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Abstract—Generating initial stabilizing control policies that
satisfy operational constraints in the absence of full model
information remains an open but critical challenge. In this
paper, we propose a systematic framework for constructing
constraint enforcing initializing control policies for a class of
nonlinear systems based on archival data. Specifically, we study
systems for which we have linear components that are modeled
and nonlinear components that are unmodeled, but satisfy a
local Lipschitz condition. We employ kernel density estimation
(KDE) to learn a local Lipschitz constant from data (with high
probability), and compute a constraint enforcing control policy
via matrix multipliers that utilizes the learned Lipschitz constant.
We demonstrate the potential of our proposed methodology on a
nonlinear system with an unmodeled local Lipschitz nonlinearity.

Index Terms—Machine learning; Lipschitz constant estima-
tion; numerical computing; constrained control; stability guar-
antees; linear matrix inequalities.

I. INTRODUCTION

Nonlinearities are ubiquitous in real-world applications. In
many applications, these nonlinearities are unmodeled, or
part of high-fidelity modeling software, rendering them too
complicated for controller design. Recent efforts tackle this
issue by learning from operational (on-line) or archival data
(off-line). Since the exact structure of the nonlinearity may
be unknown or not amenable for analysis, researchers have
proposed ‘indirect’ data-driven controllers that employ non-
parametric learning methods such as Gaussian processes to
construct models from operational data [1] to improve control
policies on-line [2], [3]. These approaches generally require
an initial control policy that is stabilizing and robust to
unmodeled dynamics. Depending on the sensitivity of the
dynamics to the unmodeled components, designing such an
initial control policy is difficult.

Conversely, ‘direct’ methods, such as those proposed
in [4]–[6], directly compute policies using a combination
of archival/legacy and operational input-output data without
constructing an intermediate model. For example, in [7], a
human expert was introduced into the control loop to conduct
initial experiments to ensure safety while generating archival
data. Although the aforementioned references provide excel-
lent methods for utilizing archival data, general design of
initializing control policies for multivariate systems (especially
nonlinear systems) in a computationally tractable manner
remains an open challenge.

?All authors are affiliated with Mitsubishi Electric Research Laborato-
ries, Cambridge, MA, USA. Corresponding author: A. Chakrabarty. Phone:
+1 (617) 758-6175. Email: chakrabarty@merl.com.

Our key insight is that information regarding the structure
of an unmodeled nonlinearity may be encapsulated using only
a few parameters. Therefore, it may not be necessary to model
the unknown component itself in order to compute a safe (sta-
bilizing and constraint satisfying) control policy. Instead, one
can exploit structural information. For instance, the class of
Lipschitz nonlinear functions (which constitute a large share of
nonlinearities observed in applications) can be described using
only one parameter: the Lipschitz constant. Recent work has
investigated the utility of Lipschitz properties in constructing
controllers when an oracle is available [8] or in designing
models for prediction [9] with on-line data used for controller
refinement [10], assuming the model error is bounded, and the
bound is known. In this paper, we construct control policies
that respect constraints and certify stability (with high prob-
ability) for applications where only off-line data is available,
and no oracle is present. We do so through the systematic
use of multiplier matrices that enable the representation of
nonlinear dynamics through quadratic constraints [11], [12]
without requiring knowledge of the underlying nonlinearity.
The construction of these multiplier matrices for Lipschitz
systems require the Lipschitz constant, which is not always
available, and therefore, must be estimated: we refer to this
as Lipschitz learning. Historically, methods that estimate the
Lipschitz constant [13]–[15] do not provide certificates on the
quality of the estimate. Herein, we provide conditions that, if
satisfied, enable us to estimate the Lipschitz constant of an
unknown locally Lipschitz nonlinearity with high probability.
To this end, we employ kernel density estimation (KDE): a
non-parametric data-driven method that employs kernels to
approximate smooth probability density functions to arbitrarily
high accuracy. We refer to our proposed KDE-based Lipschitz
constant estimation algorithm as kernelized Lipschitz learning.

