
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Improved A-search guided tree construction for kinodynamic
planning

Wang, Y.

TR2019-029 June 12, 2019

Abstract
With node selection being directed by a heuristic cost [1]–[3], A-search guided tree (AGT)
is constructed on-thefly and enables fast kinodynamic planning. This work presents two
variants of AGT to improve computation efficiency. An improved AGT (i-AGT) biases node
expansion through prioritizing control actions, an analogy of prioritizing nodes. Focusing
on node selection, a bi-directional AGT (BAGT) introduces a second tree originated from
the goal in order to offer a better heuristic cost of the first tree. Effectiveness of BAGT
pivots on the fact that the second tree encodes obstacles information near the goal. Case
study demonstrates that i-AGT consistently reduces the complexity of the tree and improves
computation efficiency; and BAGT works largely but not always, particularly with no benefit
observed for simple cases.
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Improved A-search guided tree construction for kinodynamic planning

Yebin Wang

Abstract— With node selection being directed by a heuristic
cost [1]–[3], A-search guided tree (AGT) is constructed on-the-
fly and enables fast kinodynamic planning. This work presents
two variants of AGT to improve computation efficiency. An
improved AGT (i-AGT) biases node expansion through priori-
tizing control actions, an analogy of prioritizing nodes. Focusing
on node selection, a bi-directional AGT (BAGT) introduces a
second tree originated from the goal in order to offer a better
heuristic cost of the first tree. Effectiveness of BAGT pivots
on the fact that the second tree encodes obstacles information
near the goal. Case study demonstrates that i-AGT consistently
reduces the complexity of the tree and improves computation
efficiency; and BAGT works largely but not always, particularly
with no benefit observed for simple cases.

I. INTRODUCTION

Path planning arises in numerous applications such as
autonomous vehicles [4] and robotics [5]. Established results
include graph-based A* [6]–[8] and D* [5], [9]; navigation
function and potential field [10]; sampling-based algorithms
such as probabilistic roadmaps (PRM) [11], expansive-space
trees [12], rapidly-exploring random trees (RRT) [13], opti-
mal variants RRT* and PRM* [14], particle RRT [15], and
anytime RRT [16], [17].

Graph-based approaches search a pre-defined graph which
approximates the configuration space of a robot. The graph
consists of uniformly distributed nodes and pre-defined
edges. During real-time search, all or portion of the nodes
and edges are tested to acquire a spare representation
of collision free configuration space. A* and D* achieve
resolution-completeness, with optimality guarantee under
certain circumstances [18]. Since the complexity of the pre-
defined graph grows exponentially along with the dimension
of configuration space, these approaches become practically
infeasible for high dimensional systems.

Sampling-based approaches overcome the curse of di-
mensionality by constructing a graph on-the-fly, where
nodes are added by testing randomly drawn configurations.
Their effectiveness, as pointed out in [4], [19], relies on
how quick a graph can grow towards a goal configu-
ration. Biased sampling schemes are intensively investi-
gated to improve efficiency, e.g. visibility-based sampling
[20], quasi-randomized sampling [21], heuristically-guided
[22], reachability-guided [23], environment-guided [24], and
waypoint-guided [25]. Commonly used sampling-based al-
gorithms have been shown to work well in high dimensional
robotic applications and possess theoretical guarantees such
as probabilistic completeness [11], with exceptions [26]. A
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key restriction is that the resultant path could be quite sub-
optimal as well as random.

When human and robot share the environment, the lack of
deterministic guarantee raises concerns to a certain extent.
Prevailing work leverage both sampling-based and graph-
search techniques, e.g. quasi-randomized RRT [21], Hybrid
A* [1], Anytime D* [2], [3]. Take A-search guided tree
(AGT), equivalently Hybrid A*, as an example. It selects
and expands nodes by applying pre-defined control actions
(motion primitives) until the tree is in proximity to a goal.
Node selection is deterministically guided by a heuristic cost.
AGT differs from RRT by its deterministic tree construction
and optimality guarantee. Key issues are two-fold: it incurs
a large memory to store pre-defined state lattice; a node is
unnecessarily expanded by all primitives.

