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Abstract
We introduce the task of scene-aware dialog. Given a
follow-up question in an ongoing dialog about a video, our
goal is to generate a complete and natural response to a
question given (a) an input video, and (b) the history of pre-
vious turns in the dialog. To succeed, agents must ground
the semantics in the video and leverage contextual cues from
the history of the dialog to answer the question. To bench-
mark this task, we introduce the Audio Visual Scene-Aware
Dialog (AVSD) dataset. For each of more than 11,000
videos of human actions for the Charades dataset. Our
dataset contains a dialog about the video, plus a final sum-
mary of the video by one of the dialog participants. We
train several baseline systems for this task and evaluate the
performance of the trained models using several qualitative
and quantitative metrics. Our results indicate that the mod-
els must comprehend all the available inputs (video, audio,
question and dialog history) to perform well on this dataset.

1. Introduction
Developing conversational agents has been a longstanding
goal of artificial intelligence (AI). Some recent research
has focused on designing and training conversational agents
(chatbots) that are visually grounded. Das et al. [6] intro-
duced the problem of visual dialog, in which the task is to
train a model to carry out a conversation in natural language
about static images. Developing visually aware conversa-
tional agents is an emerging and vibrant area of research
that promises to extend the capabilities of conversational
agents. However, conversing about a static image is inher-
ently limiting. Many potential applications for conversa-
tional agents, such as a helper robot or a smart home, would
benefit greatly from understanding the scene in which the
agent or a human is operating. The context often cannot
be captured only by a still image, as there is important in-
formation in the temporal dynamics of the scene as well as

Figure 1: In Audio Visual Scene-Aware Dialog, an agent’s task is
to answer in natural language questions about a short video. The
agent grounds its responses on the dynamic scene, the audio, and
the history (previous rounds) of the dialog.

in the audio. Our goal is to move towards chat agents that
are not only visually intelligent but also aware of the sound
and temporal dynamics. Such an AI agent can help answer
questions such as the following: Is there any one coming
to the door? Can you hear any noise in the room? When
did they leave the house? Is my cat still eating? Answer-
ing such questions requires a holistic understanding of the
visual and audio information in the scene, including its tem-
poral dynamics.
We introduce the task of scene-aware dialog, as well as a
new Audio Visual Scene-aware Dialog (AVSD) Dataset to
provide a means for training and testing scene-aware dialog
systems. In the general task of scene-aware dialog, the goal
of the system is to carry on a conversation with a human
about a temporally varying scene, such as a video or a live
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scene. In the AVSD Dataset, we are addressing a particular
type of scene-aware dialog. Each dialog in the dataset is a
temporal sequence of question/answer (QA) pairs about a
short video that includes human actions. We defined a spe-
cific task for the scene-aware dialog system to learn: Given
an input video, the history (the first t QA pairs) of a dia-
log about the video, and a follow-up question (the t + 1st
question in the dialog), the system’s goal is to automatically
generate complete and natural responses to the follow-up
question.
We aim to use the dataset to explore the compositionality of
dynamic scenes and train an end-to-end model to leverage
information from the video frames, audio signals, and dia-
log history. The system should engage in this conversation
by providing complete, natural responses to enable real-
world applicability. The development of such scene-aware
conversational agents represents an important frontier in ar-
tificial intelligence. In addition, it holds promise for numer-
ous practical applications, such as retrieving video content
from users’ free-form queries and helping visually impaired
people understand visual content.
Our contributions include the following:
1. We introduce the task of scene-aware dialog, which is a

multimodal semantic comprehension.
2. We introduce a new benchmark for the scene-aware di-

alog task, the AVSD Dataset, consisting of more than
11,000 conversations that discuss the content (including
actions, interactions, sound, and temporal dynamics) of
videos of humans.

