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Abstract
In conventional point cloud delivery, a sender uses octree-based digital video compression
to stream threedimensional (3D) points and the corresponding color attributes over band-
limited links, e.g., wireless channels, for 3D scene reconstructions. However, the digital-based
delivery schemes have an issue called cliff effect, where the 3D reconstruction quality is a step
function in terms of wireless channel quality. We propose a novel scheme of point cloud deliv-
ery, called HoloCast, to gracefully improve the reconstruction quality with the improvement
of wireless channel quality. HoloCast regards the 3D points and color components as graph
signals and directly transmits lineartransformed signals based on graph Fourier transform
(GFT), without digital quantization and entropy coding operations. One of main contri-
butions in HoloCast is that the use of GFT can deal with non-ordered and non-uniformly
distributed multidimensional signals such as holographic data unlike conventional delivery
schemes. Performance results with point cloud data show that HoloCast yields better 3D
reconstruction quality compared to digital-based methods in noisy wireless environment.
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Abstract—In conventional point cloud delivery, a sender
uses octree-based digital video compression to stream three-
dimensional (3D) points and the corresponding color attributes
over band-limited links, e.g., wireless channels, for 3D scene
reconstructions. However, the digital-based delivery schemes have
an issue called cliff effect, where the 3D reconstruction quality is
a step function in terms of wireless channel quality. We propose
a novel scheme of point cloud delivery, called HoloCast, to grace-
fully improve the reconstruction quality with the improvement
of wireless channel quality. HoloCast regards the 3D points and
color components as graph signals and directly transmits linear-
transformed signals based on graph Fourier transform (GFT),
without digital quantization and entropy coding operations. One
of main contributions in HoloCast is that the use of GFT
can deal with non-ordered and non-uniformly distributed multi-
dimensional signals such as holographic data unlike conventional
delivery schemes. Performance results with point cloud data show
that HoloCast yields better 3D reconstruction quality compared
to digital-based methods in noisy wireless environment.

I. INTRODUCTION

Holographic displays [1], [2] have emerged as attractive
interface techniques for reconstructing three dimensional (3D)
scenes that provide full parallax and depth information for
human eyes. 3D holographic display can be widely used for
many applications: entertainment, remote device operation,
medical imaging, and simulated training as shown in Fig. 1.
Point cloud [3] is one of data structures to reconstruct 3D
scenes/objects on the holographic display [4]. Point cloud is a
set of 3D points, and each point is defined by 3D coordinates,
i.e., (X, Y, Z) and color attributes, i.e., (R, G, B) or (Y, U, V).

In contrast to conventional two dimensional (2D) images,
3D points in point cloud data are not ordered and are non-
uniformly distributed in space. One of major issues in point
cloud delivery is how to compress and send such numerous
and irregular structure of 3D points while maintaining high
3D reconstruction quality on displays. For example, when the
number of 3D points is 800,000, the amount of traffic without
any compression is approximately 38 Mbits [5]. Large traffic
causes low reconstruction quality in point cloud delivery over
limited data rate links, especially, wireless communications.

For point cloud compression over wireless links, con-
ventional encoders, such as popular Point Cloud Library
(PCL) [6], [7], use octree decomposition, prediction, quan-
tization, and entropy coding. Specifically, a sender first de-
composes point cloud into multiple 3D point sets [8] and
takes quantization and entropy coding for each point set to

(a) light detection and ranging (LIDAR) scenario [9]

(b) AR/VR scenario [10]

Fig. 1. Examples of holographic applications.

generate the compressed bitstream for transmissions. Here,
the compression rate of the bitstream is adaptively selected
according to the wireless channel quality. After the com-
pression, the transmission part uses a channel coding and
digital modulation scheme to reliably transmit the compressed
bitstream over wireless channels. High-quality transmissions
of point clouds over wireless links can realize immersive video
applications such as virtual reality and augmented reality on
wireless devices as shown in Fig. 2.

