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Abstract—This paper presents a cooperative framework of the
driver and his/her semi-autonomous vehicle in order to achieve
desired steering performance. In particular, a co-pilot controller
and the driver operate together and control the vehicle simulta-
neously. Exploiting the classical small-gain theory, our proposed
cooperative steering controller is developed independent of the
unmeasurable internal states of human driver, and only relies on
his/her steering torque. Furthermore, by adopting data-driven
adaptive dynamic programming and an iterative learning scheme,
the cooperative controller is learned from measurable data of the
driver and the vehicle. Meanwhile, the accurate knowledge of the
driver and the vehicle dynamics is unnecessary, which settles the
problem of their potential parametric variations in practice. The
effectiveness of the proposed method is validated by rigorous
analysis and demonstrated by numerical simulations.

Index Terms—Shared driving, steering control, human in the
loop, adaptive dynamic programming (ADP), small-gain.

NOMENCLATURE

δ(δ̇) Steering angle (rate)
ζ(ζ̄) Driver’s internal (error) state
ηt Tire length contact
θnear Near visual angle
θfar Far visual angle
ρi Curvature of road segment i
ψL Heading angle error
ψr Reference heading angle
ψv Vehicle heading angle
Bs Steering system damping
Cf (Cr) Front (rear) cornering stiffness
Dfar Distance to the tangent point of road inner

boundary
Is Steering system moment of inertia
Iz Vehicle yaw moment of inertia
Ka(Kc) Proportional gain to far (near) visual angle
lf (lr) Distance from the center of gravity to front (rear)

axle
ls Look-ahead distance
m Mass of the vehicle
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ra Yaw rate
Rs Steering gear ratio
Td Driver’s torque
TL(TI) Lead (lag) time constant
TN Neuromuscular lag time constant
Ti Driver’s steady-state torque on road segment i
u(ū) Vehicle control input (error)
vx(vy) Vehicle longitudinal (lateral) velocity
x(x̄) Vehicle (error) state
yc Lane-keeping error at the center of gravity
yL Lateral offset from road centerline at look-ahead

distance

MATRICES AND VECTORS

A,B Augmented state-space representation of
the interconnected driver-vehicle system

A,B,C,D State-space representation of the vehicle
system

Ad, Bd, Cd, Dd State-space representation of the driver
system

K(K∗) (Optimal) feedback control gain for A,B
K(K∗) (Optimal) feedback control gain for A,B
Kj Feedback control gain for A,B at itera-

tion j
P ∗ Solution to the Riccati equation
Pj Iterative solution to the Riccati equation

at iteration j
Q, r Weighting matrix and value
Ûi Iterative solution to the regulator equation

at iteration i
X∗, U∗, Z∗ Solutions to the regulator equations
X̂ Learned feedforward term approximating

X∗

I. INTRODUCTION

VEHICLE steering control has a variety of applications
in the automotive industry and intelligent transportation

systems. For an individual vehicle, a steering control system
admits the great potential to improve its safety, such as
collision avoidance system [1] and lane keeping system [2].
For connected vehicles equipped with communication devices,
the steering control system is one of the demanding compo-
nents to achieve the goal of platoon splitting and merging
[3]. During the last few decades, vehicle steering control
has been studied extensively for fully autonomous vehicles,
while the human driver is replaced by the automation system
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and kept “out-of-the-loop”. The authors in [4], [5] point out
that the driver’s awareness of the driving situation could
be insufficient if he/she is not engaged in controlling the
vehicle, which may lead to fatal accidents when the automation
system is defective. In addition, a sudden transition from fully
autonomous driving to manual driving is hard for the driver.
This phenomenon has been observed in the experimental result
shown in [6], where drivers’ steering performance was com-
promised during their adaptation to such a transition. Thus,
in order to avoid such detrimental transitions or switches, the
cooperative or shared control framework between driver and
steering control system is encouraged, where the human driver
is constantly involved in the task of driving.