3. We analyze the performance of several baseline systems
on this new benchmark dataset.

2. Related Work
Video Datasets: In the domain of dynamic scene under-
standing, there is a large body of literature focused on video
action classification [9, 10, 16, 21, 37]. Benchmarks like
HMDB51 [20], Sports-1M [17], and UCF-101 [32] have
been widely used to demonstrate the performance of several
machine learning models in the task of action recognition.
To target a broader range of action categories and han-
dle a larger quantity of videos with more realistic settings,
Caba Heilbron et al. introduced ActivityNet [3], a dataset
of 280,000 YouTube videos with more than 200 different
human action classes. Another benchmark for the task of
human action recognition is Kinetics [18], which consists
of 500,000 videos of around 400 action classes. Both Ac-
tivityNet and Kinetics are used in the ActivityNet Large
Scale Activity Recognition Challenge [13]. Sigurdsson et
al., presented the Charades dataset. Charades is a crowd-
sourced video dataset that was built by asking Amazon Me-
chanical Turk (AMT) workers to write some scene scripts of
daily activities, then asking another group of AMT workers

to record themselves “acting out” the scripts in a “Holly-
wood style.” The dataset is also temporally annotated with
a list of actions and objects in every temporal segment. [30]
Video Captioning: Video captioning is the task of describ-
ing the dynamic scene with a natural sentence. The gener-
ated description should capture the semantic knowledge of
the video, the objects and the actions. It also expresses the
spatio-temporal relationship between the dynamics in the
scene [12, 29, 38]. Several datasets have been introduced to
benchmark the video captioning task [15, 19, 22, 35, 41].
Visual Question Answering: Inspired by the success of
image-based question answering [1, 11, 39, 42], some re-
cent work has addressed the task of video-based question
answering [22]. MovieQA by Tapaswi M. et al. [35] fo-
cuses on story comprehension for text and video. MovieQA
consists of 14,944 questions about 408 movies. MovieQA
and TVQS are challenging benchmarks and have achieved
promising results. However, they only focus on the prob-
lem of one question and answer. In AVSD we focus on the
problem of multiple rounds of questions and answers. An-
other important point is that the questions and answers in
these datasets are generated from the text associated with
the movies. However in AVSD, the questions are initiated
by a person who does not have access to the video or the text
associated with it, resulting conversation that is not biased
by the associated textual information.
VisDial: Our work is directly related to the image-based di-
alog (VisDial) introduced by Das et al. [6]. Given an input
image, a dialog history, and a question, the agent is required
to answer the given question while grounding the answer on
the input image and the dialog history. The paper introduces
several networks architectures to encode the different in-
put modalities: late fusion LSTM, hierarchical LSTM and a
memory network encoder. The model responses were mod-
eled using generative and discriminative models. In this pa-
per, we extend the work from [6] to include more complex
modality: video frames and audio signals.

3. Audio Visual Scene-Aware Dialog Dataset
A primary goal of our paper is to create a benchmark for
the task of scene-aware dialog. There are several charac-
teristics that we desire for such a dataset: 1) The dialogs
should focus on the dynamic aspects of the video, actions
and interactions; 2) The answers should tend toward more

Dataset # Video Clips # QA Pairs Video Source

TVQA [22] 21,793 152,545 TV shows
MovieQA [35] 408 14,944 Movies
TGIF-QA [15] 56,720 103,919 Social media

VisDial [6] 120,000 (images) 1.2 M N/A
AVSD (Ours) 11,816 118,160 Crowdsourced

Table 1: Comparison with existing video question answering and
visual dialog datasets.
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Figure 2: Examples of videos and scripts from the Charades
dataset. Each video’s temporally ordered sequence of small events
is a good fit for our goal to train a video-based dialog system.

complete explanatory responses rather than brief one- and
two-word answers (e.g., not simply yes or no); 3) The con-
versations should discuss the events in the video in their
temporal order.
Table 1 puts the AVSD dataset in context with several
other video question answering benchmarks. While AVSD
has fewer unique video clips compared to TVQA and
MovieQA, which are curated from television and film, our
videos are more naturalistic. Moreover, AVSD contains a
similar number of questions and answers, but as a part of
multi-round dialogs.