However, the conventional schemes of point cloud delivery



Fig. 2. Wireless point cloud delivery for immersive video applications.

suffer from the following problems due to the wireless channel
unreliability. First, the encoded bitstream is highly vulnerable
for bit errors [11]. When the channel signal-to-noise ratio
(SNR) falls under a certain threshold, possible few bit errors
occurred in the bitstream during communications can cause a
synchronization problem in point cloud decoding. As a result,
the display does not reconstruct 3D scenes, and thus the re-
construction quality degrades significantly. This phenomenon
is called cliff effect [12]. Second, the reconstruction quality
does not improve even when the wireless channel quality is
improved unless an adaptive rate control of source and channel
coding is performed in real-time according to the rapid fading
channels. This is called leveling effect. Finally, quantization
is a lossy process and its distortion cannot be recovered at the
receiver.

As mentioned above, conventional point cloud transmissions
have two challenging issues over wireless links: 1) cliff effect
and 2) leveling effect. To overcome these issues, we propose
a new point cloud transmission scheme to reconstruct 3D
scenes in high quality on holographic displays. The key idea of
this scheme is skipping nonlinear operations, i.e., quantization
and entropy coding, in point cloud coding. For high-quality
delivery, this study considers 3D points as vertices in a
graph G, with edges between nearby vertices to deal with
irregular structure motivated by [13], [14]. Each point p has
attributes of 3D coordinates and color components, and those
attributes are regarded as signals residing on the vertices of
the graph. The proposed scheme takes graph Fourier transform
(GFT) [15], [16] for each attribute in graph signals to compact
the signal power, whose output is then scaled and directly
mapped to transmission signals without relying on digital
modulation schemes. The advantage of this modification lies
in a fact that the point distortion due to communication
noise is proportional to the magnitude of the noise, resulting
into graceful reconstruction quality according to the wireless
channel quality, without any cliff effect and leveling effect.
We demonstrate that the proposed point cloud delivery scheme
achieves graceful reconstruction quality with the improvement
of wireless channel quality and better reconstruction perfor-
mance compared to the conventional digital-based schemes.
For example, HoloCast achieves 39.45 dB and 32.48 dB

improvement in the attributes of the 3D coordinates and color
components, respectively, in terms of mean squared error
(MSE) compared with the digital-based delivery schemes.

Related Works and Our Contributions: Soft video de-
livery schemes have been recently proposed for multi-
dimensional ordered video signals in [17]–[20]. For example,
SoftCast [17] was designed for 3D ordered video signals to
realize graceful video delivery. They skip quantization and
entropy coding, and uses 3D discrete-cosine transform (DCT)
and analog modulation, which maps DCT coefficients directly
to transmission signals, to ensure that the received video qual-
ity is proportional to wireless channel quality. FoveaCast [18]
considers the foveation characteristic of human vision into
soft video delivery of 2D ordered video signals to achieve
higher visual perceptual quality. FreeCast [20] extended the
soft video delivery towards 5D ordered multi-view video plus
depth (MVD) signals. They use 5D-DCT for decorrelation and
directly send the coefficients to realize graceful quality im-
provement with the improvement of wireless channel quality.

Our study realizes soft coding and decoding for point cloud
delivery. Although existing schemes of soft video delivery deal
with ordered and uniformly distributed video signals, point
cloud delivery needs to handle non-ordered and non-uniformly
distributed points in coding and decoding. To this end, the
proposed scheme has the following major contributions:
• We regard point clouds as graph signals with the attributes

of 3D coordinates and color components to deal with
irregular structure of holographic data formats.

• We introduce GFT and analog modulation for graph
signals to exploit correlations in graph-domain for per-
formance improvement.

• We discuss an impact of graph Laplacian variants and
adjacency hyperparameters on 3D scene reconstruction
quality.

• We demonstrate that GFT-based HoloCast achieves grace-
ful 3D reconstruction quality with a significant per-
formance improvement over digital-based point cloud
delivery.

II. HOLOCAST: GRACEFUL POINT CLOUD DELIVERY

The objectives of our study are 1) to prevent cliff effect
in 3D scene reconstruction and 2) to gracefully improve re-
construction quality with the improvement of wireless channel
quality.

