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Abstract
Band alignment between two materials is of fundamental importance for multitude of ap-
plications. However, density functional theory (DFT) either underestimates the bandgap -
as is the case with local density approximation (LDA) or generalized gradient approxima-
tion (GGA) - or is highly computationally demanding, as is the case with hybrid-functional
methods. The latter can become prohibitive in electronic-structure calculations of supercells
which describe quantum wells. We propose to apply the DFT+U method, with U for each
atomic shell being treated as set of tuning parameters, to automatically fit the bulk bandgap
and the lattice constant, and then use thus obtained U parameters in large supercell cal-
culations to determine the band alignment. We apply this procedure to InP/In0.5Ga0.5As,
In0.5Ga0.5As/In0.5Al0.5As and InP/In0.5Al0.5As quantum wells, and obtain good agree-
ment with experimental results. Although this procedure requires some experimental input,
it provides both meaningful valence and conduction band offsets while,crucially, lattice re-
laxation is taken into account. The computational cost of this procedure is comparable to
that of LDA. We believe that this is a practical procedure that can be useful for providing
accurate estimate of band alignments between more complicated alloys.
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Abstract

Band alignment between two materials is of fundamental importance for multitude of applica-

tions. However, density functional theory (DFT) either underestimates the bandgap - as is the

case with local density approximation (LDA) or generalized gradient approximation (GGA) - or is

highly computationally demanding, as is the case with hybrid-functional methods. The latter can

become prohibitive in electronic-structure calculations of supercells which describe quantum wells.

We propose to apply the DFT+U method, with U for each atomic shell being treated as set of

tuning parameters, to automatically fit the bulk bandgap and the lattice constant, and then use

thus obtained U parameters in large supercell calculations to determine the band alignment. We

apply this procedure to InP/In0.5Ga0.5As, In0.5Ga0.5As/In0.5Al0.5As and InP/In0.5Al0.5As quan-

tum wells, and obtain good agreement with experimental results. Although this procedure requires

some experimental input, it provides both meaningful valence and conduction band offsets while,

crucially, lattice relaxation is taken into account. The computational cost of this procedure is

comparable to that of LDA. We believe that this is a practical procedure that can be useful for

providing accurate estimate of band alignments between more complicated alloys.
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I. INTRODUCTION

Band alignment between two materials is crucial for many industrial applications,

such as light-emitting diodes and diode lasers1, field-effect transistors2, photovoltaics3,

photocatalysts4, photon waveguides5 and others. The most common theoretical approach

used to determine the band alignment is density functional theory (DFT)6, which is usually

adequate for qualitatively comparing different materials, but is unsatisfactory quantitatively.

One serious difficulty of DFT is that it underestimates the bandgap when using standard

local density approximation (LDA) or generalized gradient approximation (GGA) exchange-

correlation functionals. When using GGA or LDA to determine the band alignment, only

the valence band offset (VBO) can be directly determined by the calculation with accept-

able accuracy; the conduction band offset (CBO) is inferred from the experimental bandgap

of the bulk materials7–10. Using this approach, the CBO cannot be determined when the

interface strain changes the bandgap of a material. The precision of a bulk bandgap can be

greatly improved by using better approximations, such as the many-body GW approach11,12

or hybrid-functional DFT13,14. These calculations, however, require significantly more com-

putational resources than those required for LDA or GGA, so that supercell calculations

to determine the band alignment can become too time consuming, and supercell relaxation

is often out of reach. DFT+U is a method where the exchange-correlation functional is

corrected by a set of U values which are applied to selected atomic orbitals15,16. DFT+U

allows adjustment of the bulk bandgap to the experimental value by using U values as tun-

ing parameters. This approach was explored, for example, in Ref.10 with application to the

band-alignment problem. The results are not satisfactory in that DFT+U , while making

bandgap-fitting possible for a fixed lattice structure, does not reproduce the proper struc-

ture of the material when the structure is allowed to relax. The same authors also proposed

a different empirical approach using the non-local external potential17 which provides the

orbital-dependent energy shift to correct the bandgap. Another promising approach is the