Similarly to probabilistic approaches adopting uniform
sampling, AGT expands a node in all directions and leads
to a tree containing unnecessary nodes. Work [27] proposes
to only add child nodes that haves lower heuristic costs than
the parent. Mimicking greedy search, it trades optimality for
computation efficiency. This work presents an improved A-
search guided tree (i-AGT) to balance optimality and com-
putation efficiency. The i-AGT conducts selective expansion
for a node: control actions are prioritized at each node and
only a subset of control actions with the highest priority will
be applied at one time. The node will not be selected for
expansion only if all actions have been applied. Achieving
resolution completeness as AGT, i-AGT produces a smaller
tree and performs faster. However, its heuristic cost typically
overestimates the true value, which implies sub-optimality.
Similar idea has been explored in [27].

This work makes a second contribution by proposing a bi-
directional A-search guided tree (BAGT). BAGT provides
an alternative answer to the key question that A* and D*
encounter: how the heuristic cost should be defined to guide
node selection efficiently? This question is notoriously tricky
because the heuristic cost consists of: a known arrival cost
and an unknown cost-to-go. Depending on the environment,
obstacles, and system dynamics, the latter is difficult to
reckon [28]. BAGT proposes to construct two trees simul-
taneously: a start tree and a goal tree rooted at an initial
configuration and a goal configuration, respectively. The goal
tree explores obstacles close to the goal, and establishes
arrival costs of its nodes, which can help to better estimate
the cost-to-go for nodes on the start tree. Introducing the
goal tree seemingly incurs remarkable overhead; and the
complexity of both trees should be commensurate with
that of the AGT. Surprisingly, BAGT works well for many
scenarios, especially if there are obstacles near the goal.



BAGT is motivated by notable observations made in prior
art, e.g. [1], [3], [28]: it is crucial and effective to encode
obstacle information into the estimated cost-to-go. Work [1],
[3] decompose the estimated cost-to-go into two parts: a
dynamic heuristic related to system, and a collision heuristic
induced by obstacles. This treatment suffers a fundamental
limitation: cost-to-go is not a simple combination of two
heuristics. How to harness two heuristics is non-obvious. Ad-
ditional shortcoming is: the collision heuristic is unnecessar-
ily constructed over entire configuration space. Oppositely,
BAGT exploits arrival costs of nodes on the goal tree to
estimate cost-to-go of nodes on the start tree. Since the arrival
costs account for (incomplete) obstacles and system dynam-
ics, BAGT partially circumvents the fundamental limitation.
Since the goal tree is a sparse representation of configuration
space, BAGT is overall efficient. A key limitation of BAGT
is that the goal tree might provide misleading information.
How to detect and avoid this pitfall is interesting. It is also
noteworthy that BAGT resorts to bidirectional search idea
which has been extensively exploited in [?], [29], [30].

This paper is organized as follows. Section II presents a
path planning problem and AGT. Section III offers i-AGT
and performance analysis. BAGT is described in Section IV.
Simulation results are included in Section V to verify the
proposed algorithms. Section VI completes this paper with
conclusion and future work.

II. PRELIMINARY RESULTS

A. Path Planning Problem

Consider a robot with the following dynamics

Ẋ = f(X) + g(X)u, (1)

where X ∈ X ⊂ Rnx is state, u ∈ U ⊂ Rm the control, f
a smooth vector field or the drift, and g = [g⊤1 , · · · , g⊤m]⊤

with gi a smooth vector field. A configuration of system (1)
is a complete specification of the position of every points
of that system. The configuration space C ⊂ Rnc is a
compact set representing all possible configurations of the
system. A collision-free configuration space Cfree is the set
of configurations at which the robot has no intersection with
obstacles in the environment. Denote the collision config-
uration space Cobs = C\Cfree. An admissible trajectory
Xt is a solution of system (1) with given initial and final
conditions and u ∈ U . An admissible path Pt is the image
of an admissible trajectory on the configuration space C. For
brevity, an admissible path, if additionally collision-free, is
termed a feasible path. The state space typically has a higher
dimension than configuration space. Whenever system (1)
represents its kinematics, nx = nc and C = X , which is
assumed in this work.

