
MITSUBISHI ELECTRIC RESEARCH LABORATORIES
http://www.merl.com

Space-Time Slicing: Visualizing Object Detector
Performance in Driving Video Sequences

Lee, T.-Y.; Wittenburg, K.B.

TR2019-024 June 05, 2019

Abstract
Development of object detectors for video in applications such as autonomous driving requires
an iterative training process with data that initially requires human labeling. Later stages of
development require tuning a large set of parameters that may not have labeled data available.
For each training iteration and parameter selection decision, insight is needed into object
detector performance. This work presents a visualization method called Space-Time Slicing
to assist a human developer in the development of object detectors for driving applications
without requiring labeled data. Space-Time Slicing reveals patterns in the detection data
that can suggest the presence of false positives and false negatives. It may be used to setsuch
parameters as image pixel size in data preprocessing and confidence thresholds for object
classifiers by comparing performance across different conditions.

IEEE Pacific Visualization Symposium (PacificVis)

This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all
such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all
applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require
a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved.

Copyright c© Mitsubishi Electric Research Laboratories, Inc., 2019
201 Broadway, Cambridge, Massachusetts 02139

Space-Time Slicing: Visualizing Object Detector Performance in Driving
Video Sequences

Teng-Yok Lee* Kent Wittenburg †

Mitsubishi Electric Research Laboratories

ABSTRACT

Development of object detectors for video in applications such as
autonomous driving requires an iterative training process with data
that initially requires human labeling. Later stages of development
require tuning a large set of parameters that may not have labeled
data available. For each training iteration and parameter selection
decision, insight is needed into object detector performance. This
work presents a visualization method called Space-Time Slicing to
assist a human developer in the development of object detectors
for driving applications without requiring labeled data. Space-Time
Slicing reveals patterns in the detection data that can suggest the
presence of false positives and false negatives. It may be used to set
such parameters as image pixel size in data preprocessing and con-
fidence thresholds for object classifiers by comparing performance
across different conditions.

1 INTRODUCTION

Object detection is a computer vision technique needed for multiple
applications, including video surveillance, robot navigation, infras-
tructure asset monitoring, and autonomous driving. Given an image,
the goal of object detection is to locate image patches that contain
objects, and classify the patches into object categories, such as vehi-
cles and pedestrians in driving video frames. Rather than developing
new object detection algorithms from scratch, R&D engineers often
adapt existing object detection algorithms and work to achieve opti-
mal accuracy in a new domain. Nowadays the implementations of
many state-of-the-art object detectors are publicly available, includ-
ing Fast RCNN [12], Faster RCNN [21], YOLO (You Only Look
Once) [19], and SSD (Single Shot Detector) [17]. However, adapting
these implementations to new domain applications is still tedious.
The common development procedure may start with some labeled
data, some new data, and one or more candidate object detection
systems. In subsequent stages, the developers must select among
candidate object detection algorithms given new data sequences,
retrain the systems over multiple iterations, and choose among pa-
rameter settings such as image resolution and color normalization
in preprocessing and confidence threshold settings in the last stage.
If neural nets are being used, then there are decisions regarding
the types and number of layers, learning rates, and the number of
optimization steps. In all these development steps, the performance
of the system must be evaluated and compared to alternatives, and
labeled data is more often than not unavailable.

To overcome these challenges, this paper presents a visualization
method called Space-Time Slicing, which is suitable for applications
involving a fixed camera mounted on a vehicle moving on a relatively
static ground plane. Using a novel 2D view of compressed space
and time, this visualization reveals the significant relative motion
of detected objects and provides cues about missing detections as

*e-mail: tlee@merl.com
†e-mail: kentwitt@gmail.com

well as comparative information across different testing runs. By
linking with other more standard views, users can verify the cues
that are made available through Space-Time Slices. For this purpose,
we use a view of video frames with bounding boxes surrounding
detected objects as well as a view of small multiples over a timeline
to represent tracked objects. The following sections will cover
related work, the details of our visualization method, use cases, and
future work.