use of meta-GGA functionals such as the modified Becke-Johnson functionals18–21, which are

computationally inexpensive, but provide better estimation of the bandgap. While ab initio

methods such as GW, hybrid-functional and meta-GGA DFT offer significant improvements

over LDA/GGA-functional DFT they are still quite problematic to use in practical calcula-

tions: GW is accurate only in its self-consistent realization22,23 for some materials and less
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accurate for others24,25; the computational cost of this method is prohibitive in supercell and

lattice relaxation calculations. Both hybrid-functional and meta-GGA DFT require tuning

of the parameters of the functional (e.g. screening length and fraction of exchange) to the

material to achieve sufficient accuracy26–28, while large supercells and lattice relaxation are

still difficult with the former.

In this paper, we re-examine DFT+U as a practical “black-box” method for the deter-

mination of the band alignment between two semiconductors. The U values of the bulk

material are determined completely automatically by an optimization procedure which ad-

justs them until the calculation reproduces i) the experimental bandgap and ii) the lattice

parameters. The same U values are then used in the superlattice calculations. This proce-

dure is semi-empirical, in the sense that some experimental inputs are needed. However, it

takes the interface strain into account and results in accurate VBO and CBO, while using

minimalistic basis sets and computational resources comparable to those required by LDA

or GGA functionals. This method thus allows us to use supercells containing 320 atoms to

determine the band alignment (see Fig. 1). We apply this procedure to In0.5Ga0.5As/InP

(denoted as InGaAs/InP below) and In0.5Ga0.5As/In0.5Al0.5As (InGaAs/InAlAs) superlat-

tices, with varying InGaAs widths. All alloys studied here are lattice-matched to InP. The

change of the band alignment is quantitatively consistent with the reported experiments,

and bandgaps of the full superlattice are consistent with photo-luminescent (PL) measure-

ments. The same procedure is applied to InP/InAlAs to test transitivity29. The rest of the

paper is organized as follows. In Section II we describe the procedure to determine the band

alignment, including a summary of bulk experimental values. In Section III we show our

results for InP/InGaAs, InGaAs/InAlAs, and InP/InAlAs lattice calculations. The compar-

ison to the photo-luminescent measurements is shown and discussed. A brief conclusion is

given in Section IV.

II. METHOD

A. Computational details

In the main part of this work we used the SIESTA package30. The pseudopotential input

files were downloaded from the SIESTA website. In and Ga pseudopotentials were generated
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with 4d (In) and 3d (Ga) electrons included in the valence. We used single-ζ + polarization

shell (SZP) basis sets, which were optimized in a bulk setup (such as GaAs or InP) using

the Optimizer tool from the SIESTA package31 with basis pressure equal to 0.2 GPa and

the Perdew-Burke-Ernzerhof (PBE) DFT functional32. The optimized SZP basis sets have

been shown to have similar quality to a generic double-ζ + polarization (DZP) basis31. The

spin-orbit coupling was not included in the calculations. This is done in order to reduce the

computational cost and in order to avoid convergence difficulties while probing different sets

of U parameters. Thus we attempt to capture the essential features of the quantum wells,

that is band alignment in the relaxed structures, with U parameters only. All geometry

relaxations were performed using the conjugate gradient method.

For the bulk calculation we used conventional unit cells and 7 × 7 × 7 Monkhorst-Pack

k-point sampling. All materials considered in this work have zincblende structures. For alloy

materials such as InGaAs we also used the conventional unit cell. The same unit cells were

replicated to construct the interface supercells. We did not use virtual crystal approximation

(VCA) or coherent potential approximation (CPA)7,8 in this work.

DFT+U15,16,33 is a method which is in principle close to the hybrid-functional ap-

proach in that it attempts to address the electron-electron interaction problem of local

DFT functionals34,35. In the DFT+U approach an atomic orbital-dependent U correction is

added to the DFT Hamiltonian15. In the Dudarev spherically averaged approach16, which

was employed here, this results in an effective orbital-dependent potential:

V LDA+U
jk = V LDA

jk + U

[
1

2
δjk − ρjk

]
, (1)

where j, k are orbital indices and ρ is the electronic single-particle density matrix. The

parameter U for each orbital can in principle be computed ab initio34–37 but in practice is

often fitted to reproduce experimental results such as the bandgap. Eq. (1) shows that for

positive U the energy levels are shifted up for unoccupied orbitals and down for occupied

ones.