The contributions of this paper include: (i) the formula-
tion of an algorithm to construct stabilizing and constraint
satisfying policies for nonlinear systems without knowing the
exact form of the nonlinearity; (ii) a kernelized Lipschitz
learning mechanism to estimate the Lipschitz constant with
high probability; and, (iii) a multiplier-matrix based controller
design based on Lipschitz learning from legacy data that forces
exponential stability on the closed-loop dynamics (with the
same probability as the kernelized Lipschitz learner).

II. NOTATION

We denote by R the set of real numbers, R+ as the
set of positive reals, and N as the set of natural numbers.



The Hausdorff distance between two subsets A and B of
a metric space Rn equipped with the metric ρ is given
by ρH(A,B) = max{supx∈B ρ(x,A), supx∈A ρ(x,B)}. We
define a ball Bε(x) := {y : ρ(x, y) ≤ ε} and the sum
A⊕ ε :=

⋃
x∈A Bε(x). The complement of a set A is denoted

by Ac. For every v ∈ Rn, we denote ‖v‖ =
√
v>v, where v>

is the transpose of v. The sup-norm or ∞-norm is defined as
‖v‖∞ , supt∈R ‖v(t)‖. We denote by λmin(P ) and λmax(P )
as the smallest and largest eigenvalue of a square, symmetric
matrix P . The symbol � (≺) indicates positive (negative)
definiteness and A � B implies A − B � 0 for A,B of
appropriate dimensions. Similarly, � (�) implies positive
(negative) semi-definiteness. The operator norm is denoted
‖P‖ and is defined as the maximum singular value of P . For
a symmetric matrix, we use the ? notation to imply symmetric
terms, that is,

[
a b
b> c

]
≡ [ a b? c ]. The diag(·) operator converts

a set of block matrices into a matrix whose diagonal blocks
are the block matrices. The symbol Pr denotes the probability
measure.

III. MOTIVATION

We consider nonlinear systems of the form

x+ = Ax+Bu+Gφ(q), (1a)
q = Cqx+Dqu, (1b)

where x, x+ ∈ X ⊂ Rnx denotes the state of the system and its
update∗, respectively. The state and control inputs are available
for measurement. The control input is denoted u ∈ U ⊂ Rnu
and the nonlinearity is denoted by φ ∈ Rnφ with the argument
q ∈ Dq ⊂ Rnq that can be represented as a linear combination
of the state and control input. The system matrices A, B, G,
Cq and Dq have appropriate dimensions. The admissible state
and input spaces are denoted X and U, respectively, and these
spaces are compact, convex, and contain the origin in their
interior. Since X and U are bounded, so is Dq .

We make the following assumptions on our system and
constraints.

Assumption 1. The matrices A and B are known. The matrix
G has full column rank and is one-hot. That is, only the
non-zero element locations are known; its exact elements are
unknown. The matrices Cq and Dq are completely unknown.

We require the following definition to describe the class of
nonlinearities considered in this paper.

Definition 1. A function f : Df → Rn is Lipschitz continuous
in the domain Df if

‖f(d1)− f(d2)‖ ≤ Lf‖d1 − d2‖ (2)

for some Lf > 0 and all d1, d2 ∈ Df . We define the scalar

L∗f = inf
R+

{Lf : condition (2) holds} (3)

as the Lipschitz constant of f .

∗For continuous-time systems, x+ = ẋ and for discrete-time systems,
x+ = xt+1. For both, we denote the initial time as t0 and initial state x0.

Assumption 2. The nonlinearity φ is Lipschitz continuous in
the domain Dq with unknown Lipschitz constant. That is,

‖φ(q1)− φ(q2)‖ ≤ L∗φ‖q1 − q2‖ (4)

for any q1, q2 ∈ Dq , and L∗φ is unknown. Also, φ(0) = 0.

Assumptions 1 and 2 imply that the linear component of the
true system (1) is known, but the rest is unknown. However,
we do know the vector space through which the nonlinearity
enters the dynamics of (1), since the non-zero locations of G
are flagged.