Example 2.1: Consider a front wheel drive vehicle. Its
kinematics are modeled as [31]

ẋ = cos(θ)u1

ẏ = sin(θ)u1

θ̇ = u2u1/R,

(2)

where (x, y) is the coordinates of the midpoint A of the rear
wheels, θ the vehicle orientation, u1 is the velocity along
the car orientation, u2 is the steering control, and R is the
minimum turning radius. System state space X = (x, y, θ)⊤

coincides with the configuration space, i.e., C = X ⊂ R3.
Problem 2.2: Given an initial configuration X0 ∈ Cfree,

a goal configuration Xf ∈ Cfree, and system (1), find a
feasible path Pt which

(I) starts at X0 and ends at Xf , while satisfying (1); and
(II) lies in the collision-free configuration space Cfree.

Let J(·) be a cost function that assigns to each non-trivial
path a non-negative cost. Optimal path planning is to find a
feasible path P∗

t : [0, 1] → Cfree that minimizes J(·).
Notation: Tree T is a union of a node set V ⊂ Cfree and

an edge set E , i.e., T = (V, E). Without causing confusion,
node and configuration are used interchangeably below. An
edge E(Xi, Xj) ∈ E represents a feasible path between Xi

and Xj . A start tree Ts and a goal tree Tg has X0 and Xf as
its root node, respectively. For a finite set V , |V| denotes the
number of its elements. Let A denote a finite set of control
actions ak ∈ U , and I denote a finite set with its element
∆Tk being bounded real.

B. AGT Algorithm

AGT, described by Algorithms 1-2, tries to construct a
start tree TA, which reaches a neighbor Bϵ(Xf ) of Xf

with Bϵ(Xf ) , {X|d(X,Xf ) ≤ ϵ,∀X ∈ X}. Specifi-
cally, d(·, ·) is a distance function, e.g. a weighted 2-norm:
∥Xi −Xj∥P = ((Xi−Xj)

⊤P (Xi−Xj))
1/2, ∀Xi, Xj ∈ C.

Similar to A*, each node X is assigned a key value through
a heuristic cost function F (·)

F (X) = g(X0, X) + h(X,Xf ), (3)

where g(X0, X) represents the arrival cost, or g-value, from
X0 to X , and h(X,Xf ) denotes the estimated cost-to-go,
or h-value, from X to Xf . F -value (3) for node X is an
estimated cost of a potential path from X0 to Xf while
passing through node X . AGT maintains a priority queue
QA, which contains nodes to be expanded. All nodes in QA

are ordered according to their F -values.
Remark 2.3: The cost-to-go from X to Xf depends on

spatial locations of X and Xf , system dynamics, and obsta-
cles. Accordingly, h(X,Xf ) admits forms such as weighted
p-norm, the length of a Reeds-Shepp path [31], the length
of continuous-curvature paths [32], [33], a combination of
the Reeds-Shepp path length and a collision heuristic [1]. In
both AGT and i-AGT, h(X,Xf ) is defined as the length of
a Reeds-Shepp path in obstacle-free environment.

In the beginning of AGT, both TA and QA have one
element X0. InitializePrimitives pre-computes motion
primitives M. Variable K sets the maximum number of
iterations. At the kth iteration, QA.Pop retrieves node Xbest

with the lowest key value. If Xbest ∈ X\Bϵ(Xf ), node Xbest

will be expanded to grow the tree (lines 8-9); otherwise, the
tree construction stops and returns success. If TA fails to
reach Bϵ(Xf ) within K iterations, AGT returns failure.