Video Content. An essential element to collecting video-
grounded dialogs is of course the videos themselves. We
choose to collect dialogs grounded in the Charades [30]
human-activity dataset. The Charades dataset consists of
11816 videos of daily indoor human activities with an av-
erage length of 30 seconds. Each video includes at least
two actions. Examples of frames and action scripts for Cha-
rades videos are shown in Figure 2. We choose the Charades
dataset for two main reasons. First, the videos in this dataset
are crowd-sourced on Amazon Mechanical Turk (AMT), so
the settings are natural and diverse. Second, each video con-
sists of a sequence of small events that provide AMT Work-
ers (Turkers) with rich content to discuss.

3.1. Data Collection

We adapt the real-time chat interface from [6] to pair two
AMT workers to have a conversation about a video from the
Charades Dataset (Figure 2). One person, the “Answerer,”
is presented with the video clip and the script, and their role
is to provide detailed answers to questions about the scene.
The other person, the “Questioner,” does not have access
to the video or the script,and can only see three frames (one

Figure 3: Set of instructions for both AMT workers about their
roles of “Questioner” and “Answerer”.

each from the beginning, middle, and end) of the video. The
Questioner’s goal is to ask questions to obtain a good un-
derstanding of what happens in the video scene. We make
several design choices in the data collection interface in or-
der to encourage natural conversations about the activities
in the videos.

Investigating Events in Video. To help distinguish this
task from previous image and video captioning tasks, our
instructions direct the Questioner to “investigate what is
happening” rather than simply asking the two Turkers to
“chat about the video.” We find that when asked to “chat
about the video,” Questioners tend to ask a lot of questions
about the setting and the appearance of the people in the
video. In contrast, the direction “investigate what is hap-
pening” leads Questioners to inquire more about the actions
of the people in the video.

Seeding the Conversation. There are two reasons that our
protocol provides the Questioners with three frames before
the conversation starts: First, since the images provide the
overall layout of the scene, they ensure that the conversa-
tions are centered around the actions and events that take
place in the video rather than about the scene layout or the
appearance of people and objects. Second, we found that
providing multiple frames instead of a single frame encour-
aged users to ask about the succession of events. The or-
dering of the questions in the dialog follows the temporal
events in the videos to a certain extent, (e.g., early ques-
tions in the dialog ask about events or actions in the first
part of the video). Providing the Questioners with these
three images achieves both criteria without explicitly dic-
tating Questioners’ behavior; this is important because we
want the conversations to be as natural as possible.

Downstream Task: Video Summarization. Once the con-
versation (sequence of 10 QA pairs) between the Questioner
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Figure 4: Example conversation between two AMT workers. The
Questioner is presented with 3 static images from the video and
asks a question. The Answerer, who has already watched the video
and read the script, responds. Then the Questioner asks a follow-
up question, the Answerer replies, and so on. After 10 rounds of
QA, the Questioners provide a written summary of what they think
happened in the video based on the conversation.

and Answerer is complete, the Questioners’ final task is to
summarize what they think happened in the video. Know-
ing that this will be their final task motivates the Questioners
to ask good questions that will lead to informative answers
about the events in the video. In addition, this final down-
stream task is used to evaluate the quality of the dialog and
how informative it was about the video. Figure 3 shows the
list of instructions, and the examples provided to the help
them complete the task.

Worker Qualifications. To ensure high-quality and flu-
ent dialogs, we restrict our tasks on AMT to Turkers with
≥ 95% task acceptance rates, located in North America,
and having completed at least 500 tasks already. We fur-
ther restrict any one Turker from completing more than 200
tasks in order to maintain diversity. In total, 1553 unique
workers contributed to the dataset collection effort.

3.2. AVSD Dataset Analysis

In this section, we analyze the new AVSD V.1 Dataset. In
total, the dataset contains 11,816 conversations (7985 train-
ing, 1863 validation, and 1968 testing), each including a
video summary (written by the Questioner after each dia-
log). There are a total of 118,160 question/answer (QA)
pairs. Figure 4 shows an example of our dataset.
We compare the length of AVSD questions and answers
with those from VisDial [6] in Figure 5a. As we can see, the
answers and questions in AVSD are longer in average than
in VisDial. The average length for AVSD questions is 7.85
words and the average answer length is 9.43. In contrast,
VisDial questions average 5.12 words and are answered by

BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGEL CIDEr

video-watcher 0.638 0.433 0.287 0.191 0.223 0.407 0.429
Questioner 0.560 0.379 0.249 0.165 0.191 0.369 0.297

Table 2: Comparison on different metrics of a video-watcher sum-
mary vs the 3 other video-watcher summaries and the Questioner’
summary vs the 3 other video-watcher summaries.