Example 1. Consider the following nonlinear system:

ẋ1 = −2x1 + 3x2 (5)
ẋ2 = 3x1 + x2 + u+ 1.5 sin(x1). (6)

In accordance with our assumptions, our model knowledge is:

ẋ =

[
−2 3
3 1

]
x+

[
0
1

]
u+

[
0
1

]
φ(q). (7)

The nonlinearity φ(q) = 1.5 sin(q) is completely unknown,
and so are Cq =

[
1 0

]
and Dq = 0; G is one-hot.

Remark 1. Note that Assumption 1 can be relaxed. Instead
of exactly knowing a linear system described by A and B,
one could possess knowledge of some other system matrices
Ã, B̃ of appropriate dimensions. For instance, one could have
no prior knowledge, in which case Ã = 0 and B̃ = 0. When
Ã 6= A, B̃ 6= B, the resulting nonlinearity is

φ̃(q̃) = Gφ(q) + (A− Ã)x+ (B − B̃)u, (8)

where q̃ = [q, x, u]>. Using the triangle and Cauchy-Schwarz
inequalities and denoting the Lipschitz constant of φ̃ to be L∗

φ̃
,

we get

L∗
φ̃

= L∗φ‖G‖+ ‖A− Ã‖+ ‖B − B̃‖ > L∗φ.

The more knowledge we have of A and B, the smaller ‖A−
Ã‖+ ‖B − B̃‖ will be, and hence, the controller will be less
conservative. To simplify the ensuing discussion, we continue
with the stronger assumption that Ã = A and B̃ = B.

Remark 2. Similarly, one could relax the assumption on G
and take it to be the identity matrix. Again, for simplicity,
we assume G is one-hot, which implies that we know how
the system is actuated, but we do not know the gains of the
actuating channels.

The following assumption is made on the class of con-
straints considered.

Assumption 3. The constraint sets X and U are described by
the matrix inequalities

X ′ =

{[
x
u

]
∈ Rnx+nu : c>i x+ d>i u ≤ 1

}
, (9)

for i = 1, . . . , nc, where nc is the total number of state and
input constraints and ci ∈ Rnx and di ∈ Rnu .

Remark 3. The matrix inequality (9) defines a polytopic
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admissible state and input constraint set. Note that ci = 0
implies that the ith constraint is an input constraint, and di = 0
implies that it is a state constraint.

Finally, we make the following assumption (akin to [5], [6])
on the availability of legacy or archival data generated by the
system during prior experiments.

Assumption 4. At design time, we have a sufficiently rich
dataset D consisting of unique state-input pairs from within
the admissible state and input space, and corresponding state
update information. Specifically, D = {xj , uj , x+j }Nj=1, where
xj , x

+
j ∈ X and uj ∈ U.

By ‘sufficiently rich’, we mean that the dataset should have
samples that are well-dispersed on X and U.

Remark 4. We iterate that the states and inputs in D needs
to be within X and U, respectively, since the function φ may
be locally Lipschitz and not globally Lipschitz. For example,
if φ(x) = x3 on X = {x : |x| ≤ 1}, then a local Lipschitz
constant is L∗φ = 3, but using data collected from outside the
region of interest X will result in larger estimates of L∗φ since
φ is not globally Lipschitz on R.

Our objective in this paper is to leverage the dataset D to
design a control policy u = Kx such that the closed-loop
system

x+ = (A+BK)x+Gφ ((Cq +DqK)x) (10)

is stabilized to the origin while satisfying state and input con-
straints in spite of unmodeled dynamics†. This is a direct data-
driven controller because no model of φ is identified in the
controller design step. For brevity, in the ensuing discussion,
we will focus only on discrete-time systems but the results
hold for continuous-time systems with slight modifications.

IV. KERNELIZED LIPSCHITZ LEARNING

In this section, we provide a brief overview of kernel density
estimation and provide a methodology for estimating Lipschitz
constants from data with high-probability.