2 RELATED WORK

Prior work in video visualization has been used to interpret data from
surveillance cameras, sports games [15], and medical imaging [14].
The survey by Borgo et al. [4] provides a comprehensive collection
of video visualization techniques. A video can be summarized with
a storyboard-like visualization [7,13,18] if the events can be defined
and classified, or rendered as 3D spatiotemporal volumes [8,10]. For
videos with static backgrounds such as surveillance videos, the mo-
tion can be revealed via the motion trajectory of moving foreground
objects [5] or even the pixel intensity over time [3, 22, 24]. How-
ever, the above-cited work mainly uses object detection and other
computer vision algorithms to generate visualizations to overview
video content. The methods are not designed to facilitate the task
of reviewing object detector performance. The data we are most
concerned with, such as driving video sequences, involves moving
cameras and backgrounds that frequently change. Our focus is on
correctly detecting objects in such scenarios, not on summarizing or
characterizing the behavior of foreground objects on relatively static
backgrounds.

For machine learning problems, a common challenge is the se-
lection of models and training parameters. Several research efforts
have utilized visualization to compare the performance of multiple
models trained with different parameters, for example, Squares [20],
Model Tracker [1], and Ensemble Matrix [23]. However, a limitation
is that this work depends on conventional accuracy measurements to
provide evaluation data such as false positives, false negatives, and
true positives. Such evaluation requires labeled data. As we have
noted, a requirement for application developers is that insights are
needed into detector performance even when the data is not labeled.

From a more general standpoint, our work falls within the family
of spatial-temporal visualizations. See Andrienko’s book for a com-
prehensive survey [2]. Within this research, our work most closely
resembles slit-tear visualizations [24], which make use of pixels
to reveal changes in a video frame over time. However, slit-tear
visualizations are designed for static cameras. Our requirements are
for moving cameras and also include the need to visually represent
the output of the object recognizer. Recently, Buchmuller et al.
have proposed MotionRug, which lays out moving objects in a 2D
space along a 1D domain [6]. The visual compression of complex
movement of objects over time into a 2D representation is a goal
that we share. However, MotionRug is designed to visualize swarm
behavior, where it is significant to show such features as speeding
up and slowing down for the swarm as a whole. Our problem differs
significantly in that we are interested in revealing the performance
of recognition of individual objects over time in a moving camera
scenario.

 Time

(a)
(b) (c) (d)

Figure 1: An illustration of how Space-Time Slicing works to visualize
object recognition chains. (a): A sampling of a sequence of video
frames recognizing a car (enclosed by bounding boxes with cyan
color). (b): An extrustion of the middle rows of pixels in each bounding
box. (c): The continuous smoothing of the bounding boxes of (b) via
texture mapping. (d): Adding extra outline to enclose an object chain.

3 SPACE-TIME SLICING

Property of Driving Video Sequences We start with some
observations about video sequences being captured from a stable
camera on a vehicle moving on a ground plane. Movement of objects
with respect to the camera frame will generally be from side-to-side,
not top-to-bottom. All true objects should move smoothly with
respect to the camera—they shouldn’t suddenly appear in the middle
of the frame or exit in the middle of the frame unless occluded by
another object. They might enter at the center of the camera frame
and exit at the edges (oncoming traffic, traffic being overtaken) or
appear at the edges and exit at the edges (pedestrians, crossing traffic
at an intersection). We should expect asymmetry since oncoming
traffic will generally be on just one side or the other. If we could
track and visualize the objects across frames, then these patterns
should be recognizable and anomalies in these patterns could suggest
problems with the recognizer or processor. Gaps in the tracks could
indicate false negatives; isolated short tracks could indicate false
positives; abrupt color changes along a track or branching of a track
might indicate occlusion or issues with the tracking algorithm itself.