2.9 words answers on average. This shows that dialogs in
our set are much more verbose and conversational.
Audio-Related Questions. When the Questioners were
presented with 3 frames of the video, the AMT workers
asked more questions about the audio track of the video,
such as whether there was any music or noise, or whether
the people were talking. In 57% of the conversations, there
are questions about the audio. Here are some examples of
these audio-related questions from the dataset:

Does she appear to talk to anyone? Do you hear any
noise in the background? Is there any music? Can
you can hear him sneezing? Do the men talk to each
other?

Moreover, looking at the burst diagram for questions in Fig-
ure 5b we can see questions like “Can / Do you hear ...” and
“Is there any sound ...” appear frequently in the dataset.
Temporal Questions. Another common type of questions
is about what happened next. As previously noted, the in-
vestigation of the temporal sequence of events was implic-
itly encouraged by our experimental protocol, such as pro-
viding the Questioner with three images from different parts
of the video. In fact, people asked questions about what
happened next in more that 70% of the conversations. Here
are some examples of such questions, taken from many dif-
ferent conversations:

Does he do anything after he throws the medicine
away? Where does she lay the clothes after folding
them? What does he do after locking the door? what
does he do after taking a sip? Does he do anything
after he sits on the stairs?

Likewise, we see questions like “What happens ...” and
“What does he do ...” style questions occur frequently in
the dataset as shown in Figure 5b.

Dataset quality. In order to further evaluate dialog qual-
ity, we develop and run another study where we ask AMT
workers to watch and summarize the videos from the AVSD
dataset. The instruction was "Summarize what is happening
in the video". During the dialog data collection, the Ques-
tioner is asked, using the same instruction, to summarize the
video based on the knowledge gathered through the con-
versation. We collect 4 summaries per video. We use the
BLEU [26], ROUGE [23], METEOR [2] and CIDEr [36]
metrics to compare the summaries collected from the video-
watcher to the ones collected from the Questioners. In Table
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(a) AVSD Answers (b) AVSD Questions (c) AVSD sentence lengths

Figure 5: Distribution of first n-grams for AVSD Answers, And AVSD Questions. Distribution of lengths for AVSD questions and answers
compared to VisDial.

2, the first row evaluates a randomly selected video-watcher
summary vs. three others, and the second row evaluates
the Questioner’s summary vs. the same three other video-
watcher summaries. Both these numbers are close, demon-
strating that the questioners do manage to gain an under-
standing of the video, similar to having watched it.

4. Model
To demonstrate the potential and the challenges of this new
dataset, we design and analyze a video-dialog answerer
model. The model takes as input a video, the audio track
of the video, a dialog history (which comprises a ground-
truth script or video caption followed by the first t QA pairs
of the dialog), and a follow-up question (the t + 1st ques-
tion in the dialog). The model should ground the question
in both the video and its audio and use the dialog history to
leverage contextual information in order to answer.
Moving away from the hierarchical or memory network
encoders common for dialog tasks [6], we opt to present
a straightforward, discriminative late-fusion approach for
scene-aware dialog that was recently shown to be effective
for visual dialog [14]. This choice also enables a fair abla-
tion study for the various input modalities, an important en-
deavour when introducing such a strongly multimodal task.
For this class of model architecture, increases or decreases
in performance from input ablation are directly linked to
the usefulness of the input rather than to any complications
introduced by the choice of network structure (e.g., some
modalities having many more parameters than others).
An overview of our model is shown in Figure 6. At a high
level, the network operates by fusing information from all
of the modalities into a fixed sized representation then com-
paring this state with a set of candidate answers, selecting
the most closely matching candidate as the output answer.
In the rest of this section, we provide more details of the
model and the input encodings for each modality.