A. Computation of Lipschitz estimates

For each {xj , uj , x+j } ∈ D, we estimate the nonlinear term
using (1). That is,

φ(qj) = G†
(
x+j −Axj −Buj

)
,

where G† exists by Assumption 1. If nφ > 1, the follow-
ing procedure will be repeated for each component of φ.
Therefore, this algorithm will yield nφ Lipschitz constant
estimates, one for each dimension of φ. To avoid notational
complications, we proceed (w.l.o.g) with nφ = 1.

As a prerequisite to estimating the Lipschitz constant for the
unknown non-linear function, we need to estimate the matrix
Cq and Dq (see (1)). While estimating the exact elements of

†Since the control policy is obtained using randomly generated data,
certificates of closed-loop stability are provided with high probability rather
than with certainty.

these matrices is non-trivial, we can estimate the non-zero
elements in the matrices, which is enough to design control
policies, because the exact elements of Cq and Dq will be
subsumed within the Lipschitz constant. This problem is anal-
ogous to the problem of feature selection and sparse learning,
known as automatic relevance determination (ARD) [16]. The
basic idea in ARD is to give feature weights independent some
parametric prior densities; these densities are subsequently
refined by maximizing the likelihood of the data [16], [17].
Once the relevant qj is identified, we can use the dataset
{φ(qj), qj}Nj=1 to obtain N Lipschitz underestimates using the
estimator

L̂j = max{ˆ̀j}, (11)

where the kth element of ˆ̀
j is given by

ˆ̀
jk =

|φ(qj)− φ(qk)|
‖qj − qk‖

, (12)

with k ∈ {1, . . . , N} \ j. This estimator has been widely
used in the literature to construct algorithms for determining
Lipschitz constants, see for example: [13], [14], [18]. The
sequence {`j}Nj=1 are empirical samples drawn from an under-
lying univariate distribution Lφ. Clearly, the true distribution
Lφ has finite support; indeed, its left-hand support is zero and
its right-hand support is L∗φ. This leads us to the key idea
of our approach: determining the true Lipschitz constant is
tantamount to estimating the support of the distribution Lφ.
Actually, we need an overestimate of L∗φ (that is, our estimate
should be larger than L∗φ) so that it L̂φ > L∗φ is a valid
Lipschitz constant estimate. Common methods of tackling the
support estimation is by assuming prior knowledge about the
density shape of Lφ or using Strongin overestimates of the
Lipschitz constant. However, we avoid these overestimators
because they are provably unreliable even for globally Lip-
schitz functions [15, Theorem 3.1]. Instead we try to fit the
density directly from local estimates and the data in a non-
parametric manner using KDE level sets.

B. Lipschitz Constant Estimation using KDE Level Sets

Let X1, X2, . . . , Xn be an independent, identically dis-
tributed (i.i.d.) sample from an unknown density function P.
We define a support for the density P by the set Ω := {X :
P(X) > 0}. An empirical density P̂N is expressed using
the KDE

P̂N (X) =
1

Nhd

N∑
j=1

K
(
X −Xj

h

)
, (13)

where K : Rd → R is a smooth function called the kernel
function and h > 0 is the kernel bandwidth. The consistency of
KDE has been proven in literature where uniform asymptotic
convergence and convergence rate (under appropriate assump-
tions) have been provided [19], [20]. We make the following
assumptions on the class of density functions and kernels.

Assumption 5. The density P and kernel K satisfy assump-
tions (G), (K1), and (K2) in [20]. Furthermore, there exists a
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scalar λ0 ∈ (0, 1) such that for any λ ≤ λ0, there exists a
X0 ∈ Ω such that P(X) ≤ λ for all X ≥ X0.

The first three assumptions of Assumption 5 are standard
in the KDE literature [20]–[23] and are not repeated for
brevity. Roughly speaking, they ensure that the true density
belongs to the space of smooth functions, and therefore can
be approximated sufficiently well by kernels that exhibit a
sufficiently small covering number for this function space.
The last part of Assumption 5 is not uncommon in Lipschitz
estimation. For example, the authors in [13] have shown that
estimating Lipschitz constants from data using (11) results in
a reversed Weibull distribution that satisfies this assumption.

Since Ω is bounded, the following result is a direct conse-
quence of Assumption 5.