Algorithm 1: AGT
1 input X0,K, ϵ, δ,A, I;
2 TA ← (X0, ∅), QA ← X0;
3 M← InitializePrimitives(A, I);
4 k ← 1, flag ← false;
5 while k ≤ K and not flag do
6 k ← k + 1;
7 Xbest = QA.Pop where F (Xbest) ≤ F (X), ∀X ∈ QA;
8 if d(Xbest, Xf ) > ϵ then
9 Expand(TA, QA, Xbest);

10 else
11 flag ← true ;

12 return (TA, f lag);

Always starting from the origin X = 0, a motion primitive
MPk ∈ M is obtained by applying a control action ak ∈ A
to system (1) for a period of ∆Tk. Each control action could
have a distinctive ∆Tk ∈ I. Given a system, a primitive
is uniquely defined by a tuple (ak,∆Tk). Expand, given in
Algorithm 2, conducts expansion of node Xbest according
to motion primitives in M. Parameter δ is introduced to
restrict the density of nodes. Given Xbest and MPk, a new
configuration Xk ∈ Pk and an admissible path Pk from
Xbest to Xk are obtained. As long as Pk is collision-free
and Xk is δ-distant away from tree TA, i.e.,

min
X∈VA

d(Xk, X) ≥ δ,

node Xk and edge E(Xbest, Xk) are added to TA. Node Xk

is pushed into QA for future expansion.

Algorithm 2: Expand in AGT
1 input TA, QA,Xbest;
2 (VA, EA)← TA;
3 k ← 1;
4 while k ≤ |M| do
5 (Xk,Pk) = Simulate(Xbest,MPk);
6 if minX∈VA d(Xk, X) ≥ δ and CollisionFree(Pk)

then
7 VA ← VA

∪
{Xk}, EA ← EA

∪
E(Xbest, Xk);

8 QA.Push(Xk);

9 TA ← (VA, EA);

AGT is similar to Hybrid A [1] and Anytime D [3]. All
three expand a tree according to motion primitives; and node
selection is guided by the heuristic cost (3). Nodes of the
tree might form a non-uniform distribution over Cfree. That
is to say, the sparsity of the tree is not guaranteed. Work [1],
[3] utilize pre-defined state lattices to ensure the uniform
distribution of nodes. This treatment entails a large memory
to store state lattices. Slightly different, AGT enforces the
uniform density by checking whether any new configuration
Xnew is δ-distant from the tree. Because the check is done
online, AGT is subject to loss of computation efficiency,
meanwhile requiring less memory.

Key parameters of AGT are ϵ, δ, I, and A. All need to
be tuned so that AGT behaves decently. The search for a

path essentially boils down to find a sequence of primitives
which steers the robot into Bϵ(Xf ). Intuitively, the smaller ϵ
is, the more challenging and time-consuming the path search
will be. Parameter δ affects the feasibility and computation
efficiency. Roughly speaking, δ defines the resolution of C,
and is related to resolution-completeness. Feasibility-wise,
the smaller δ is, the better. However, a smaller δ typically
leads to a larger tree. Practically, its amplitude is lower-
bounded by accumulated errors result from localization and
path following control systems. Similarly, I and A are
related to resolution-completeness as well as computation
efficiency. Given δ, I and A, one can determine primitives
(ak,∆Tk) by ensuring that all resultant configurations main-
tain a δ-distance from each other.

III. IMPROVED A-SEARCH GUIDED TREE

In AGT, each node gets at most one chance to expand.
This poses a noticeable limitation: all motion primitives
have been applied during node expansion. Recalling why
AGT outperforms breadth first search by sophisticated node
selection, the whole idea of applying all primitives during
node expansion is apparently not necessary and inefficient. i-
AGT is proposed to weaken the limitation, where a node can
be expanded multiple times, and its expansion is biased by
prioritizing motion primitives. i-AGT is strongly incentivized
by scenarios such as city driving or parking, where vehicle
paths can be classified and each class corresponds to a
limited number of motion primitives.