Input Representations. The AVSD dataset is a challeng-
ing multimodal reasoning task including natural language,
video, and audio. We describe how we represent each of
these as inputs to the network. These correspond to the
information that was available to the human Answerer in
round t of a dialog.
• Video Caption (C): Each dialog in AVSD starts with a

short natural language description (ground-truth script or
caption) of the video contents.

• Dialog History (DH): The dialog history con-
sists of the initial caption (C) and each of the
question-answer pairs from previous rounds of di-
alog. At round t, we write the dialog history as
DHt=(C,Q0, A0, Q1, A1, . . . Qt−1, At−1). We concate-
nate the elements of the dialog history and encode them
using an LSTM trained along with the late-fusion model.

• Question (Q): The question to be answered, also known
as Qt+1. The question is encoded by an LSTM trained
along with the late-fusion model.

• Middle Frame (I): In some ablations, we represent
videos using only their middle frame to eliminate all tem-
poral information as a mean to evaluate the role of tempo-
ral visual reasoning. In these cases, we encode the frame
using a pretrained VGG-16 network [31] that was trained
on ImageNet [7] .

• Video (V): Each AVSD dialog is grounded in a video that
depicts people performing simple actions. We transform
the video frames into a fixed sized feature using the pop-
ular pretrained I3D model [4]. I3D is a 3D convolutional
network that pushed state-of-the-art on multiple popular
activity recognition tasks [20, 32]. To our knowledge, we
are the first to explore the use of I3D for question answer-
ing in video-grounded dialog.

• Audio (A): We similarly encode the audio from the video
using a pretrained AENet model [34]. AENet is a convo-
lutional audio encoding network that operates over long-
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Figure 6: An overview of our late-fusion multimodal network. The encoder takes each input modality and transforms them to a state
embedding that is used to rank candidate answers.

time-span spectrograms, and it has been shown to improve
activity recognition when combined with video features.

Encoder Network In order to combine the features en-
coded from these diverse inputs, we follow recent work in
visually grounded dialog [14]: we simply concatenate the
features and allow fusion to occur through fully-connected
layers. More concretely, we can write our network’s com-
putation as:

ht = LSTM(DH)

qt = LSTM(Q)

i = I3D(V )

a = AENet(A)

z = concat(ht, qt, i, a)

en = tanh(

K∑
k=1

wk,n × zk + bn)

where ht, qt, i, and a are the dialog history, question, video
and audio feature embeddings as described above. The em-
beddings are concatenated to form the vector z which is
passed through a linear layer with a tanh activation to form
the joint embedding vector e. For any of our ablations of
these input modalities, we simply train a network excluding
that input, without adjusting the linear layer output size.

Decoder Model We approach this problem as a discrimi-
native ranking task, selecting an output from a set of can-
didate options, since these approaches have proven to be
stronger than their generative counterparts in visual dia-
log [6]. (However, we note that generative variants need
not rely on a fixed answer pool and may be more useful in
general deployment.) More concretely, given a set of 100
potential answers {A(1)

t , . . . ,A(100)
t }, the agent learns to

pick the most appropriate response.
The decoder computes the inner product between a candi-
date answer embedded with an LSTM and the holistic input

embedding e generated by the encoder. We repeat this for
all of the candidate answers, then pass the results through a
softmax layer to compute probabilities of all of the candi-
dates. At training time, we maximize the log-likelihood of
the correct answer. At test time, we simply rank candidates
according to their probabilities and select the argmax as the
best response. We can write the decoder as:

at,i = LSTM(A(i)
t )

st,i = < at,i, e >
(1)

where at,i is the embedding vector for answer candidate
A(i)