Visual design Visualizing video sequences as a 3D volume
would be one approach [8]. If we were to display a video sequence
as a 3D volume where x and y dimensions represent the frame space
and z represents time, a true object should follow a continuous,
smooth trajectory in this 3D volume. Anomalies suggested in the
previous paragraph could be made apparent if they could be made
visible. However, well-known problems of clutter and occlusion
in 3D visualization would be very difficult to overcome. And the
amount of visual data would be overwhelming. It can be tedious to
find the optimal view points, and the most salient objects might be
hidden within the volume.

Our approach, which we call Space-Time Slicing, is to flatten
each 2D frame into as little as one horizontal line of pixels and
then stack the lines vertically according to time. In this design,
time will not flow left-to-right as in conventional designs. However,
movement of objects will flow horizontally as is the case in the actual
video sequences, and such movements are particularly significant
for detecting object recognition performance.

The data that we visualize is as follows. An object detection
algorithm (or a particular parameterization of an algorithm) locates
and classifies foreground objects in all video frames in a video
sequence. Our assumption is that the detection algorithm marks
foreground objects with bounding boxes. Each bounding box is
associated with a corresponding object class and a confidence score.
Any object recognizer that is consistent with these assumptions is
suitable for our visualization methods. After running the recognizer,
we then apply a standard object tracking algorithm to link bounding

(0, 0/T-1)

(0, 1/T-1)

(0, 2/T-1)

(0, 3/T-1)

 (1, 0/T-1)

 (1, 1/T-1)

 (1, 2/T-1)

 (1, 3/T-1)

x

t

l_0

l_1

 r_0

 r_1

x

t

(a) (b)

x_1

x_0

Figure 2: Geometric representation of space-time slices. (a): Con-
necting slices with normalized coordinates. The two vertical lines
represent two slices, which has x coordinates from l0 to r0 and from
l1 to r1. After linearly normalizing both [l0,r0] and [l1,r1] to [0, 1], the
two points x0 and x1 have the same normalized coordinates. Thus
the color along their connected line will be linearly interpolated from
the colors of x0 and x1. (b): Space-time slices of an object chain with
T = 4 frames. The 2D coordinates next to each vertex show its texture
coordinates.

boxes of potentially identical objects across video frames. Hereafter
we will refer to the linked bounding boxes of an object as an object
chain.

Given object chains and our original video frame sequence, our
algorithm slices through the 3D spacetime volume and projects the
slices to a 2D space comprised of horizontal lines revealing the
positions of objects in x and their movement in time in y. Fig. 1
illustrates how our method works. Fig. 1 (a) shows a sampling of a
sequence of video frames where a silver car approaches the moving
camera and moves past the camera on its left-hand side. The earliest
to latest video frames are stacked from bottom to top. The detections
of the sliver car are enclosed with bounding boxes, which are shown
in cyan color. The vehicle in oncoming traffic first appears at the
bottom of the visualized trajectory and then as time passes it moves
to the left-hand side of the frame and gets larger before it disappears.
Its horizontal position relative to the camera viewpoint moves in
time from right to left. For each bounding box, our algorithm then
slices through the middle of each image patch. Fig. 1 (b) shows
the extrusions of the sliced middle rows of all bounding boxes,
consistent with their original horizontal locations. (Note that our
visualizations in practice show each of these rectangles as a single
line of pixels. We extrude them here to illustrate the relationship of
the slices to the original objects.)

The visualization in Fig. 1 (b) exhibits a problem with blocking
artifacts, particularly if each rectangle were reduced to a single row
of pixels. To resolve this issue, we propose a novel interpolation
scheme to fill the space between adjacent sliced rows of the same
object. The idea is that for each point on the sliced row, which
corresponds to a 3D location on a foreground object, we find the
closest point in the adjacent sliced rows, and plot a line between the
two points with color that is linearly interpolated from one point to
the other. This interpolation scheme is based on the assumption that
between adjacent video frames, both the camera parameters (location
and orientation) and object (appearance, size, and location) change
smoothly. Within the time interval between the two video frames, if
a point on the object surface is always visible to the camera, its 2D
locations on the video frame should form a smooth trajectory and
the color along this trajectory should transit smoothly too.