B. U optimization

In this work we used the DFT+U approach where U values were fitted in a systematic

way. Given a bulk crystal structure we enable U for each valence atomic orbital, except
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for semicore orbitals such as 4d in In, which are completely filled and lie very deeply in

the valence band of the materials we study here. We then apply the simplex method as

implemented in the Optimizer tool from the SIESTA package to minimize an objective

function:

f (U) = wg

[
Eg (U)− Eexp

g

]2
+ wa

3∑
i=1

[ai(U)− aexp
i ]2 . (2)

Here U denotes set of all values of Uj, j being a combined index for an atomic species,

principal and angular momentum quantum numbers; Eg and ai denote bandgap and lattice

vectors respectively; superscript “exp” denotes experimental values. wg and wa are weights,

which we chose to be 0.33 eV−2 and 0.67 Å−2. For a given U, the full lattice relaxation

followed by a bandgap computation is performed.

We would like to make a few remarks. i) The minimization is deemed sufficient when

f(U) . 10−3 because of experimental uncertainties. ii) Here U are treated as free parame-

ters, which are not only aimed at correcting deficiencies of the PBE functional but also serve

as a finite basis set correction38. Thus U ’s could in principle be negative, although in this

work we restrict them to be positive. iii) The optimization is performed on the bulk unit

cell and is computationally inexpensive, typically taking several hours on four CPU cores.

We point out that it is to satisfy both constraints that complicates the optimization; to fit

only the band gap is actually quite easy.

C. Theoretical motivation

Here we provide the theoretical motivation on why fitting the bulk lattice constant and

band structure can give a correct band alignment. For the general Hamiltonian

H = T + vext + Ve−e, (3)

where T represents the kinetic energy, vext the external potential (depending on positions

of ions), Ve−e the Coulomb electron-electron interaction, Hohenberg-Kohn theorem39 estab-

lishes a one-to-one relationship between vext(r) and the many-body ground-state density

n(r) – a given n(r) gives a unique vext(r) and vice versa, i.e.,

vext(r)⇔ n(r) (4)
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Therefore for a ground-state wave function |Ψ[vext(r)]〉 that corresponds to an external

potential vext(r), we can denote the same wave function as |Ψ[vext(r)]〉 = |Ψ[n(r)]〉. For a

given external potential ṽext(r), one defines the density functional that maps a charge density

n(r) to an expectation value of total energy:

E[n(r); ṽext(r)] ≡ 〈Ψ[n(r)]|T + ṽext + Ve−e|Ψ[n(r)]〉. (5)

By the variational principle, the energy expectation value is at its global minimum when

the wave function is the ground state of H = T + ṽext + Ve−e, which has a ground-state

density ñ(r). Consequently, the density functional E[n(r); ṽext(r)] has the global minimum

when n(r) = ñ(r), with the value of ground-state energy. Functionals of kinetic energy

〈Ψ[n(r)]|T |Ψ[n(r)]〉 and Coulomb energy 〈Ψ[n(r)]|Ve−e|Ψ[n(r)]〉 are universal, but their exact

functional forms are not known.

A well approximated density functional is supposed to give experimental results. There

are two immediate consequences for the exact density functional: (i) E[n(r); vext(r)] is at

the minimum when vext(r) represents the observed lattice structure; (ii) the resulting charge

density n(r) is identical to the real charge density. These conditions can be seen as one and

formally justified through the use of the multi-component DFT40, where E[n(r),Γ(R)], a

functional of both electron and nuclear densities n(r) and Γ(R), is minimized. Motivated

by these two conditions, we proposed that a parameterized functional should simultaneously

fit the observed lattice structure [condition (i)] and the measured band gap [condition (ii)].