Fig. 3 shows the overview of proposed HoloCast. The en-
coder first performs GFT for 3D points and the corresponding
colors, i.e., graph signals. The GFT coefficients are then scaled
and analog-modulated according to the signal power infor-
mation for wireless transmissions. Next, the encoder sends
the analog modulated symbols to the receiver over a wireless
channel, which is often impaired with additive white Gaussian
noise (AWGN) and time-varying fading. At the receiver side,
the decoder uses minimum mean-square error (MMSE) filter
to obtain the transmitted GFT coefficients. The decoder finally
takes inverse GFT to reconstruct 3D coordinates and color
components for display.



Fig. 3. Overview of HoloCast for graceful point cloud delivery.

A. Encoder

We first represent 3D points and color components using
a weighted and undirected graph G = (V ,E,W ) where V
and E are the vertex and edge sets of G, respectively. W
is an adjacency matrix having positive edge weights and the
(i, j)th entryWi,j represents the weight of an edge connecting
vertices i and j. For the graph G = (V ,E,W ), we consider
the attributes of the point cloud, i.e., the 3D coordinates p =
[x, y, z]T ∈ R3×N and the color components c = [y, u, v]T ∈
R3×N as signals that reside on the vertices in the graph (N is
the number of vertices). From the attributes, each weight Wi,j

can be calculated, e.g., by the Gaussian kernel as follows:

Wi,j = exp

(
−||pi − pj ||

2
2

κ

)
, (1)

where pi represents the 3D coordinates of point i and κ
is a hyperparameter. In HoloCast, we use either the sample
variance or the standard deviation of distances across all the
points for the hyperparameter κ. A sender then transforms
the graph signals into spectral representation using GFT. The
GFT is defined through the graph Laplacian operator L using
edge weight matrix W and degree matrix D, where D is the
diagonal degree matrix whose ith diagonal element is equal
to the sum of the weights of all the edges incident to vertex
i. Specifically, the diagonal matrix is represented as:

Di,j =

{∑N
n=1Wi,n, if i = j,

0, otherwise.
(2)

Based on the degree matrix, we can calculate some variants
of the graph Laplacian matrix [21]:

L =D −W , (3)

L = I −D−1/2WD−1/2, (4)

L =D−1W , (5)

L = I −D−1W , (6)

where I denotes an identity matrix of proper dimension. We
refer to each graph Laplacian matrix as regular, normalized,
transition, and random-walk Laplacian, respectively. We will
discuss the impact of those graph Laplacian matrices on
the delivery quality in Section III-C. In general, the graph
Laplacian is a real symmetric matrix that has a complete set
of orthonormal eigenvectors with corresponding nonnegative

eigenvalues. To obtain the eigenvectors and eigenvalues, the
eigen decomposition of the Laplacian matrix is performed as:

L = Φ∆Φ−1, (7)

where Φ is the eigenvectors matrix and ∆ is a diagonal matrix
containing the eigenvalues.1 The multiplicity of the smaller
eigenvalue indicates the number of connected components of
the graph. The GFT coefficients of each attribute of graph
signals f ∈ RN are obtained by multiplying the graph-based
transform basis matrix by the corresponding attribute vector
as follows:

s = fΦ, (8)

where s is a vector of GFT coefficients corresponding to
the graph signals of f . After power allocation for each GFT
coefficient, the GFT coefficients are mapped to I (in-phase)
and Q (quadrature-phase) components for analog wireless
transmissions.

Let xi denote the ith analog-modulated symbol, which is
the ith GFT coefficient si of all the attributes scaled by a
factor of gi for noise reduction as follows:

xi = gi · si. (9)

The optimal scale factor gi is obtained by minimizing the MSE
under the power constraint with a total power budget of P as
follows:

min
{gi}

MSE = E
[
(si − ŝi)2

]
=

N∑
i

σ2λi
g2i λi + σ2

, (10)

s.t.
1

N

N∑
i

g2i λi = P, (11)

where E[·] denotes expectation, ŝi is a receiver estimate of the
transmitted GFT coefficient, λi is the power of the ith GFT
coefficient, N is the number of GFT coefficients, and σ2 is
a receiver noise variance. As shown in [17], the near-optimal
solution is expressed as

gi = λ
−1/4
i

√
NP∑
j

√
λj
. (12)

1For non-diagonalizable graph Laplacian matrix, the singular value decom-
position (SVD) is instead used to express as L = Ψ∆Φ−1 where Ψ , ∆
and Φ denote left singular vectors matrix, diagonal matrix containing singular
values, and right singular vectors matrix, respectively. In this case, we use the
right singular vectors of Φ as the graph-based transform basis matrix Φ.