Because finding the corresponding location of the same object
at different video frames can be computationally expensive, we
approximate this idea as follows. First, as object tracking already
links the sliced rows of an object chain, we linearly normalize the
x range of each sliced row to the range of [0, 1], and connect the
pixels with the same normalized coordinates, as shown in Fig. 2 (a).
Between the connected points, the colors are linearly interpolated
based on the y coordinates, which are essentially the timestamps of
video frames. Fig. 1 (c) shows how the rectangles of Fig. 1 (b) can be
smoothly connected. In this case, the white spots of all sliced rows
are connected, providing an extra cue for the underlying motion.

Figure 3: Zoomed-in view of Space-Time Slices (on the right) around
the rectangle in Fig. 4 (c). The yellow horizontal line in the right view
corresponds to the video frame shown in the bottom left view, showing
that two vehicles have been detected. The top left view shows the
neighboring object chains. Again the yellow line (vertical in this case)
corresponds to the same frame indicated in the other views. The
yellow vertical line intersects two object chains, each of which is for a
detected vehicle. Other isolated image patches show false positives
in nearby video frames.

Since an object video sequence can contain multiple objects, it
is highly possible that multiple objects can be close to one another
in the spatial domain, which can lead to cluttered space-time slices.
This can also occur if the object detector incorrectly detects the same
region multiple times. To remedy this issue, we can also plot extra
outlines to enclose an entire object chain. An example is illustrated
in Fig. 1 (d), which uses white outlines to enclose the slices in Fig. 1
(c). While motion-aware interpolation of object chains indicates how
different objects move through time, object-chain outlines provide
extra cues to differentiate the objects. All figures of the use case
in Sect. 4 show the object chain outlines along with the interpolated
colors. Users can in fact interactively show or hide either of these
features.

The visual features discussed so far can help users to determine
how the object recognition system is performing through visually
highlighting object chains over time. Such cues can help users to see
the system’s differentiation of objects, even if the objects are close
to one another in the video frame. However, it is still possible that
objects occlude one another in fact or as a result of the recognizer,
leading to overlapping space-time slices. To resolve the visibility
order, our algorithm places the slices of bounding boxes with lower
confidence score closer to the viewpoint. The rationale is to bring
lower confidence objects to the attention of the user since they are
often false positives and should be reviewed further.

Implementation With the concepts above, we can implement
Space-Time Slicing with conventional computer graphics pipelines
like OpenGL. Given an object chain across T video frames, our
algorithm generates a 3D mesh where the x, y, and z coordinates
represent the horizontal location, the time, and the score, respectively.
Fig. 2 (b), for instance, shows the 3D mesh for 4 bounding boxes.
For each bounding box enclosed by 2D images points (li,bi) and
(ri, ti) at frame i, the mesh has two vertices (li, i,s) and (ri, i,s) where
s is the score of this bounding box. Between every two consecutive
frames, the mesh contains a trapezoid to connect their vertices, as
shown in Fig. 2 (b). During the rendering, the camera is placed
such that the z coordinate will be used for depth testing. As the z
coordinate represents the score, the fragments of bounding boxes

with lower confidence scores will be displayed in front of frames
with higher scores. To connect the sliced rows, we apply texture
mapping to map the sliced image rows to the 3D mesh. We first
resize the sliced rows to a fixed width, and stack the resized slices
vertically in the order of time to form the 2D texture. The texture
coordinates per vertex are assigned as follows: If the i-th frame is
the t-th one within this object chain, the vertical coordinate of its
two vertices (li, i) and (ri, i) will be (t − 1)/(T − 1), as shown in
Fig. 2.