Lemma 1. If Assumption 5 holds, then for any δ > 0 there
exists an X ′ ∈ Ω such that

∫∞
X′ P(µ) dµ < δ.

We need the following definition from [20] for the ensuing
discussion.

Definition 2. Recall N is the number of data points, and let
λ > 0. A λ-density level set for P(X) is given by Dλ = {X :
P(X) = λ}. A set SN,1−β is asymptotically valid for Dλ if
Pr(SN,1−β ⊃ Dλ) = 1− β +O(rN ), where O(rN ) → 0 as
N →∞ and 1− β ∈ (0, 1) is a confidence-level.

The intuition behind our Lipschitz constant estimation is
as follows. Suppose we estimate an asymptotically valid set
SN,1−β for Dλ where λ ∈ (0, ε0) is made sufficiently small
to ensure that the probability induced by the sub-level set
{X : P(X) < λ} is small, which is true if Assumption 5 holds.
Then, the maximum of SN,1−β will be a high-probability
estimate of L∗φ.

We use the quantile-based bootstrap method proposed
in [20, Section 4.1] to estimate an asymptotically valid set
SN,1−β . Let D̂λ denote the λ-density level set estimate ob-
tained using the KDE P̂N and let W ?

β denote the maximum
of D̂λ. Clearly, W ?

β is the closest point to the right-hand
support of P for a fixed λ. Let WN := ρH(Dλ, D̂λ) and
w?β := F−1WN

(1 − β), where FWN
denotes the cumulative

distribution of the random variable WN . If we could compute
D̂λ ⊕ w?β , we would obtain an asymptotically valid set for
Dλ. However, computing w?β is impossible without knowing
Dλ, so we resort to a bootstrap method for estimating it.
Concretely, N samples are drawn from {L̂k} with replacement
and the λ-density level set D̂k

λ is computed for each of
these samples, and the procedure is repeated Nb times. Let
wk = ρH

(
D̂k
λ, D̂λ

)
denote the Hausdorff distance computed

for each bootstrap iteration. These wk generate a distribution
from which the confidence level w?β = F−1wNb (1 − β) can be
computed. Then,

SN,1−β := D̂λ ⊕ w?β (14)

is our proposed bootstrap confidence set. The following result
establishes the asymptotic validity of SN,1−β .

Theorem 1. Assumption 5 holds. For any 0 < λ � 1 such
that λ = P(X ′) and ∀ X > X ′, P(X) < λ, we get

Pr(L∗φ 6∈ SN,1−β) < β + δ +O(rN )

where the positive scalar δ =
∫∞
X′ P(X)dX � 1.

Proof. (Sketch) The desired probability can be written in terms
of its complement Pr(L∗φ 6∈ SN,1−β) = 1 − Pr(L∗φ ∈
SN,1−β). Since, SN,1−β is an asymptotically valid set of Dλ,
we can estimate a lower bound on the complement term using
the joint probability Pr(L∗φ ∈ Dλ, Dλ ⊂ SN,1−β). That is,
Pr(L∗φ ∈ SN,1−β) ≥ Pr(L∗φ ∈ Dλ, Dλ ⊂ SN,1−β) =
Pr(L∗φ ∈ Dλ)Pr(Dλ ⊂ SN,1−β) = (1− δ)(1− β +O(rN )),
from Lemma 1 and [20, Theorem 4]. Simplifying these terms
and neglecting the higher-order terms concludes the proof.

In practice, our proposed Lipschitz constant estimate for a
given β > 0 is given by

L̂φ = max{SN,1−β} = |W ?
β |+ |w?β |. (15)

The pseudocode for our proposed Lipschitz learner is pro-
vided in Algorithm 1.

Algorithm 1 Kernelized Lipschitz Learning Algorithm
Require: Initial dataset, {xk, φ(Cqxk)}Nk=1

Require: Confidence parameter, 0 < β � 1
Require: Number of bootstraps, Nb

1: {qk, φ(qk)} ← Estimate Cq via ARD
2: for k in 1, . . . , N do
3: for j in {1, . . . , N} \ k do
4: ˆ̀

jk ← compute using (12)
5: L̂k ← max{`jk}
6: L̂φ ← KDE with cross-validated K and h using L̂k
7: λ← by inspection of KDE
8: D̂λ ← compute λ-density level set using L̂φ
9: W ?