t , the notation < ·, ·> represents an inner product, and
st,i is the score computed for the candidate based on its sim-
ilarity to the input encoding e. The vector st contains scores
for all of the candidates and passes through a softmax dur-
ing training. The model is then trained with cross-entropy
loss to score the ground-truth dialog candidate highly.
Selecting Candidate Answers: Following the selection
process in [6], the set of 100 candidates answers consists of
four types of answers: the ground-truth answer, hard nega-
tives that are ground-truth answers to similar questions (but
different video contexts), popular answers, and answers to
random questions. We first sample 50 plausible answers
which are the ground-truth answers to the 50 most similar
questions. We are looking for questions that start with sim-
ilar tri-grams (i.e., are of the same type such as “what did
he”) and mention similar semantic concepts in the rest of the
question. To accomplish this, all the questions are embed-
ded in a common vector space. The question embedding is
computed by concatenating the GloVe [27] embeddings of
the first three words with the averaged GloVe embedding of
the remaining words in the question. We then use Euclidean
distance to select the closest neighbor questions to the orig-
inal question. Those sampled answers are considered as
hard negatives, because they correspond to similar ques-
tions that were asked in completely different contexts (dif-
ferent video, audio and dialog). In addition, we select the
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30 most popular answers from the dataset. By adding pop-
ular answers, we force the network to distinguish between
purely likely answers and plausible responses for the spe-
cific question, which increases the difficulty of the task. The
next 19 candidate answers are sampled from the ground-
truth answers to random questions in the dataset. The final
candidate answer is the ground-truth (human-generated) an-
swer from the original dialog.
Implementation details: Our implementation is based on
the visual dialog challenge starter code [8]. The VisDial
repository also provides code and model to extract image
features. We extract video features using the I3D model [4].
The repository [28] provides code and models fine-tuned on
the Charades dataset to extract video features. We subsam-
ple 40 frames from the original video and feed them into
the rgb pipeline of the I3D model. The frames are sampled
to be equally spaced in time. For the audio features, we use
the AEnet network [34]. The repository [43] provides code
to extract features from an audio signal. We first extract the
audio track from the original Charades videos and convert
them into 16kHz, 16bit, mono-channel signals. Both the
video and audio features have the same dimension (4096).

5. Experiments

Data Splits. Recall from Section 3 that the AVSDv1.0
dataset contains 11k instances split across training (8k),
validation (1.5k), and testing (1.5k) corresponding to the
source Charades video splits. We present results on the test
set.

Evaluation Metrics. Although metrics like BLEU [26],
METEOR [2], and ROUGE [23] have been widely used to
evaluate dialog [25, 33, 40], there has been recent evidence
that they do not correlate well with human judgment [24].
In contrast, we do what [6] does. We instead choose to eval-
uate our models by checking individual responses at each
round in a retrieval or multiple-choice setting. The agent
is given a set of 100 answer candidates (generated as de-
scribed in Section 4) and must select one. We report the
following retrieval metrics:
• Recall@k [higher is better] that measures how often the

ground truth is ranked in the top k choices
• Mean rank (MR) [lower is better] of the ground truth

answer which is sensitive to overall tendencies to rank
ground-truth higher – important in our context as other
candidate answers may be equally plausible

• Mean reciprocal rank (MRR) [higher is better] of the
ground truth answer which values placing ground truth in
higher ranks more heavily

We note evaluation even in these retrieval settings for dia-
log has many open questions. One attractive alternative that
we leave for future work is to evaluate directly with human
users in cooperative tasks [5].

6. Results and Analysis
In order to assess the challenges presented by the AVSDv1.0
dataset and the usefulness of different input modalities to
address them, we present comprehensive ablations of our
baseline model with respect to inputs. Table 3 reports the
results of our models on AVSDv1.0 test. We find that our
best performing models are those that can leverage video,
audio, and dialog histories – signaling that the dialog col-
lected in AVSD is grounded in multi-modal observations.
In the rest of this section, we highlight noteworthy results.

Language-only Baselines. The first three lines of Table 3
show the language-only models. First, the Answer Prior

model encodes each answer with an LSTM and scores it
against a static embedding vector learned over the entire
training set. This model lacks question information, dialog
history, or any form of perception, and acts as a measure
of dataset answer bias. Naturally, it performs poorly over
all metrics, though it does outperform chance. We also ex-
amine a question-only model Q that selects answers based
only on the question encoding as well as a question and di-
alog Q+DH model that also includes the dialog history. These
models measure regularities between questions or dialog
and answer distributions. We find that access to the question
greatly improves performance over the answer prior from
28.54 mean rank to 7.63 with question alone and the addi-
tion of the dialog improves this further to 4.72.