User interaction Since Space-Time Slicing vertically com-
presses each frame of the video into a line that may be only one
pixel high, is important to provide links from lines in the Space-Time
Slicing views to other views of the data. Users may want to see the
detected object(s) in the full context of video frames in which they
were detected. This is especially important when multiple objects
are close or even overlap on the same image row, which can lead
to cluttered slices. It may be also useful to see an object or objects
recognized in one frame in the context of their multi-frame object
chains.

Fig. 3 shows a screenshot of our current prototype. A yellow
horizontal line in the right-hand pane indicates the corresponding
video frame in the lower left pane. Multiple objects are outlined and
visible, even though they are small. The objects in the bottom-left
frame are part of the chains represented in the top-left view above it.
This pane organizes the recognized objects’ image patches into small
multiples of normalized size where the x-axis represents time. We
align all image patches of the same object chain in the same row so
the user can locate the same objects over time. Multiple rows imply
different object chains. In this example, it appears that the object
detector has correctly recognized two vehicles in the distance. When
users click on the view of space-time slice, the top-left view will
automatically scroll so the clicked time step is horizontally shifted
to the middle. Such a linking scheme can help users to interactively
examine different object chains, even when their slices are close.

4 USE CASE

This section describes how Space-Time Slicing can be used to un-
derstand the impact of different parameters when developing and
deploying an object detector. The object detector used as the ex-
ample in this paper is the Single Shot Detector (SSD) [17], chosen
because the source code and pre-trained parameters are publicly
available. It is still considered a state-of-the-art object detection
algorithm in terms of both speed and accuracy. The video sequences
we use are part of the KITTI video collection [11], which were
captured from car cameras under various driving scenarios (roads,
university campuses, cities, suburban areas, etc.). The KITTI videos
are named by the capture date and the order captured on that date.
For instance, the name KITTI-2011/09/29-0004 refers to the fourth
video sequence captured on 2011/09/29.

4.1 Evaluating among differing preprocessing and train-
ing options

One preprocessing parameter for object detectors is the input im-
age size in pixels. When training an object detector, the training
images are first resized and/or cropped to a fixed resolution. This
is especially crucial for object detectors that are based on CNN
(Convolution Neural Networks). Since the training of CNNs es-
sentially aims to learn 2D image filters to detect image features,
the trained filters depend on the image resolution. The authors of
SSD released two versions that were trained with different image
resolutions, which are denoted by us as SSD-300-PASCAL and SSD-
512-PASCAL. The numbers 300 and 512 in the names suggest that
the detectors were trained in images of 300× 300 and 512× 512
pixels, respectively.

Fig. 4 (a) and (b) show the space-time slices on a video se-
quence KITTI-2011/09/29-0004 with SSD-300-PASCAL and SSD-

(a) (b) (c)

Figure 4: Space-Time Slicing of sequence KITTI-2011/09/29-0004
for detectors SSD-300-PASCAL (a), SSD-512-PASCAL (b), and SSD-
300-KITTI (c). Here we sample every 5 video frames. For illustration
purpose, we manually add a yellow rectangle on (c) to highlight the
time steps when SSD-300-KITTI started to detect a small car.

512-PASCAL, respectively. With Space-Time Slicing, users can
effectively overview and compare the performance on the extended
video sequences. One use is the spotting of false positives. The
space-time slices of SSD-512-PASCAL in Fig. 4 (b) shows few
colored pixels on the right compared to Fig. 4 (a). We suspected,
and confirmed, that this reflects ground truth since when this video
sequence was captured, no objects appeared to the right of the mov-
ing vehicle. The space-time slices for detectors on 300×300 pixels
exhibited more false positive, indicated by more color pixels on the
right side of the visualization in Fig. 4 (a). We confirmed this by
highlighting the slices in the visualizations, e.g., the lines in the
lower right of Fig. 4 (a) and checking the corresponding video frame
views. Space-Time Slicing can also indicate which video frames
could contain false positives, such as the isolated horizontally long
colored rows near the bottom of Fig. 4 (a) and (b). This can help
users to check the corresponding video frames without iterating
through other frames.