The measured band gap serves as a measure of charge distribution between ions. We regard

a parameterized functional that satisfies these two conditions as a good functional for a

given material, and propose to use LDA+U , with U ’s being parameters tuned to meet these

two conditions, to obtain the material-specific good functional. We expect that the correct

functional will provide the correct band alignment between two bulk materials. As we will

demonstrate, this procedure is indeed found to be quantitatively useful for determining the

band alignments.

In addition to correcting exchange-correlation functional, +U method can be used outside

of the density functional theory as a way of reducing basis-set superposition error. For

example, Kulik and co-workers applied +U method in Hartree-Fock calculations with a

minimalistic basis set38. In this work we also use minimalistic basis sets and thus our

optimization procedure can take advantage of this application of the +U method.
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As shown below, the values of U obtainend with our optimization procedure are found

to be significantly large only for the p orbitals. This is not surprising, since recent direct

calculations37 of U have shown that in transition-metal oxides, contrary to what was assumed

before, U on p-orbitals of the oxygen atoms exceed or on the order of U calculated for the

d-orbitals of the transition metal atom.

D. Determination of the band alignment

We consider band alignments between InGaAs and InP, and between InGaAs and InAlAs.

In both cases InGaAs is the “well” material which has a bandgap of 0.76 eV; InP and InAlAs

serve as the “barrier” materials whose bandgaps are around 1.4 eV. All three materials have

lattice constants of 5.86Å, lattice matched to InP. The band diagram of a quantum well or

a superlattice is illustrated in Fig. 2(a).

To determine the band alignment, superlattices of (InGaAs)n/(InP)20,

(InGaAs)n/(InAlAs)20, and (InAlAs)20/(InP)20 are used, with the conventional zincblende

unit cell serving as the basic building block. As illustrated in Fig. 2(a), the supercell has

a period of 1 × 1 × (20 + n), with the stacking direction defined as z. Because all three

materials have almost the same lattice constant which is reproduced in our bulk calculations

with optimized U parameters, we fix the in-plane lattice constant to that of bulk InP and

allow only relaxation of the supercell in the z-direction and relaxation of the ionic positions

in our calculations. As the projected density of states (DOS) recovers its bulk profile away

from the interface, the band alignment is determined by the projected DOS in the middle

of InGaAs, InP, and InAlAs respectively.

E. Summary of bulk experiments

We conclude this section by summarizing the experimental results of two classes of III-V

zincblende alloys. The first class is GaxIn1−xAsyP1−y, whose lattice constant is given by41,42

aGaInAsP(x, y) = 5.8696− 0.4184x+ 0.1894y + 0.0130xy. (6)

The bulk bandgaps are42

EGaInAsP(x, y) = 1.35+0.668x−1.17y+0.758x2+0.18y2−0.069xy−0.322x2y+0.03xy2 (7)
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Eq. (6) and (7) are room-temperature results. When lowering the temperature, the bandgap

becomes larger and the lattice constant smaller. For example, InP at 4K has a bandgap

around 1.45 eV and a lattice constant around 5.85Å.

The second class of alloys is In1−x−yGaxAlyAs. The physical quantities can be

parametrized as43

P (In1−x−yGaxAlyAs) = P (InAs)(1− x− y) + P (GaAs)x+ P (AlAs)y (8)

Using the bulk data summarized in Ref.44, the lattice constants of GaAs, GaP, InAs, and

AlAs are respectively 5.6533Å, 5.4505Å, 6.0584Å, and 5.660Å. The lattice constant of this

class of alloys is therefore parameterized as

aInGaAlAs(x, y) = 6.0584(1− x− y) + 5.6533x+ 5.660y

= 6.0584− 0.4051x− 0.3984y.
(9)

The bulk bandgap is obtained from

EInGaAlAs(In1−x−yGaxAlyAs) = 0.36 + 2.093y + 0.629x+ 0.577y2

+ 0.436x2 + 1.013xy − 2.0xy(1− x− y)eV.
(10)

For alloys that are lattice matched to InP (5.86 Å) where x + y = 0.47, i.e.,

In0.53Ga0.47−yAlyAs, the bandgap fitted from Ref.45

E(y) = 0.76± 0.04 + (1.04± 0.10)y + (0.87± 0.13)y2. (11)

Directly using Eq. (10), we get E(y) = 0.7519 + 1.0321y + 1.06y2. It appears that the

coefficient of y2 is not consistent between these two expressions. However since y < 0.47,

the error is at most (1.06 − 0.87) × 0.472 = 0.042 eV, which sets the uncertainty in our

calculations. The experimental results summarized here are used to optimize the U values

in the DFT+U functional.