Dialog history is a strong signal. The dialog history ap-
pears to be a very strong signal – models with it consistently
achieve mean ranks in the 4-4.8 range even without addi-
tional perception modalities whereas models without dia-
log history struggle to get below a mean rank of 7. This
makes sense, we purposely designed our data collection task
to generate dialog focusing on successions of action which

Model MRR R@1 R@5 R@10 Mean

L
an

gu
ag

e
O

nl
y Answer Prior 7.85 1.66 8.17 16.54 28.54

Q 36.12 20.01 53.72 74.55 7.63
Q + DH 50.40 32.76 73.27 88.60 4.72

Pe
rc

ep
tio

n
w

/o
D

ia
lo

g
C

on
te

xt Q + I 35.12 19.08 52.36 73.35 7.90
Q + V 39.36 22.32 59.34 78.65 6.86
Q + A 35.94 19.46 54.55 75.14 7.58

Q + V + A 38.83 22.02 58.17 78.18 7.00
Q + C + I 36.77 20.30 55.28 75.72 7.44

Fu
ll

M
od

el
s Q + DH + I 50.52 32.98 73.26 88.39 4.73

Q + DH + V 53.41 36.22 75.86 89.79 4.41
Q + DH + V + A 53.03 35.65 75.76 89.92 4.39

Table 3: Results of model ablations on the AVSDv1.0 test split.
We report mean receiprocal rank (MRR - higher is better), re-
call@k (R@K - higher is better), and mean rank (Mean - lower
is better). We find that our best performing model leverages the
dialog, video, and audio signals in order to answer questions.
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Figure 7: Example using Q+DH+V+A. The left column of the tables in each figure represents the corresponding answer probability.

naturally lead to follow up questions with answers that are
strongly dependent on the prior conversation. We note that
adding video and audio signals improves over just dialog –
providing complementary information to ground questions.

Temporal perception seems to matter. Adding video fea-
tures (V) consistently leads to improvements for all mod-
els. To further tease apart the effect of temporal percep-
tion from being able to see the scene in general, we run
two ablations where rather than the video features, we en-
code visual perception using only the middle frame of the
video. In both cases, Q+I and Q+DH+I, we see that the addi-
tion of static frames hurts performance marginally whereas
addition of video features leads to improvements. It seems
then that while temporal perception is helpful, models with
access to just the middle image learn poorly generalizable
groundings. We point out that one confounding factor for
this finding is that the image is encoded with a VGG net-
work rather than the I3D encoding for videos.

Audio provides a boost. The addition of audio features
generally improves model performance (Q+V to Q+V+A be-
ing the exception). Interestingly, we see model performance
even when combined with dialog history and video features
(Q+DH+V+A) for some metrics, indicating there is still com-
plementary knowledge between the video and audio signals
despite their close relationship.

Audio and Temporal Based Questions. Table 4 shows
mean rank on a subset of questions. We filter the questions
using the two lists of keywords: audio related words
{talk hear sound audio music noise} and temporal related
words: {after, before, beginning, then, end, start}. We
then generated answers to those questions using the three
different models Q, Q+A and Q+V and compared which one
would lead to higher rank of the ground truth answer.

Q Q+A Q+V

audio questions 6.91 6.69 6.52
temporal questions 7.31 7.15 5.98

Table 4: Mean rank results for the three models Q, Q+A and, Q+V for
audio related questions and temporal related questions.

For the audio related questions we can see that although
both the Q+A and Q+V outperform the Q model, the visual fea-
tures seem more useful. This can be easily balanced as it is
also unlikely that vision is unnecessary in audio questions.
However, the temporal related questions shown to be better
answered using the Q+V model which confirms our intuition.
The Q+A helps only slightly (7.15 vs 7.31) but the Q+V yields
to better improvements (5.98 vs 7.31).