Fig. 4 also indicates that SSD-512-PASCAL can detect moving
objects earlier than SSD-300-PASCAL. For instance, the trail at
the bottom center in Fig. 4 (b) is longer than that in Fig. 4 (a),
meaning that the corresponding vehicle is detected earlier (25 frames
earlier in this example). This is because the vehicle or vehicles
were approaching the camera and were initially small, occupying
few pixels. They become larger over time. With larger image
resolution, SSD-512-PASCAL can detect smaller objects than SSD-
300-PASCAL. In sum, we can see that SSD-512-PASCAL appears
to be performing better both in fewer false positives and higher rates
of small object detection than SSD-300-PASCAL with just a quick
look at these visualizations of unlabled data.

Another parameter to evaluate is the effect on detector perfor-
mance of subsequent training rounds with new data. The publicly

available systems SSD-300-PASCAL and SSD-512-PASCAL were
trained on the publicly available dataset PASCAL VOC [9]. The
scenes and object categories of PASCAL VOC are more general
than those found in KITTI, which are exclusively driving-oriented.
Also, the footage of PASCAL VOC does not all come from fixed
car-mounted cameras. This issue is typical when adapting an exist-
ing object detector to a new target scenario. When adapting these
models to new domains, their performance will almost always be
sub-optimal, thus requiring fine-tuning. Fine-tuning means initializ-
ing a model that pre-trained parameters and resuming the training
with new data for the targeted application. Fine-tuning has been
shown to improve accuracy [25].

Fig. 4 (c) illustrates the result of fine-tuning SSD-300-PASCAL
with the training images of KITTI. Our fine-tuning process followed
the same procedure and configuration used to train SSD with PAS-
CAL datasets. The KITTI training images were resized to 300×300
pixels, and thus the model with these fine-tuned parameters is de-
noted as SSD-300-KITTI. Comparing Fig. 4 (c) to Fig. 4 (a), we
observe that the bounding boxes were detected earlier and that the
object chain swooshes are generally more numerous and continu-
ous. This is a likely indication that the additional training helped to
identify objects at smaller sizes and also had fewer false negatives
since most trails don’t have the gaps that are visible in Fig. 4 (a). We
can confirm the correctness of the new object trail marked with a
yellow rectangle in Fig. 4 (c) by checking other linked views, which
we showed earlier in Fig. 3. The portion of the Space-Time Slices
shown in the rectangle are zoomed up in the right hand side of Fig. 3.
On the other hand, comparing to Fig. 4 (b), Fig. 4 (c) contains more
stray blobs, representing bounding boxes that cannot be tracked. Af-
ter checking the detected bounding boxes, we confirm that they are
actually false positives. In sum, our fine-tuning so far has apparently
improved the ability to detect small true objects, even though it still
can generate false positives when the image resolution is limited.
Our next step might be to retrain SSD-512-PASCAL with our KITTI
data.

4.2 Setting threshold values

Once an object detector has been trained, its deployment still re-
quires further tuning, especially the score threshold. While raising
the threshold is used to discard bounding boxes with low scores,
the result of course may be to discard correctly identified objects.
Typically, the selection of score thresholds requires trial-and-error,
especially when ground truth is absent. Without ground truth, the
R&D engineer may have to watch test video sequences in multiple
iterations and it is difficult to know how to find the right balance.

With Space-Time Slicing, users can overview the impact of dif-
ferent thresholds over the entire video sequence. Also, because
Space-Time Slicing places the slices of lower confidence bounding
boxes closer to the viewer, users can know which bounding boxes
in which frame are discarded without watching the video sequence
frame-by-frame.