III. RESULTS

A. Optimized U values

The U values for InP, InGaAs, and InAlAs are given in Table I. As described in Section

II B, these U values are computationally optimized to fit both experimental bulk lattice
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Material Eg − Eexp
g (eV) a− aexp (Å) Species n quantum number Us (eV) Up (eV)

In0.5Ga0.5As -0.03 (0.76) -0.01 (5.87)

In 5 0.00 7.58

Ga 4 0.00 3.66

As 4 0.02 0.20

InP -0.03 (1.34) -0.02 (5.87)
In 5 0.00 4.23

P 3 0.00 0.48

In0.5Al0.5As 0.00 (1.47) 0.00 (5.87)

In 5 0.01 3.31

Al 3 0.41 2.80

As 4 0.03 0.15

TABLE I: U parameters optimized for best fit to experimental values of bandgap (Eg) and lattice

constant (a) (Section II B). Us denotes the value of U applied to the s-shell of the corresponding

atom, while Up denotes U values applied to p-shells. With the values of U presented here all angles

are 90◦ in the optimized conventional unit cells. In column 2 and 3 the experimental values are

indicated in parentheses.

structure and bandgap. It can be seen that U values of the same species strongly depend

on the material. For example for the 5p-shell of the In atom, the value of Up is 7.58, 4.23

and 3.31 eV in InGaAs, InP and InAlAs respectively. This is expected, because the value

of U incorporates screening effects15 and thus depends on the environment of the atom.

There are two other trends clearly visible in Table I. First, the values Us for all species

are small or nearly zero. Second, the U values for anionic atoms are much smaller then U for

cationic atoms. This indicates that both the optimization of the geometry and the bandgap

is largely controlled by p-states of the cationic atoms, which constitute the largest part of

the conduction band and a smaller but not insignificant part of the valence band.

B. Bulk band offsets in InGaAs/InP, InGaAs/InAlAs, and InAlAs/InP

To test our procedure we first study band offsets in bulk heterostructures. For each

combination of materials we construct 20/20 supercell, that is a supercell that has total

40 conventional unit cells in z-direction (20 for each material) and 1 unit cell in x- and y-

directions (see, for example, Fig. 2(a) with n = 20). We used 3 × 3 × 1 k-point sampling
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In0.5Ga0.5As InP

0.36 eV 0.18 eV

0.76 eV

In0.5Ga0.5As

In
0
.5
A
l 0
.5
A
s

0.19 eV 0.53 eV

0.74 eV

1.47 eV0.74 eV1.33 eV

0.53 eV

0.19 eV
0.15 eV

0.36 eV

0.18 eV
0.38 eV

InP InGaAs InAlAs

(a) InGaAs/InP (b) InGaAs/InAlAs

(c) InAlAs/InP (d)

In0.5Al0.5As InP

0.15 eV

0.38 eV

1.12 eV

FIG. 1: (a) Projected DOS for (InGaAs)20/(InP)20. (b) Projected DOS for (InGaAs)20/(InP)20.

(c) Projected DOS for (InGaAs)20/(InP)20. The intervals show, from left to right, VBO, bandgap

and CBO. (d) The combined band diagram InP/InGaAs/InAlAs. The VBO’s and CBO’s of differ-

ent interfaces satisfy the transitivity rule within . 0.05 eV. The bulk band gaps are derived from

the bulk calculation for each material.

during the initial geometry optimization and 7 × 7 × 1 for the final geometry optimization

and PDOS calculation. During the geometry optimization 5 unit cell-thick layers in the

middle of each material were kept rigid to preserve bulk lattice parameters.

The resulting PDOS for each combination of materials is presented in Fig. 1 (a)-(c).