B. Decoder

Over the wireless links, the receiver obtains the received
symbol, which is modeled as follows:

yi = xi + ni, (13)

where yi is the ith received symbol and ni is an effective
AWGN with a variance of σ2 (which is already normalized
by wireless channel strength in the presence of fading at-
tenuation). The GFT coefficients are extracted from I and Q
components via an MMSE filter [17]:

ŝi =
giλi

g2i λi + σ2
· yi. (14)

The decoder then reconstructs corresponding graph signals f̂ ,
i.e., attributes of 3D coordinates and color components, by
taking the inverse GFT for the filtered GFT coefficients in
each attribute ŝ as follows:

f̂ = ŝ Φ−1. (15)

C. Analog Compression for Limited Bandwidth

The previous designs assume that the sender has enough
bandwidth to transmit all the coefficients in the spectral
domain over the wireless medium. If the available bandwidth
and/or time resources are restricted for wireless channel use,
it has to selectively transmit the coefficients to fit the available
bandwidth. For such cases, our scheme sorts the coefficients
in descending order of the power and picks higher-power
coefficients to fill the bandwidth. When the sender discards
a coefficient, the receiver regards the discarded coefficient
as zero. As a result, a sort of data compression can be
accomplished even for analog-based video delivery. Even
when some coefficients are discarded to reduce the amount
of data, the receiver can still achieve a graceful video quality
until reaching the distortion limit due to the compression.

III. PERFORMANCE EVALUATION

A. Simulation Settings

Performance Metric: We evaluate the reconstruction quality
of point cloud delivery in terms of the symmetric MSE based
on [22] in each attribute of 3D coordinates p and color
components c. The symmetric MSE of the 3D coordinates,
sMSExyz, can be obtained as follows:

sMSExyz =
1

2

(
d(porg → pdec) + d(pdec → porg)

)
, (16)

where porg is the original 3D coordinates and pdec is the
decoded 3D coordinates. Here, each way of the asymmetric
MSE in the 3D coordinates are defined as follows:

d(porg → pdec) =
1

N

∑
p∈porg

(
min

p′∈pdec

∥∥p− p′∥∥2
2

)
, (17)

d(pdec → porg) =
1

N

∑
p∈pdec

(
min

p′∈porg

∥∥p− p′∥∥2
2

)
. (18)

The symmetric MSE of the color components, sMSEyuv, is
derived analogously as follows:

sMSEyuv =
1

2

(
d(corg → cdec) + d(cdec → corg)

)
, (19)

where corg and cdec are the original and decoded color
components, respectively. In this case, the asymmetric MSE
of the color component is defined as follows:

d(corg → cdec) =
1

N

∑
c∈corg

(∥∥c− cdec(p′min)
∥∥2
2

)
,

p′min = arg min
p′∈pdec

∥∥porg − p′∥∥22, (20)

d(cdec → corg) =
1

N

∑
c∈cdec

(∥∥c− corg(p′′min)
∥∥2
2

)
,

p′′min = arg min
p′′∈porg

∥∥pdec − p′′∥∥22, (21)