A. i-AGT Algorithm

Basic idea of i-AGT pivots on a concept ‘mode’ which
is associated to a subset of motion primitives Mi ⊂ M.
Assume that the set M is partitioned into m subsets, i.e.,

M =
∪

1≤k≤m

Mk

Mi ∩Mj = ∅, ∀1 ≤ i ̸= j ≤ m.

Given a node X , mode Mi has a priority pMi

X for 1 ≤ i ≤ m;
if primitives in Mi have not been applied in the expansion
of X , we say the corresponding mode is untried at X .

Remark 3.1: As a special case, the set M can be split into
|M| subsets, where each subset corresponds to one primitive.
To simplify the presentation, pseudo-code and discussions
below presume that |Mi| = 1 for 1 ≤ i ≤ m. The special
case reduces i-AGT to greedy search, which is good in
practice. Number of modes and associated primitives deserve
a careful design to balance exploration and exploitation.

Algorithm 3 details Expand of i-AGT. During the expan-
sion of Xbest, a current mode, denoted by Mc, is first deter-
mined by GetCurrentMode. Particularly, GetCurrentMode
enumerates untried modes and returns the mode which has
the highest priority. Then, Xbest is expanded by applying
primitive Mc, which gives Xk and Pk. If Xk is δ-distant
away from TA, and Pk is collision free, then

(I) UpdatePriority updates priority PMc

Xbest
according to

F (Xbest)− F (Xk);



(II) InheritPriority initializes the priority of all modes
of Xk as follows

pMi

Xk
= pMi

Xbest
, 1 ≤ i ≤ m.

(III) node Xk and edge E(Xbest, Xk) are added to TA;
(IV) node Xk is inserted into QA.

Algorithm 3: Expand in i-AGT
1 input TA, QA,Xbest;
2 (VA, EA)← TA;
3 Mc ← GetCurrentMode(Xbest);
4 (Xk,Pk) = Simulate(Xbest,Mc);
5 if minX∈VA d(Xk, X) ≥ δ and CollisionFree(Pk) then
6 UpdatePriority(Xbest);
7 InheritPriority(Xk, Xbest);
8 VA ← VA

∪
{Xk}, EA ← EA

∪
E(Xbest, Xk);

9 QA.Push(Xk);
10 TA ← (VA, EA);

i-AGT contains two key steps: UpdatePriority and
InheritPriority. The former can update pMc

Xbest
in a prob-

abilistic or deterministic manner. With a focus on predictable
path planning, deterministic rules are adopted here. As an
example, UpdatePriority implements the following rules.

(I) If F (Xk) < F (Xbest), the priority pMc

Xbest
is set to 1;

(II) If F (Xk) ≥ F (Xbest), then pMc

Xbest
is reduced. Specif-

ically, pMc

Xbest
is updated according to

pMi

Xbest
= pMi

Xbest
− α(F (Xk)− F (Xbest)),

where α > 0. In an extreme case, pMi

Xbest
= 0.

Remark 3.2: The aforementioned rules render priority
pMi

Xbest
a dynamic process. We ought to ensure pMi

Xbest
is

bounded. This is true if the number of iterations is bounded.
As an alternative, one can always saturate priority variables
to ensure boundedness.

It is worth mentioning that all modes for X0 have the
same pre-defined priority p0, e.g. p0 = 1. This means all
primitives in M will be applied to expand X0.

Properties of UpdatePriority certainly impacts compu-
tation efficiency and completeness of i-AGT. The efficacy of
i-AGT is contingent on: whether the right node and mode can
be determined. We roughly analyze how fast i-AGT can be
versus AGT, by considering an idea case: UpdatePriority
perfectly captures the priority of modes. Suppose that