To study the interaction between driver and steering assis-
tance system, there is a significant number of important inde-
pendent works in this field, such as shared control for advanced
driver-assistance systems (ADAS) [7]–[14] and game theory
for ADAS [15], [16]. Due to space limitation, we only cite
and discuss some references that are closely related works
to our paper. In [17], a two-point visual control model is
proposed to illustrate the perception mechanism of a human
driver during his/her driving. Essentially, it states that a driver
usually fixates his/her focuses on two regions in front of the
vehicle, and processes the received visual information. Then,
he/she makes steering decisions so that the vehicle follows the
lane centerline. Game-theoretic modeling approach has been
utilized to formulate and settle the potential conflict of the
driver’s interaction with the steering assistance system [16]. A
predictive driver steering model is suggested in [18], where
driver’s daily driving data are exploited to predict his/her
behaviors in dangerous situations, e.g., collision avoidance.
Taking advantage of these human driver modeling methods,
researchers have proposed several cooperative steering control
strategies for semi-autonomous vehicles in recent years. As
shown in the literature, the general scheme of cooperative
steering control is sketched in Fig. 1, where the steering
assistance system collaborates with the driver by taking his/her
steering command into consideration. In [7], a shared steering
control is proposed to achieve lane keeping, taking the para-
metric uncertainty of the driver model into account. Model
predictive control (MPC) strategies are adopted to combine the
human driver and the vehicle into an overall system in order
to complete steering maneuvers [8]–[10]. A novel steering
ratio control technique is developed by [11] to assist driver in
path following and to reduce driver’s workload. Recently, the
authors in [12], [13] implement continuous control authority
allocation between the driver and the vehicle, aiming to solve
the conflict between human and machine.

Nonetheless, there are some practical issues arising from
the implementation of shared steering control algorithms. Tra-
ditional model-based steering control strategies, which relies
on the pre-identified models of drivers and vehicles, do not
address both the adaptivity and optimality aspects, because
driver’s behavior varies from person to person and from
vehicle to vehicle. Additionally, those behaviors may change in
the long term. From a control theoretical perspective, the heavy
reliance on the accurate model dynamics potentially weakens
the applicability of the shared steering controller. On the other
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Driver

Vehicle-road
Driver’s Steering

Cooperative
Steering

Controller
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Vehicle States and Position Information

Fig. 1. Block diagram of cooperative steering control

hand, the absence of a precisely known model characterizing
human behavior implies that the complex internal states of the
driver cannot be acquired in the control implementation. This
is also problematic for the most of the methods in the existing
literature, e.g., [7], [9]. These limitations motivate our data-
driven model-free approach for learning cooperative steering
control laws online, which essentially does not rely upon the
full knowledge of the driver and the vehicle.

This paper presents a data-driven learning strategy to de-
sign a cooperative steering controller using adaptive dynamic
programming (ADP). ADP is a model-free method inspired by
biological learning and control [19] and reinforcement learning
[20]. It intends to iteratively learn the optimal controller in real
time from measurable data without the accurate knowledge of
system dynamics [21]–[26]. It should be mentioned that an
integration of ADP and output regulation theory in [24], [26]
has led to novel solutions to the design of adaptive and optimal
tracking controllers with guaranteed disturbance rejection for
linear and nonlinear uncertain systems. Applications of ADP
have appeared in the data-driven adaptive optimal control of
connected and autonomous vehicles [27], [28].

Because of the learning nature of ADP method, it might be
confused with iterative learning control (ILC) [29], [30]. We
here briefly state a few differences between them.

1) ILC updates the control signal (sequence) at the end
of each trial in an off-line fashion [29], [30], while
ADP, similar to adaptive control scheme, modifies the
controller’s parameters in an online manner.

2) ILC intends to track a desired reference trajectory, and
meanwhile the ADP method in this paper aims to solve
a linear quadratic (LQ) optimal control problem. For
example, in [31], the finite-horizon cost function to be
minimized is defined using the tracking error and the
difference of input sequences between two iterations. In
our study, the performance index is infinite-horizon LQ,
which tries to ensure performance and energy efficiency.

3) The optimization-based ILC relies on the model knowl-
edge to update the control input at each iteration, see,
e.g., [32]. On the contrary, ADP is a model-free method,
which can learn the adaptive optimal controller from
online data, without the model knowledge.