Fig. 5 shows an example to select the score threshold via Space-
Time Slicing. Fig. 5 (a) shows the space-time slices of all detected
objects with no threshold restrictions. The isolation of some colored
slices indicates that their bounding boxes could be false positives,
since they cannot be tracked. In our prototype, users can interactively
adjust the score threshold via a slider-like GUI widget. Because
Space-Time Slicing can be implemented via graphics pipeline, the
slices with score lower than the threshold can be efficiently hidden
without re-generating the slices. Instead, by simply adjusting the
near distance of the camera setting, these slices can be automatically
hidden by the graphics pipeline, which can be done in real time.

Fig. 5 (b) shows the space-time slices with a score threshold of
0.2, which can discard most short slices. To understand why there
are still isolated space-time slices, we examine video frames and
bounding boxes near frame 241, which is highlighted by the yellow

(a)

(b)

(c)

(d)

Figure 5: Adjusting of score thresholds for the detected bounding
boxes in video sequence KITTI-2011/09/26-0029 by detectors SSD-
512-PASCAL. (a) - (c): The space-time slices with score higher than
lower bound 0.0, 0.2, and 0.3, respectively. The yellow line in (c)
indicates frame 241, which is also highlighted in the view of object
chains in (d). The top image patches in (d) show plants on the road,
which are the straight trail in (a).

horizontal line. Fig. 5 (d) shows the object chain view in which the
image patches of all object chains appear that are being tracked in
frame 241. These image patches show that one of the object chains
is comprised of plants on the road. These are false positives that a
higher threshold would discard. When we lift the score threshold to
0.3, as shown in Fig. 5 (c), most of the retained space-time slices
show smooth trajectories, suggesting that we have eliminated most
false positives. However, we have inadvertently eliminated true
positives as seen by the fact that there is now a gap where the yellow
line is showing that there should be a truck being tracked. The
development process must continue.

5 CONCLUSION

In this paper, we have presented Space-time Slicing, a visualization
method useful for understanding the performance of object detectors
and the impact of various parameters on video sequences. Space-
Time Slicing visualizations can provide an overview of recognized
objects and their significant movement in video sequences. They can
be used in conjunction with linked views of object chains and indi-
vidual video frames to confirm the performance of object detection
in key parts of the video and draw conclusions about the comparative
performance of the object detectors under different pre-processing
options, training regimes, and threshold settings.

A limitation of our current implementation is that each frame
of video requires one horizontal pixel line, so the vertical height
of any particular visualization in pixels will be tied to the total
number of frames in the video. It is not suitable for summarizing
more than a few minutes of video at standard frame rates in one
screen. Future work could allow the interactive adjustment of video
frames to show different levels of detail, based on the view scale
and screen resolution. We will also like to integrate space-time
slicing with other time-varying visualization approaches to reveal
extra information, such as co-occurence of objects and events [16].

REFERENCES

[1] S. Amershi, M. Chickering, S. Drucker, B. Lee, P. Simard, and J. Suh.
Modeltracker: Redesigning performance analysis tools for machine

learning. In CHI, 2015.
[2] N. Andrienko and G. Andrienko. Exploratory Analysis of Spatial

and Temporal Data: A Systematic Approach. Springer-Verlag, Berlin,
Heidelberg, 2005.

[3] E. P. Bennett and L. McMillan. Computational time-lapse video. ACM
Transactions on Graphics, 26(3), 2007.

[4] R. Borgo, M. Chen, B. Daubney, E. Grundy, G. Heidemann,
B. Höferlin, M. Höferlin, H. Leitte, D. Weiskopf, and X. Xie. State of
the art report on video-based graphics and video visualization. Com-
puter Graphics Forum, 31(8):2450–2477, 2012.

[5] R. P. Botchen, S. Bachthaler, F. Schick, M. Chen, G. Mori, D. Weiskopf,
and T. Ertl. Action-based multifield video visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 14(4):885–899, 2008.

[6] J. Buchmüller, D. Jäckle, E. Cakmak, U. Brandes, and D. A. Keim.
MotionRugs: Visualizing collective trends in space and time. IEEE
Transactions on Visualization and Computer Graphics, 25(1):76–86,
2019.