(I) AGT TAGT includes a path P∗
t which contains nodes

{X∗
1 , . . . , X

∗
N} with X∗

N ∈ Bϵ(Xf );
(II) h(Xk, Xf ) is an exact cost-to-go. This implies that

both AGT and i-AGT will select nodes {X∗
1 , . . . , X

∗
N}

sequentially without expanding any other nodes;
(III) each subset Mi contains the same number of primi-

tives: |Mi| = |M|/m.
For the ideal case, i-AGT yields a tree containing as many
nodes as one-mth of TAGT . Argument follows. Each node
in TAGT is expanded by applying M and thus has |M|
children. TAGT contains |M |×N nodes. For i-AGT, provided
that UpdatePriority exactly knows the priority of modes,

GetCurrentMode returns the correct mode of node X∗
k . One

shows, by induction, that for 1 ≤ k ≤ N , i-AGT sequentially
(I) selects node X∗

k as AGT does;
(II) expands X∗

k according to the best mode, and thus each
node contains |M|/m children including X∗

k+1;
(III) yields a tree TiAGT contains |M| ×N/m nodes.

B. Completeness

As shown below, completeness of i-AGT requires that
all modes be visited if necessary. This property is related
to GetCurrentMode and boundedness of priority. Recall
GetCurrentMode locates the mode with the highest priority
among untried modes. Any mode can be visited as long as
priority is finite, no matter how low its priority is. Without
loss of generality, this property is assumed in analysis.

Proposition 3.3: The i-AGT is resolution-complete if and
only if AGT is resolution-complete.

Proof: Proof is omitted due to space limitation.
Remark 3.4: Let i-AGT uses (3) where h(Xk, Xf ) offers

a lower bound estimate of a cost-to-go toward Xf from Xk.
Then i-AGT is reduced to AGT, because

F (Xbest) = g(X0, Xbest) + h(Xbest, Xf )

≤ g(X0, Xbest) + c(Xbest, Xk) + h(Xk, Xf )

= F (Xk),

and Expand will apply all primitives in M to Xbest. In other
words, i-AGT necessitates the use of an inflated heuristic
cost to exhibit computational benefits: ρh(Xk, Xf ) with
ρ > 1. This also implies i-AGT is sub-optimal. By using
ρh(Xk, Xf ), anytime A and D prioritize nodes with a lower
heuristic cost. Analogously, i-AGT runs in anytime fashion
by prioritizing primitives having higher priority.

IV. BI-DIRECTIONAL A-SEARCH GUIDED TREE

This section investigates means to better estimate the
cost-to-go, which is challenging but critical to computation
efficiency. We propose BAGT which concurrently constructs
a goal tree Tg in addition to a start tree Ts. Exploring
environment near the goal, Tg produces arrival costs which
allow a better estimate of the cost-to-go for nodes in Ts.

A. BAGT Algorithm

Algorithm 4 describes the main flow of BAGT. It con-
structs a start tree Ts arriving at Bϵ(Xf ) (lines 9-10). A
distinguishable feature is that a goal tree Tg is constructed
along with Ts (lines 14-15). Unlike D*, where Tg manages
to touch Bϵ(X0), here Tg helps the construction of Ts via
finding out obstacles close to Xf and better estimating the
cost-to-go of nodes on Ts. Therefore, the construction of Tg
will stop (line 13) if it is close to Ts. Variable flagg is true
if Tg and Ts are close.

Key feature of BAGT is the way to compute the heuristic
cost (3), specifically the estimated cost-to-go. As shown in
Algorithm 5, Expand works on node Xbest ∈ Ts, which
means TA = Ts, TB = Tg. The expansion leads to an
admissible node Xk, which is checked against all nodes on
TB . If it is within µ-distance from one node in TB (line



Algorithm 4: BAGT
1 input X0,K, ϵ, δ,A, I, µ, γ;
2 Ts ← (X0, ∅), Qs ← X0;
3 Tg ← (Xf , ∅), Qg ← Xf ;
4 M← InitializePrimitives(A, I);
5 k ← 1, flag ← false, flagg ← false ;
6 while k ≤ K and not flag do
7 k ← k + 1;
8 Xbests = Qs.Pop where F (Xbests) ≤ F (X),∀X ∈ Qs;
9 if d(Xbests,Xf ) > ϵ then