In this paper, we first formulate the steering control problem
of a semi-autonomous vehicle with a human in the loop
as a controller design problem for interconnected systems
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comprised of the driver and his/her vehicle. Then, we develop
a data-driven cooperative control policy for the interconnected
human-vehicle system by means of robust adaptive dynamic
programming (RADP) [25]. The objective of the steering con-
trol is to achieve lane keeping with minimum lateral deviation.
Combining RADP and an iterative learning framework for the
driver, an adaptive optimal steering controller is proposed to
assist the driver to attain better lane-keeping performance. In
comparison with the aforementioned literature, e.g., [7], [9], a
pre-identified driver model is not necessary, and the accurate
knowledge of the vehicle is no longer needed. The design
procedure of our proposed controller relies on measurable
data collected in real time from the human driver and his/her
vehicle. In particular, only the driver’s steering torque is
required, leaving the internal states of the driver dynamics
unmeasured. The main contributions of this paper are three-
fold. First, by taking advantage of the state-space small-gain
theory of interconnected systems [33], [34], the designed
cooperative controller does not depend on the unmeasurable
internal states of the driver. Second, by employing a data-
driven learning-based approach, the shared steering controller
is learned online from measurable data of the interconnected
human-vehicle system, without the exact knowledge of the
driver and the vehicle. Such a data-driven method provides
more personalized service for the driver and improves the
adaptivity of the cooperative controller for the vehicle. Third,
compared to [24], a novel iterative learning strategy is in-
troduced to solve the output regulation problem with non-
vanishing signal caused by driver’s steering command. More
specifically, the driver generates non-zero steering torque into
the vehicle along with the designed control input.

The rest of the paper is organized as follows. Section II
describes the mathematical model of an interconnected system
of the driver and the vehicle. Section III illustrates a model-
based method to design an optimal cooperative controller for
the driver in order to achieve the lane keeping. Section IV
presents a data-driven approach to solve the optimal cooper-
ative control problem in the presence of unknown driver and
vehicle dynamics (e.g., unknown system parameters). Section
V depicts computer-based numerical simulation results under
different road conditions. Section VI gives the conclusion of
this paper.

Notations. Throughout this paper, R, R+, Z+, and C
denote the sets of real numbers, non-negative real numbers,
non-negative integers, and complex numbers, respectively.
C− stands for the open left-half complex plane. | · | represents
the Euclidean norm for vectors, or the induced matrix
norm for matrices. ⊗ indicates the Kronecker product.
vec(A) = [aT1 , a

T
2 , . . . , a

T
m]T , where ai ∈ Rn are the

columns of A ∈ Rn×m. When m = n, σ(A) is its complex
spectrum. In represents the n × n identity matrix. 0n×m
denotes the n × m zero matrix. For a symmetric matrix
P ∈ Rm×m, λM (P ) is the maximum eigenvalue of P ;
λm(P ) is the minimum eigenvalue of P ; and vecs(P ) =
[p11, 2p12, · · · , 2p1m, p22, 2p23, · · · , 2pm−1,m, pmm]T ∈
R 1

2m(m+1). For an arbitrary column vector v ∈ Rn,
vecv(v) = [v2

1 , v1v2, · · · , v1vn, v
2
2 , · · · , vn−1vn, v

2
n]T ∈

R 1
2n(n+1).

II. MATHEMATICAL MODELING FOR HUMAN-VEHICLE
INTERACTION

In this section, the vehicle model and the human driver
model are presented. Then, we combine them into the human-
vehicle model as an interconnected system.