where cdec/org(p) represents the color components of the
corresponding 3D coordinates p.
Point Cloud Dataset: We use the reference point clouds,
namely, pencil 10 0, pencil 9 0, and office1, whose num-
ber of points N is 2,731, 6,712, and 307,200, respectively. We
first focus on pencil 10 0 to compare between HoloCast and
digital-based delivery. The performance at a different number
of 3D points will then be evaluated with pencil 9 0. In
addition, we demonstrate the visual quality for the point cloud
data of office1 in Section III-E.
Wireless Settings: The received symbols are impaired by an
AWGN channel. For digital-based schemes, we use a rate-1/2
convolutional codes with a constraint length of 10. The digital
modulation formats are either quadrature phase-shift keying
(QPSK), 16-ary quadrature-amplitude modulation (16QAM),
or 256-ary QAM (256QAM).
Digital Point Cloud Coder: We compare HoloCast with
the conventional digital-based delivery, which is based
on point cloud digital compression used in PCL [6].
We consider two default profiles for compression:
LOW RES OFFLINE COMPRESSION WITH COLOR
and MED RES OFFLINE COMPRESSION WITH COLOR.
Note that this digital-based PCL point cloud delivery does
not exploit GFT, while there exist recent work of GFT-based
digital compression schemes to improve the efficiency, e.g.,
[13], [14]. Because the primary objective of our paper is a
preliminary demonstration of a new soft delivery technique
for point cloud data, we focus on widely used PCL-based
digital delivery for benchmark performance comparisons in
this paper. Nevertheless, we plan to compare our HoloCast
with GFT-based digital compression methods in near future.

B. HoloCast vs. Digital-based Schemes

We first evaluate the quality of HoloCast and conventional
digital-based schemes. Fig. 4 (a) shows the MSE of 3D coor-
dinate attributes p in the digital-based scheme and HoloCast
as a function of wireless channel SNRs. Here, HoloCast uses
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Fig. 4. MSE of 3D coordinates and color attributes in digital-based schemes
and HoloCast for pencil 10 0 (N = 2731).

the sample variance of point distances as the hyperparameter
κ and the random-walk matrix for the graph Laplacian L.
In addition, we consider additional two HoloCast schemes to
demonstrate an impact of GFT on quality improvement: DCT-
based decorrelation and no decorrelation. From evaluation
results in Fig. 4 (a), we can see the following observations:
• HoloCast gracefully improves the reconstruction quality

of 3D coordinate attributes with the improvement of
wireless channel quality.

• Digital-based schemes suffer from cliff effect at low
channel SNR regimes because bit errors cause synthesis
errors of entropy decoding and leveling effect at high
channel SNR regimes due to quantization errors.

• GFT-based HoloCast can achieve better MSE compared
with DCT-based HoloCast and HoloCast w/o decorrela-
tion. GFT can utilize correlations of non-ordered and non-
uniformly distributed 3D points by treating the 3D point
data as graph signals.

For example, HoloCast achieves 30.1 dB and 8.9 dB improve-

ment compared with HoloCast without decorrelation and DCT-
based HoloCast on average across the channel SNRs between
0 dB and 30 dB, respectively.

Fig. 4 (b) also shows the MSE of color component attributes
in the digital-based scheme and HoloCast as a function of
wireless channel SNRs. Even in the attributes of the color
components, HoloCast realizes graceful quality improvement
with the improvement of wireless channel quality. In digital-
based schemes, they have low reconstruction quality even
in high channel SNR regimes. It suggests that GFT-based
decorrelation has a great advantage to represent point clouds
with higher reconstruction quality.

For further quality improvement in color components, we
can consider the bilateral Gaussian kernel [23] in each weight
Wi,j to decorrelate color components more efficiently. Specif-
ically, Eq. (1) will be modified as follows:

Wi,j = exp

(
−
(
‖pi − pj‖22

κp
+
‖ci − cj‖22

κc

))
, (22)

where κp and κc are hyperparameters for 3D coordinates and
color components, respectively. Our evaluation in the quality
of color components verified that the use of bilateral kernel
in (22) instead of (1) can offer additional 6.64 dB gain on
average across the channel SNRs between 0 dB and 30 dB.

C. Impacts of Graph Laplacian Matrix and Adjacency Hyper-
parameters

In the previous section, we evaluated the performance of
HoloCast using the random-walk graph Laplacian matrix L
and variance-based hyperparameter κ. In HoloCast, different
types of graph Laplacian matrix can be used to encode/decode
graph signals. In addition, the weight matrix W under con-
sideration in Eq. (1) highly depends on the value of Gaussian
kernel hyperparameter κ. For the calculation of κ, the sample
variance (var) or the standard deviation (std) of point distances
is often used. In this section, we discuss the effects of graph
Laplacian matrix and hyperparameter on the reconstruction
quality in detail.