10 flagg ← Expand(Ts, Qs,Xbests, Tg);
11 else
12 flag ← true ;
13 if not (flagg or flag) then
14 Xbestg = Qg.Pop where

F (Xbestg) ≤ F (X),∀X ∈ Qg;
15 flagg ← Expand(Tg, Qg, Xbestg, Ts);

16 return (Ts, f lag);

7), flagg is set true. Procedure UpdateCost calculates the
heuristic cost F (Xk) as follows. It first finds all nodes on
TB which are close to Xk, i.e.,

Xnear , {X|d(X,Xk) ≤ γ, ∀X ∈ VB},

where γ is a tuning parameter. If Xnear is not empty, then

h(Xk, Xf ) = min
Xi∈Xnear

{h(Xk, Xi) + g(Xf , Xi)},

where g(Xf , Xi) is the arrival cost from Xf to Xi, inferred
from the goal tree. If Xnear is empty, then

h(Xk, Xf ) = h(Xk, Xnearest) + g(Xf , Xnearest)},

where Xnearest = argminX∈VB
d(Xk, X).

Algorithm 5: Expand in BAGT
1 input TA, QA,Xbest,M, TB;
2 (VA, EA)← TA, (VB , EB)← TB;
3 k ← 1, f lagg ← false;
4 while k ≤ |M| do
5 (Xk,Pk) = Simulate(Xbest,MPk);
6 if minX∈VA d(Xk, X) ≥ δ and CollisionFree(Pk)

then
7 if minX∈VB d(Xk, X) ≤ µ then
8 flagg ← true;
9 Xk.UpdateCost;

10 VA ← VA
∪
{Xk}, EA ← EA

∪
E(Xbest, Xk);

11 QA.Push(Xk);

12 TA ← (VA, EA);
13 return flagg;

UpdateCost is depicted in Fig. 1, which includes a start
tree in olive, a goal tree in black, a circular obstacle in gray,
and many dots representing nodes. Suppose that expansion
of Xbest ∈ Ts gives two admissible child nodes: Xk1, Xk2.
Xk1.UpdateCost draws around Xk1 a green circle of radius
γ and identifies that Xnear contains one element Xg ∈ Tg .
The heuristic cost of Xk1 is:

FBAGT (Xk1) = g(X0, Xk1) + h(Xk1, Xg) + g(Xf , Xg).

After identifying Xg based on the magenta circle,
Xk2.UpdateCost computes the heuristic cost as follows

FBAGT (Xk2) = g(X0, Xk2) + h(Xk2, Xg) + g(Xf , Xg).

Oppositely, AGT uses the heuristic costs

FAGT (Xk1) = g(X0, Xk1) + h(Xk1, Xf )

FAGT (Xk2) = g(X0, Xk2) + h(Xk2, Xf ),

where h(Xk1, Xf ), h(Xk2, Xf ) do not account for the ob-
stacle. If g(Xf , Xg) contains information about the obsta-
cle, FBAGT (Xk2) and FBAGT (Xk1) intuitively offer better
estimates than FAGT (Xk2) and FAGT (Xk1). Consistently,
tree Ts will grow toward Tg; and AGT likely grows Ts by
adding nodes in blue (toward the obstacle). Noticing that
FBAGT (X) > FAGT (X) if h(Xk, Xf ) underestimates the
cost-to-go, and we know BAGT is sub-optimal.

X0
Xf

Xg

Xbest

Xk1

Xk2

γ

Fig. 1. Schematics to estimate cost-to-go

V. CASE STUDIES

Three algorithms, AGT, i-AGT and BAGT, are coded to
solve Problem 2.2 with system kinematics (2). Simulation is
conducted in Matlab R⃝2016b.