Qualitative Examples. Figure 8 shows two examples us-
ing the setup Q+DH+V+A. The first column in the answer table
of each figures is the answer probability. The ground truth
answer is highlighted in red.

7. Conclusion
We introduce a new AI task: Audio Visual Scene-Aware
Dialog, where the goal is to hold a dialog by answering
a user’s questions about dynamic scenes in a natural lan-
guage manner. We collected the Audio Visual Scene-Aware
Dialog dataset through a two-person chat protocol on more
than 11,000 videos of human actions. We also developed a
model and experimented on many ablation studies to high-
light the quality and complexity of the data collected. Our
results show that the dataset is very rich having all the dif-
ferent modalities playing a role in tackling this task. We
believe our dataset can serve in evaluating progress in audio
and visual intelligence agents.
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Appendix Overview

This supplementary document is organized as follow:

• Sec. H qualitative examples from AVSD.

• Sec. I snapshots of our Amazon Mechanical Turk inter-
face that served collecting the video summaries along with
some examples.

H. Qualitative examples from our dataset.
In this section, we discuss the model responses to several
types of challenging and interesting questions in our dataset.
In a video-based dialog, questions can be about audio, vi-
sual appearance, temporal information or actions. We ex-
amine the model responses for these question based on dif-
ferent input modalities, examples are randomly select from
the test set.

H.1. Examples with Q+DH+V+A

Figures 8a and 8b show examples of audio related ques-
tions. In figure 8a, although model ranked the ground truth
answer at the third position, the two top ranked answers
can also be valid answers to the given question "Dose he
say any thing?" . In 8b, 3 out of the top 4 ranked answers
can be a valid answers as well. They all answered ’no’ to
the question. This highlights the deep understanding of the
question and context. Figures 8c, 8d and 8e are examples
of visual-related questions. In figure 8e, the model must
determine a person’s age by leveraging visual cues from
the video frames. An important type of questions in video-
based dialog is the temporal-based question. Examples of
this type are shown in Figure 8d and 8f. Figures 8g and 8h
show interesting and challenging questions about the gen-
eral scene. In our dataset, there are no binary answers "yes"

or "no", the Answers were asked to provide further details
about their responses.

H.2. Examples comparing setups Q, Q+V, Q+A and Q+DH+V+A

Figure 9 shows examples comparing results between mod-
els Q, Q+V, Q+A and Q+DH+V+A. The GT rank is the rank of
the ground truth answer for the corresponding model. The
top answer is the first ranked answer for the correspond-
ing model. The red highlights the best model. In figure
9a the question is audio related question and the Q+A model
performs better. The question from the example in figure
9b is visual related question and the Q+V model performs
best. Figure 9c presents a temporal related question best
answered by the Q+V model. This highlights the value of
each modality in the dataset.

I. Summaries Interface.
The data collection process of AVSD included a down-
stream task, where the Questioners had to write a summary
of what they think happened in the video, based on the con-
versation they had about it. To evaluate the quality of these
conversations, we ran a separate study case on AMT. We
asked 4 people to watch the video and write a summary de-
scribing all the events in the video. Figure 10 shows the in-
terface for this task. People where presented with example
of the video and the script for that video. We then compared
these summaries with the one written by the questioner.
Figure 11 shows some examples of the 4 summaries col-
lected in this study (first four rows) and the summary writ-
ten by the Questioner at the end of the dialog (last row).
In these examples, we see that the summary written by the
Questioner captures most of the events described in the 4
summaries.

11



(a) (b)

(c) (d)

(e) (f)

(g) (h)
Figure 8: Examples using Q+DH+V+A. The left column of the tables in each figure represents the corresponding answer probability.
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(a) (b)

(c)
Figure 9: Comparison between models Q, Q+V, Q+A and Q+DH+V+A. The GT rank is the rank of the ground truth answer for the corresponding
model. The top answer is the first ranked answer for the corresponding model. The red highlights the best model.
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Figure 10: Summaries data collection interface on AMT.

(a) (b)

(c)
Figure 11: Comparison between different video summaries. The first 4 rows are summaries written by people after watching the entire
video. Last row is summary written by the questioner who did not watch the video.
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