A. Vehicle Lateral Dynamics

The vehicle model for steering control consists of the lateral
vehicle dynamics, the steering column and the vision-position
model for lane-keeping task. According to [12], [35], under the
assumptions of small angles and constant longitudinal speed,
it can be described by

ẋ = Ax+B(u+ Td) +Dρi,

y = Cx, (1)

where x =
[
vy ra ψL yL δ δ̇

]T
, y = yc, and ψL =

ψv −ψr as illustrated in Fig. 2. The matrices A, B, C and D
are expressed as

A =


a11 a12 0 0 b1 0
a21 a22 0 0 b2 0
0 1 0 0 0 0
1 ls vx 0 0 0
0 0 0 0 0 1
Ts1 Ts2 0 0 Ts3 Ts4

 , B =



0
0
0
0
0
1

IsRs


,

C =
[
0 0 −ls 1 0 0

]
,

D =
[
0 0 −vx 0 0 0

]T
,

where

a11 = −2(Cf + Cr)

mvx
, a12 =

2(Crlr − Cf lf )

mvx
− vx,

a21 =
2(Crlr − Cf lf )

Izvx
, a22 =

−2(Cf l
2
f + Crl

2
r)

Izvx
,

b1 =
2Cf
m

, b2 =
2Cf lf
Iz

, Ts1 =
2Cfηt
IsR2

svx
,

Ts2 =
2Cf lfηt
IsR2

svx
, Ts3 =

−2Cfηt
IsR2

s

, Ts4 = −Bs
Is
.

In (1), the model is expressed by a constant curvature ρi,
where subscript i indicates the index of road segment. Prac-
tically, the road curvature can be approximated by piecewise
constant functions as in [7], [9], [12].

B. Human Driver Model

In this paper, we consider the two-point visual driver model
developed in [17], which has been validated to demonstrate
satisfactory model accuracy for lane keeping task [36], [37].

The visual input to the human driver consists of two regions:
(1) near point; (2) far point. These two visual regions represent
driver’s compensatory and anticipatory driving behavior [17],
respectively. The information provided by these two points
can be expressed by two visual angles θnear and θfar [36],
where θnear = ψL + yL/ls and θfar = Dfarρi. When the
vehicle approaches a curving road, Dfar is a constant in the
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Fig. 2. Vehicle model illustration

range of 10 − 20 [m] according to the road curvature [38].
Thus, we can see that the driver’s compensatory action is
mostly based on the information in front of the vehicle, and
the anticipatory response depends on the road aspects, i.e., the
curvature. After processing the visual information, the driver
adjusts his/her steering torque through the steering wheel to
achieve lane keeping control of the vehicle, i.e., following the
lane centerline. Based on this process, the driver model can
take the following state-space form [36]:

ζ̇ = Adζ +Bdx+Ddρi,

Td = Cdζ, (2)

where ζ =
[
ζ1 ζ2

]T
. The matrices are given as follows:

Ad =

[
a11d 0
a21d a22d

]
, Bd =

0 0 b11d
b11d

ls
0 0

0 0 b21d
b21d

ls
0 0

 ,
Cd =

[
0 1

]
, Dd =

[
0

b22dDfar

]
,

where a11d = − 1
TI

, a21d = 1
TNTI

, a22d = − 1
TN

, b11d =

− (TI−TL)Kc

TI
, b21d = −TLKc

TITN
, b22d = Ka

TN
. It is observed that

Ad is a stable matrix, i.e., both eigenvalues of Ad have negative
real parts [36].

Combining (1) and (2), we obtain an interconnected system
model that captures the interaction between the driver and the
vehicle.

III. MODEL-BASED CONTROL DESIGN FOR SHARED
STEERING

In this section, we present some preliminary results that are
necessary for the shared steering controller design.

A. Output Regulation Problem with Partial-state Feedback

Recall that the goal of achieving lane keeping is to design a
feedback controller to force the output y of system (1) to zero,
that is, lim

t→∞
y(t) = 0. The output regulation problem, also

called servomechanism problem, intends to design a feedback
controller to achieve asymptotic tracking with disturbance
rejection for a reference input while preserving the closed-
loop stability [39]. Thus, output regulation is a powerful tool

to accomplish the goal of lane keeping, where the reference
trajectory is given by the road.

It is worth noting that this control task is challenging,
because the driver states ζ are not all measurable and thus are
unavailable to the designer. In other words, in the absence of
full-state information, a partial-state feedback design algorithm
is needed for the desired control objective.