TABLE I
COMPUTATION TIME

Alg. Case 1 Case 4 Case 5 Case 6 Case 12 Case 14
AGT 0.69 5.11 0.17 3.74 1.12 1.39

i-AGT 0.46 1.82 0.04 1.89 0.65 0.60
BAGT 0.62 0.77 0.18 0.61 0.88 2.45

As shown in Figs. 2-4, all test cases in simulation are
motivated by moving a vehicle inside parking lots. Partic-
ularly, the vehicle starts at the configuration represented by
the black box, and moves into the configuration denoted by
the red box. All parking lots and obstacles are abstracted as
rectangles. The vehicle has a length of 4.85m, width 1.81m,
and minimum turning radius 4.13m.

All algorithms use the same parameter values: ∆T =
0.175s, ϵ = 2, δ = 0.04, ρ = 1.25. BAGT has parameters:
µ = γ = 5. Take A = V × S with V = {±1} and
S = {±1,±0.5, 0}, where S and V is the action set of
steering angle and longitudinal velocity, respectively. The set
A and ∆T induces 10 motion primitives. For i-AGT, these
motion primitives are split into two modes:

(I) forward mode M1 (∆T is omitted for simplicity):

{(1, 1), (1, 0.5), (1, 0), (1,−0.5), (1,−1)};



(II) backward mode M2 (∆T is omitted for simplicity):

{(−1, 1), (−1, 0.5), (−1, 0), (−1,−0.5), (−1,−1)}.

At X0, take pM1

X0
= pM2

X0
= 1. Since only two modes are

involved, pMk

X for k = {1, 2} take binary values {0, 1}.
Algorithms are evaluated in terms of computation effi-

ciency and path quality. The former is measured by com-
putation time and complexity of trees, whereas the latter is
quantified by path length. Numerous cases have been tested,
which lead to similar conclusions. Results are summarized
in Tables I-III and Figs. 2-4, while many details are left
out, due to space limitation. Computation time and the node
number of trees are recorded in Table I-II, indicating that i-
AGT is significantly faster for all test cases, whereas BAGT
is mostly effective but not always. Table III shows that both
i-AGT and BAGT lead to slightly degraded paths. Figs. 2-
4 plot trees produced by three algorithms. We draw several
interesting observations

(I) i-AGT and AGT produce trees with similar (spatial)
shape; the difference is that the former exhibits a
sparser distribution. This is consistent with the fact that
i-AGT applies less primitives during node expansion;

(II) BAGT produces a tree which is remarkably different
from the other two, owing to distinctive mechanisms
underlying algorithms. This implies promising synergy
of integrating BAGT and i-AGT;

(III) BAGT performs worse than AGT for case 14, because
initially the goal tree grows in the wrong direction
(right turn). Consequently, its exploration produces
erroneous information which confuses the start tree;

(IV) the benefits of BAGT are not compelling for simply
cases (cases 1 and 5). This is understood due to the
fact that the heuristic cost used in AGT offers good
enough estimate, given simple environments.

TABLE II
NODE NUMBER IN THE TREE

Alg. Case 1 Case 4 Case 5 Case 6 Case 12 Case 14
AGT 969 6339 505 5437 1476 2450

i-AGT1 537 2465 68 2570 592 950
BAGT 612 1325 379 988 1094 3191

TABLE III
PATH LENGTH

Alg. Case 1 Case 4 Case 5 Case 6 Case 12 Case 14
AGT 25 41 29 44 38 57

i-AGT 26 41 27 45 38 57
BAGT 26 43 31 44 39 57

VI. CONCLUSION AND FUTURE WORK

This work proposed i-AGT and BAGT to fulfill fast
kinodynamic planning. With prioritized motion primitives,
i-AGT improves computation efficiency over AGT by mi-
croscopically biasing node expansion. Concentrating on node
selection, BAGT provides an option to improve the estimated
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Fig. 2. Tree complexity: cases 1 & 5

cost-to-go. Both algorithms exhibit preferably deterministic
performance. Numerical simulation demonstrates their effec-
tiveness. Future work includes: understand why BAGT fails,
fuse i-AGT and BAGT for efficiency, improve path quality,
and construct motion primitives to reduce complexity.
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