Figs. 5 (a) and (b) show the MSE of 3D coordinate and color
component attributes in HoloCast, respectively, with different
graph Laplacian matrix and hyperparameter as a function of
wireless channel quality. The key results from these figures
are summarized as follows:
• The random-walk Laplacian matrix with the hyperparam-

eter of standard deviation achieves the best performance
in 3D coordinate attributes while the regular Laplacian
matrix with the hyperparameter of variance yields the best
quality in the color component attributes.

• When we use the normalized and transition matrices as
the graph Laplacian operator, the sender should use the
standard deviation as the hyperparameter.

• Interestingly, HoloCast with the random-walk Laplacian
matrix achieves better 3D coordinate reconstruction us-
ing the hyperparameter of the variance, while achieving
high-quality color components reconstruction using the
hyperparameter of the standard deviation.
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Fig. 5. MSE of 3D coordinates and color attribute in HoloCast with different
graph Laplacian matrix and hyperparameters for pencil 10 0 (N = 2731).

How to optimize weight matrix and Laplacian matrix is still
an open problem. We leave rigorous analysis as future work.

D. Impacts of Different Point Clouds

Previous sections use relatively small number of 3D points
N = 2731 to demonstrate the benefit of HoloCast. In this
section, we consider a larger number of 3D points as the test
point cloud to show the scalability of the proposed HoloCast.
Figs. 6 (a) and (b) show the MSE of 3D coordinate and
color component attributes in HoloCast, respectively, for the
point cloud data of pencil 9 0 (N = 6712). Compared
with a small number of 3D points in Figs. 4 (a) and (b),
HoloCast achieves better reconstruction quality in both 3D
coordinates and color components. For example, HoloCast
achieves 15.6 dB and 2.4 dB improvement on average across
the channel SNRs between 0 dB and 30 dB, respectively.

E. Visual Quality

Finally, Fig. 7 compares the visual quality of HoloCast
and digital-based schemes for the reference point cloud of
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Fig. 6. MSE of 3D coordinates and color attribute in HoloCast with different
decorrelation transform for pencil 9 0 (N = 6712).

office1. We consider the digital-based scheme with QPSK
modulation format at a channel SNR of 10 dB, where the
compressed bitstream can be successfully transmitted to the
receiver over wireless channels. Here, HoloCast uses DCT
for the decorrelation of the point cloud. The MSE of color
attributes achieved by the digital-based scheme is −12.93 dB,
whereas −56.38 dB and −72.01 dB are achieved by HoloCast
at wireless channel SNRs of 10 dB and 20 dB, respectively.
From the snapshots, we can observe that the digital-based
scheme provides lower-quality point cloud (color degradation
at the door). In contrast, HoloCast gracefully improves the
reconstruction quality according to available wireless channel
quality. Specifically, HoloCast can reproduce a clean 3D scene
with details at a higher channel SNR of 20 dB.

IV. CONCLUSION

In this paper, we proposed HoloCast to realize graceful point
cloud delivery over wireless links/networks. In contrast to
conventional 2D images, 3D point cloud data are not ordered



(a) Original (b) Digital QPSK (SNR: 10dB)
sMSExyz: −50.75 dB
sMSEyuv: −12.93 dB

(c) HoloCast (SNR: 10dB)
sMSExyz: −40.47 dB
sMSEyuv: −56.38 dB

(d) HoloCast (SNR: 20dB)
sMSExyz: −55.85 dB
sMSEyuv: −72.01 dB

Fig. 7. Snapshot of office1 in digital-based and HoloCast schemes.

and are non-uniformly distributed in space. HoloCast regards
the 3D points and color components as graph signals and
directly transmits linear-transformed signals based on GFT.
Evaluation results with several point cloud data showed that
HoloCast yields better reconstruction quality even at low
wireless channel SNR regimes. Feasibility study over practical
experiments for various datasets with reduced amount of
metadata will be conducted as future work.
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