For (InGaAs)20/(InP)20 (Fig. 1(a)) the computed VBO is 0.36 eV and CBO 0.18 eV. The

experimental results for VBO agree well on 0.35 eV value which is in excellent agreement

with our computed value46. The results for CBO seem to be less consistent and experiments

report values in 0.2-0.4 eV range46. The CBO of 0.18 eV computed here is thus at the lower

edge of this range.

For (InGaAs)20/(InAlAs)20 (Fig. 1(b)) the computed VBO is 0.19 eV and CBO 0.53 eV.
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This is in excellent agreement with averaged experimental values for this heterojunction of

0.19 eV and 0.51 eV, respectively46.

For (InP)20/(InAlAs)20 (Fig. 1(c)) the experimental values for VBO are reported to be

in 0.11-0.31 eV range with 0.155 eV recommended by Vurgaftman et al46. Our computed

values of 0.153 eV agrees with this recommendation. For CBO of this heterojuction the

experimental data is scarce and CBO is reported to be 2.86∆Eg
47, which should result in

(1.47− 1.34) · 2.86 = 0.37 eV agreeing with the 0.38 eV computed by us.

The composite diagram for all computed band gaps and offsets is shown on Fig.1(d).

The VBOs and CBOs of all three materials are transitive within . 0.05 eV. This degree

of non-transitivity agrees well with experiments46, but here is most likely is a result of the

computational uncertainty.

C. Bands offsets in InGaAs/InP and InGaAs/InAlAs quantum wells

Fig. 2(b)-(d) show the computed projected DOS for (InGaAs)n/(InP)20 with n = 10, 8, 6.

The bandgap increases as the quantum well width, characterized by n, decreases due to the

increasing quantum confinement. The computed bandgap is in good agreement with the

PL experiments, as summarized in Table II.As expected, the band alignment also exhibits

the effects of the quantum confinement: with the well width decreasing the well band gap

expands and the VBO shrinks from 0.32 eV to 0.23 eV whereas CBO from 0.14 eV to 0.09

eV. Due to the confinement these band offsets are below the range of experimental values

for bulk interfaces and bulk band offsets computed by us (Fig. 1(a)).

Fig. 3(b)-(d) show the computed projected DOS for (InGaAs)n/(InAlAs)20 with n =

10, 8, 6. The bandgap also opens up with decreasing n due to the stronger quantum confine-

ment. The band alignment changes correspondingly with expanding band gap : the VBO

shrinks from 0.20 eV to 0.15 eV whereas the CBO shrinks from 0.43 to 0.40 eV. We notice

that again the band offset values in quantum wells are smaller than those in bulk, and this

is consistent with the enlarged band gap caused by the quantum confinement.

As InP and InAlAs have similar bandgaps and lattice constants, our calculations show

that InGaAs/InP has the larger VBO and the smaller CBO, whereas InGaAs/InAlAs has the

larger CBO and the smaller VBO. This trend is consistent with the experiments. Generally,

the VBO/CBO values depend only weakly on the quantum well width. The bandgap,
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In0.5Ga0.5As

InP
0.23 eV 0.09 eV

1.00 eV

In0.5Ga0.5As InP

0.32 eV 0.14 eV

0.88 eV

(b) 10 InGaAs/20 InP

In0.5Ga0.5As

InP
0.27 eV 0.10 eV

0.93 eV

(c) 8 InGaAs/20 InP (d) 6 InGaAs/20 InP

20 InP 20 InPn InGaAs

zStructure

Band 
diagram

(a)

AsAs

GaGa

P

In In

InInInIn

PP

InIn

As

Ga Ga

InInInIn

FIG. 2: (a) Illustration of the structure and the band diagram of the superlattice used to determine

the band alignment between InP and InGaAs. (b) Projected DOS for (InGaAs)10/(InP)20. (c)

Projected DOS for (InGaAs)8/(InP)20. (d) Projected DOS for (InGaAs)6/(InP)20. The intervals

show, from left to right, VBO, bandgap and CBO.

however, displays an observable dependence on quantum well width, and will be discussed

in Section III D in terms of photoluminescent measurements.