β ← max D̂λ

10: w ← ∅
11: for k in 1, . . . , Nb do
12: Resample N times with replacement from L̂φ
13: D̂k

λ ← λ-density level set using bootstrapped samples
14: wk ← ρH(D̂k, D̂)

15: w?β ← bootstrap (1− β) confidence interval of {wk}
16: L̂φ ← |W ?

β |+ |w?β |

V. INITIAL CONTROL POLICY DESIGN

With the estimate L̂φ obtained using KDE methods, we are
now ready to construct the initial control policy K. Note that
with any control policy K, the constraint set described in (9)
is equivalent to the set

X =
{
x ∈ Rnx : (ci + diK)>x ≤ 1

}
, (16)

for i = 1, . . . , r. Before we state the main design theorem, we
require the following result from [24, pp. 69].
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Lemma 2. The ellipsoid

EP = {x ∈ Rnx : x>Px ≤ 1} (17)

is a subset of X if and only if

(ci + diK)P−1(ci + diK)> ≤ 1 (18)

for i = 1, . . . , r.

We also need the following stability definition.

Definition 3. The equilibrium point x = 0 of the closed-loop
system (10) is locally exponentially stable with a decay rate α
and a domain of attraction EP if there exist scalars C0 > 0 and
α ∈ (0, 1) such that ‖xt‖ ≤ C0α

(t−t0)‖x0‖ for any x0 ∈ EP .

Lemma 3. Let V : [0,∞) × EP → R be a continuously
differentiable function such that

γ1‖x‖2 ≤ V (t, xt) ≤ γ2‖x‖2 (19a)

V (t, xt+1)− V (t, xt) ≤ −(1− α2)V (t, xt), (19b)

for any t ≥ t0 and x ∈ EP along the trajectories of the system

x+ = ϕ(x), (20)

where γ1, γ2, and α are positive scalars, and ϕ is a nonlinear
function. Then the equilibrium point x = 0 for the system (20)
is locally exponentially stable with a decay rate α and a
domain of attraction EP .

The following design theorem provides a method to con-
struct a stabilizing policy such that the origin is a locally
exponentially stable equilibrium of the closed-loop system and
constraint satisfaction is guaranteed within a prescribed ellip-
soid of attraction EP ⊂ X without knowing the nonlinearity φ.

Theorem 2. Assumptions 1–3 hold. If there exist matrices P =
P> � 0 ∈ Rnx×nx , K ∈ Rnu×nx , and scalars α ∈ (0, 1),
ν > 0 such that [

1 ci + diK
? P

]
� 0 (21a)

Ψ + Γ>MΓ � 0 (21b)

are satisfied for all i = 1, 2, . . . , r with

Ψ =

[
(A+BK)>P (A+BK)− α2P (A+BK)>PG

G>P (A+BK) G>PG

]
,

Γ =

[
Cq +DqK 0

0 I

]
,

M =

[
ν−1(L∗φ)2I 0

0 −ν−1I

]
,

then the equilibrium point x = 0 of the closed-loop system (10)
is locally exponentially stable with a decay rate α and a
domain of attraction EP defined in (17). Furthermore, if the
initial state x0 ∈ EP , then the closed-loop states and inputs
xt and ut satisfy the constraints (9) for all t ≥ t0.

Note that we do not need to know φ to satisfy con-
ditions (21). Instead, Theorem 2 provides conditions that

leverage matrix multipliers similar to those described in [11].
We now provide LMI-based conditions for computing K,

P and ν via convex programming.

Theorem 3. Fix α ∈ (0, 1) and L̂φ. If there exist matrices
S = S> � 0, Y , and a scalar ν > 0 such that the LMI
conditions [

1 ciS + diY
? S

]
� 0 (23a)

−α2S ? ? ?
0 −νI ? ?