[7] C. D. Correa and K.-L. Ma. Dynamic video narratives. In ACM
Transactions on Graphics, pp. 88:1–88:9, 2010.

[8] G. Daniel and M. Chen. Video visualization. In Vis ’03: Proceedings
of the IEEE International Conference on Visualization, pp. 54–, 2003.

[9] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zis-
serman. The PASCAL Visual Object Classes (VOC) challenge. Inter-
national Journal of Computer Vision, 88(2):303–338, 2010.

[10] S. Fels, E. Lee, and K. Mase. Techniques for interactive video cubism.
In MM ’00: ACM International Conference on Multimedia (Poster
Session), pp. 368–370, 2000.

[11] A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous
driving? the kitti vision benchmark suite. In CVPR, 2012.

[12] R. Girshick. Fast R-CNN. In ICCV, 2015.
[13] D. B. Goldman, B. Curless, D. Salesin, and S. M. Seitz. Schematic

storyboarding for video visualization and editing. ACM Transactions
on Graphics, 25(3):862–871, 2006.

[14] T. Lee, A. Chaudhuri, F. Porikli, and H. Shen. Cyclestack: Inferring
periodic behavior via temporal sequence visualization in ultrasound
video. In PacificVis ’10: Proceedings of the IEEE Pacific Visualization
Symposium, pp. 89–96, 2010.

[15] P. A. Legg, D. H. S. Chung, M. L. Parry, M. W. Jones, R. Long,
I. W. Griffiths, and M. Chen. Matchpad: Interactive glyph-based
visualization for real-time sports performance analysis. Computer
Graphics Forum, 31(3pt4):1255–1264, 2012.

[16] J. Li, S. Chen, K. Zhang, G. Andrienko, and N. Andrienko. COPE:
Interactive exploration of co-occurrence patterns in spatial time series.
IEEE Transactions on Visualization and Computer Graphics, pp. 1–1,
2018.

[17] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and
A. C. Berg. Ssd: Single shot multibox detector. In ECCV, 2016.

[18] M. L. Parry, P. A. Legg, D. H. S. Chung, I. W. Griffiths, and M. Chen.
Hierarchical event selection for video storyboards with a case study on
snooker video visualization. IEEE Transactions on Visualization and
Computer Graphics, 17(12):1747–1756, 2011.

[19] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look
once: Unified, real-time object detection. In CVPR, 2016.

[20] D. Ren, S. Amershi, B. Lee, J. Suh, and J. D. Williams. Squares:
Supporting interactive performance analysis for multiclass classifiers.
IEEE Transactions on Visualization and Computer Graphics, 23(1):61–
70, Jan 2017.

[21] S. Ren, K. He, R. Girshick, and J. Sun. Faster R-CNN: Towards
real-time object detection with region proposal networks. In NIPS,
2015.

[22] K. Sunkavalli, W. Matusik, H. Pfister, and S. Rusinkiewicz. Factored
time-lapse video. ACM Transactions on Graphics, 26(3), 2007.

[23] J. Talbot, B. Lee, A. Kapoor, and D. S. Tan. Ensemblematrix: Interac-
tive visualization to support machine learning with multiple classifiers.
In CHI, CHI ’09, pp. 1283–1292, 2009.

[24] A. Tang, S. Greenberg, and S. Fels. Exploring video streams using slit-
tear visualizations. In AVI ’08: Proceedings of the Working Conference
on Advanced Visual Interfaces, pp. 191–198, 2008.

[25] J. Yosinski, J. Clune, Y. Bengio, and H. Lipson. How transferable are
features in deep neural networks? In NIPS, pp. 3320–3328, 2014.

	Title Page
	page 2

	/projects/www/html/publications/docs/TR2019-024.pdf
	page 2
	page 3
	page 4
	page 5

