, we presented our approach to understand

how an LSTM behaves when applied to deep reinforce-
ment learning. By measuring the contribution made by
each LSTM channel to the output action, we can understand
various roles of the LSTM layer. While conventional ap-
proaches require either extra human labeling [2] or manual

0 5 10 15 20 25 30
Distance to center (pixels)

0

10

20

30

Of
fs
et

(ti
m
e 
st
ep

s)

Offset v.s. Ball location

100

101

102

Figure 6. Joint distribution of the preceding offset and the distance
from the ball to the maze center from 40 tests. The counts are
color-coded according to the color map.

search of LSTM channels [4, 7], our approach can auto-
matically filter these salient LSTM channels. From those
highly contributing LSTM channels, we can further investi-
gate other properties, such as the temporal dependency be-
tween the contribution and the changing of integral gates of
LSTM. Our preliminary analysis suggests that the measured
temporal dependencies are consistent with the findings of
other experiments. Our future work is to conduct controlled
experiments to comprehensively evaluate the measurement.
The goal is to estimate the length of temporal dependency
modeled by a trained LSTM, which we expect can assist
the transferring of the LSTM between systems with differ-
ent dynamics.

References
[1] Aditya Balu, Thanh V. Nguyen, Apurva Kokate, Chin-

may Hegde, and Soumik Sarkar. A forward-backward ap-
proach for visualizing information flow in deep networks.
arXiv:1711.06221, 2017.

[2] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and A. T.
Aude Oliva. Network dissection: quantifying interpretability
of deep visual representations. In CVPR, 2017.

[3] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term
memory. Neural Computing, 9(8):1735–1780, 1997.

[4] Andrej Karpathy, Justin Johnson, and Li Fei-Fei. Visualiz-
ing and understanding recurrent networks. arXiv:1506.02078,
2015.

[5] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better
analysis of deep convolutional neural networks. IEEE Trans-
actions on Visualization and Computer Graphics, 23(1):91–
100, 2017.

[6] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman.
Deep inside convolutional networks: Visualising image clas-
sification models and saliency maps. In ICLR, 2014.

[7] Hendrik Strobelt, Sebastian Gehrmann, Hanspeter Pfister, and
Alexander M Rush. Lstmvis: A tool for visual analysis of hid-
den state dynamics in recurrent neural networks. IEEE Trans-
actions on Visualization and Computer Graphics, 2018.

[8] Jeroen van Baar, Alan Sullivan, Radu Cordorel, Devesh Jha,
Diego Romeres, and Daniel Nikovski. Sim-to-real transfer
learning using robustified controllers in robotic tasks involv-
ing complex dynamics. arXiv:1809.04720, 2018.

[9] Matthew D. Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In ECCV, pages 818–833,
2014.

4


	Title Page
	page 2

	/projects/www/html/publications/docs/TR2019-049.pdf
	page 2
	page 3
	page 4