Theorem 1. Considering (1) and (2), if a control gain K =[
01×2 K

]
∈ R8 satisfies that σ(A− BK) ∈ C−, where

A =

[
Ad Bd
BCd A

]
,B =

[
02×1

B

]
, (3)

and the controller takes the following form

u = −Kx+ (U∗ +KX∗)ρi (4)

where X∗ ∈ R6, U∗ ∈ R and Z∗ ∈ R2 satisfy the following
regulator equations

0 = AdZ
∗ +BdX

∗ +Dd, (5)
0 = AX∗ +BU∗ +D +BCdZ

∗, (6)
0 = CX∗, (7)

then the asymptotic convergence of the lane-keeping error is
achieved, i.e., lim

t→∞
y(t) = 0.

Proof. Define x̄ = x−X∗ρi, ū = u−U∗ρi, and ζ̄ = ζ−Z∗ρi.
Using (5)-(7), the error dynamics can be formulated as follows

˙̄ζ = Adζ̄ +Bdx̄, (8)
˙̄x = Ax̄+B(ū+ Cdζ̄), (9)
y = Cx̄. (10)

Since we have ū = −Kx̄ and σ(A − BK) ∈ C−, the
closed-loop error system (8)-(10) is stable, i.e., lim

t→∞
x̄(t) = 0.

Therefore, lim
t→∞

y(t) = 0.

Theorem 1 provides a potential design procedure to achieve
shared control between the driver and the vehicle. However,
it is noted that the transient performance of the closed-loop
system with the controller (4) is determined by the parameteri-
zation of K, and is not guaranteed. In the following subsection,
an optimal control framework for cooperative steering is
introduced, which aims to obtain improved performance.

B. Linear Quadratic Regulator (LQR) and Robustness Analy-
sis

Now, we present the strategy to find a control gain K
satisfying the condition in Theorem 1. In order to attain
satisfactory transient performance during lane-keeping task,
we introduce the following optimal control problem widely
known as the LQR problem:

minimize
ū

∫ ∞
0

[
x̄TQx̄+ rū2

]
dt

subject to ˙̄x = Ax̄+Bū,

y = Cx̄,



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 5

where Q = QT ≥ 0, r > 0 and (A,
√
Q) is observable.

Note that the driver’s input is omitted here, since the per-
formance index is defined for infinite horizon. By removing
the driver’s input, the optimality can be guaranteed when
the fully autonomous mode is considered. In the presence of
the driver’s input, stability/robustness can be ensured for the
interconnected system of the driver and the vehicle, as we will
present later.

By linear optimal control theory [40], the optimal controller
ū∗ = −K∗x̄ solving the above LQR problem is determined
by

K∗ =
1

r
BTP ∗, (11)

where P ∗ = (P ∗)T > 0 is the unique solution to the algebraic
Riccati equation

ATP + PA+Q− 1

r
PBBTP = 0. (12)

Next, we consider the error dynamics (8)-(10), where driver’s
behavior is taken into consideration. The following result
introduces a property of the driver model (2).

Lemma 1. Let c1 = |Cd|2. Then, there exist a Lyapunov
function W (ζ̄) = ζ̄TMζ̄ where M = MT > 0 is the unique
solution to the Lyapunov equation

ATdM +MAd = −2c1I2, (13)

and a constant c2 ≥ 1
c1
λM (BTdMMBd), such that

Ẇ ≤ −c1|ζ̄|2 + c2|x̄|2. (14)

Proof. See the Appendix.

In practice, the accurate knowledge of matrices Ad and Bd
is difficult to acquire. Here, instead of assuming the perfect
model for driver, we only assume that the gain c2 from x̄ to
ζ̄ is known.

Next, the stabilization problem of (8)-(10) can be studied
using the small-gain theorem [33], [41]; see the Appendix for
a short review. The following theorem gives the solution to
obtain an optimal controller that forces the lane keeping error
y to zero.

Theorem 2. Let ū∗ = −K∗x̄ be the optimal controller
obtained by (11) with the symmetric matrix Q ≥ γxI6 for
γx > c2, and r = 1. Then, the error system (8)-(10) is stabi-
lized, i.e., σ(A−BK∗) ∈ C− with K∗ =

[
01×2 K∗

]
∈ R1×8.

Furthermore, lim
t→∞

y = 0.