AS +BY νG −S ?

L̂φ(CqS +DqY ) 0 0 −νI

 � 0 (23b)

are satisfied, then the matrices K = Y S−1, P = S−1 and the
scalar ν satisfy the conditions (21) with the same α and L̂φ.

A benefit of overestimating L̂φ is that safety is ensured.
This is demonstrated in the following result.

Theorem 4. Let (P,K, ν, α) be a feasible solution to the
conditions (21) with an overestimate of the Lipschitz constant
L̂φ > L∗φ with high probability. Then (P,K, ν, α) is a feasible
solution to the conditions (21) with the true Lipschitz constant
L∗φ with high probability.

Theorem 4 indicates that if our learned L̂φ is an overesti-
mate of L∗φ, and we use L̂φ to obtain a safe stabilizing control
policy, then this is also a safe stabilizing control policy for the
true system (1).

Remark 5. Having a feasible solution to (21) with an un-
derestimator of L∗φ is not sufficient to guarantee a feasible
solution for the true Lipschitz constant, because δM may not
be negative semi-definite in that case. Of course, extremely
conservative overestimates of L̂φ will result in conservative
control policies or result in infeasibility. In our proposed
approach, we have observed that the confidence parameter β
dictates the conservativeness of the overestimate.

VI. NUMERICAL EXAMPLE

Consider the problem of estimating an invariant set for the
nonlinear system

xk+1 = xk + τ

([
0 1 0
1 0 1
−1 1.5 −2

]
xk +

[
0
1
0

]
uk −

[
0
0
1

]
φ(qk)

)
,

where φ(q) = −0.7q3 is the unknown nonlinearity and q = x3
is determined automatically via Bayesian ARD. The sampling
time τ = 0.1; the continuous-time version of this system was
investigated in [25] assuming full model knowledge. The state
and input constraints are given by |x1| ≤ 0.5, |x2| ≤ 0.75,
|x3| ≤ 0.75, and −1 ≤ u ≤ 1. Clearly, the true Lipschitz
constant in this constrained state space is L∗φ = 0.7 × 3 ×
0.752 = 1.1812.

For the purposes of archival data, we simulate the system
from the equilibrium with persistent excitation satisfying the
control constraints and archive 50 data points from each run;
therefore, N = 500. We fix β = 10−4, λ = 10−4, and
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Nb = 100 and perform kernelized Lipschitz learning to obtain
a Lipschitz constant estimate L̂φ = 1.21 with 50% data for
training and validation for KDE. The optimal kernel obtained
by cross-validation is the Gaussian kernel and the optimal
bandwidth is obtained to be h = 0.0183. Subsequently, this
value of L̂φ is used to solve the LMIs (23) with α fixed at 0.5.
We obtain a stabilizing control gain with associated invariant
set EP shown in Fig. 1[A]. As we can see, the invariant
ellipsoid (blue) consumes a large percentage of the volume
of X: it is not conservative. Furthermore, the trajectories in
Fig. 1[B] indicate that state and input constraints are satisfied
using this stabilizing policy for 100 initial conditions starting
from within EP . We also check that choosing lazily based on

Fig. 1. Illustration of state and input (black lines) constraint satisfaction using
Lipschitz learning for invariant set estimation. [A] The invariant set EP with
a few trajectories shown in state-space. [B] Temporal variation of states and
inputs. The constraints are shown using red lines.

the maximum of L̂φ (11) and then adding a positive scalar (for
example, 1), leads to a conservative estimate of the invariant
set, whereas ignoring the nonlinearity and designing based on
just the known linear component (A,B) results in constraint
violation and instability.

VII. CONCLUSIONS

Our proposed approach provides a systematic method for
constructing stabilizing control policies for systems with un-
known dynamics using archival data. The method is applicable
for systems where legacy data is available and dynamics
are not completely known: for example, smart factories,
biomedical systems, and robotic systems. We consign stronger
theoretical guarantees on our Lipschitz learning algorithm and
generalization of the approach to wider classes of nonlineari-
ties to future work.
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