D. Comparison to photoluminescent measurements

Quantum well Bandgap (theory) PL measurement Experimental well width

6 InGaAs/20 InP 1.00 eV 0.94 eV 4nm

8 InGaAs/20 InP 0.93 eV 0.91 eV 5nm

10 InGaAs/20 InP 0.88 eV 0.89 eV 6nm

TABLE II: The bandgap of InGaAs/InP, as a function of quantum well width.
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Band 
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Ga

InAlIn

InAl Ga

In

AsAsAs
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InInIn

GaGa Al

Al

AsAsAs

FIG. 3: (a) Illustration of the superlattice structure used to determine the band alignment be-

tween InAlAs and InGaAs. (b) Projected DOS for (InGaAs)10/(InAlAs)10. (c) Projected DOS for

(InGaAs)8/(InAlAs)10. (d) Projected DOS for (InGaAs)6/(InAlAs)10. The intervals show, from

left to right, VBO, bandgap and CBO.

To further test the calculations, we prepared quantum wells of 4nm, 5nm and 6nm In-

GaAs as well as 30nm InP, and perform the PL measurements. The superlattice is grown

using the standard MOCVD (Metal-Organic Chemical Vapour Deposition) method. The PL

experiments were carried out at 300 K. The results are shown in Fig. 4. The Gaussian fits

imply that the PL spectra display at least two peaks, which we interpret as the heavy hole

and light hole splitting. The observed lowest-energy peak corresponds to the bandgap of the

quantum well, and is summarized in Table II. As the lattice constant is 5.86 Å, InGaAs wells

of width 4nm, 5nm, 6nm are close to 6, 8, 10 InGaAs unit cells. The computed bandgaps

are also given in Table II, and good agreement is seen. Our simulation tends to somewhat

overestimate the effect of the quantum confinement; this, at least in part, is due to the

well widths used in (InGaAs)6/ and (InGaAs)8/ simulations being somewhat smaller than
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FIG. 4: (a) Illustration of the superlattice structure used for PL measurement. The barrier material

InP is 30nm thick. (b)-(d) The PL measurement for 4nm In0.53Ga0.47As (b), 5nm In0.53Ga0.47As

(c), and 6nm In0.53Ga0.47As (d). The red curves are measurements, and blue curves are Gaussian

fit. The first (lowest) peak values are summarized in Table II.

those reported in experiment; perhaps in the experiment the well widths are not absolutely

controlled thus slightly smearing the gap towards bulk values.

IV. CONCLUSION

In this paper, we demonstrate that DFT calculations using DFT+U can be an efficient

way to determine the band alignments between two alloys. The full procedure can be divided

into two steps. The first step is to determine U values of a bulk alloy by automatically

optimizing atomic orbital-specific values of U so that the experimental bandgap and the

lattice constant agree with the values obtained in the simulation. The second step is to use

these fitted U values in a superlattice calculation (with lattice relaxation), and the valence

and conduction band offsets are then determined from the projected DOS away from the

interface. We apply this procedure to InGaAs/InP, InGaAs/InAlAs, and InAlAs/InP, and

are able to obtain both VBOs and CBOs consistent with experiments. The degree of non-

transitivity ∼ 0.1 eV in the calculated band alignments is in agreement with experiment.

In addition the computed quantum-well width-dependent bandgaps of InGaAs/InP are in
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good agreement with the photoluminescent measurements. The proposed method is semi-

empirical, because optimization of U values requires knowledge of experimental bandgaps

and lattice constants. However, it provides meaningful valence and conduction band offsets

between two alloys, with the interface strain taken into account. For many semiconductor

alloys the experimental data are available for at least 3 compositions, that is for x = 1, 0

and 0.5 in the AxB1−xC alloy. Because empirical composition-bandgap dependencies (section

II E) are quadratic, it seems plausible that the set of U values can be likewise interpolated

by a quadratic polynomial. The use of a compact numerical atomic orbital basis sets as

implemented in SIESTA package makes this method quite lightweight, amenable to large

(300+ atoms) supercell computation on a single workstation. Because lattice relaxation is

taken into account, the proposed procedure can serve as a practical method to explore the

band alignments between complicated alloys.
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