Proof. Consider V (x̄) = x̄TP ∗x̄. Differentiating V (x̄), we
have

V̇ =x̄T
[
(A−BK∗)TP ∗ + P ∗(A−BK∗)

]
x̄

+ 2x̄TP ∗BCdζ̄

=− x̄T
(
Q+ P ∗BBTP ∗

)
x̄T + 2x̄TP ∗BCdζ̄

≤− x̄TQx̄− |Cdζ̄ −BTP ∗x̄|2 + c1|ζ̄|2

≤− γx|x̄|2 + c1|ζ̄|2 (15)

From (15), it can be derived that the L2-gain [41] of the
vehicle-road system (9) and (10) is

√
c1
γx

. Similarly, (14)

implies that the L2-gain of the driver system (8) is
√

c2
c1

.

Since
√

c1
γx
·
√

c2
c1

< 1, the stability of the interconnected
system (8)-(10) follows readily from the small-gain theorem
[42]. Indeed, considering V1(x̄, ζ̄) = V (x̄) + W (ζ̄), we have
V̇1 ≤ −(γx − c2)|x̄|2 ≤ 0.

Remark 1. The upper bound of c2 can be estimated when a
large amount of historical driver data are collected, such as
the data of drivers from different age groups and from different
countries. We can choose Q, when the upper bound of c2 is
determined.

Remark 2. It is of interest to note that the stabilizing control
gain K∗ does not depend on the unmeasurable states ζ of the
driver.

C. Optimality Analysis

As we mentioned in the previous subsection, the control law
K∗ is optimal in the case of fully autonomous mode. Now,
we present an optimality analysis when the optimal controller
K∗ is applied to the vehicle with a human driver in the loop.

As a result of Theorem 2, the error state x̄ and the error
steering input ū are convergent, and thus there exist positive
constants αx̄, βx̄ and βū such that

|x̄(t)| ≤ |x̄(0)|βx̄e−αx̄t, (16)

|ū(t)| ≤ |x̄(0)|βūe−αx̄t. (17)

In particular, the constants αx̄, βx̄ and βū are determined by
the eigenvalues of the closed-loop driver-vehicle system, i.e.,
σ(A− BK∗). Let J⊕ denote the performance of the optimal
controller K∗ in the presence of a human driver. Thus, from
(16)-(17), we have

J⊕ =

∫ ∞
0

[x̄T (t)Qx̄(t) + rū2(t)]dt

≤ λM (Q)β2
x̄ + rβ2

ū

2αx̄
|x̄(0)|2. (18)

On the other hand, when there is no driver’s input to the
vehicle, the optimal performance is well known as J∗ =
x̄T (0)P ∗x̄(0). Hence, an upper bound of the performance
difference caused by the human driver’s steering input can
be quantified as follows

J⊕ ≤ µ−1J∗, (19)

where µ =
2αx̄λm(P ∗)

λM (Q)β2
x̄ + rβ2

ū

.

D. A Model-based Algorithm to Find K∗

The following technical result is reviewed to give an algo-
rithm to find K∗ in Theorem 2.

Lemma 2. ( [43]) Let K0 be an initial stabilizing controller
such that σ(A−BK0) ∈ C−. For an integer j ≥ 1, let Pj =
PTj > 0 be the solution to the following Lyapunov equation

(A−BKj)
TPj + Pj(A−BKj) +Q+ rKT

j Kj = 0, (20)



IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 6

where Kj is decided by

Kj =
1

r
BTPj−1. (21)

Then, the following properties hold:
1) σ(A−BKj) ∈ C−,
2) P ∗ ≤ Pj ≤ Pj−1,
3) lim

j→∞
Kj = K∗, lim

j→∞
Pj = P ∗,

where K∗ and P ∗ are defined in (11) and (12).

Hitherto, the stabilizing control gain K∗ and the solutions
X∗, U∗ and Z∗ to the modified regulator equations (5)-(7) are
still dependent on the known parameters of the driver (Ad, Bd)
and the vehicle (A,B). We shall overcome this obstacle by a
data-driven approach presented in the next section.

IV. DATA-DRIVEN DESIGN APPROACH FOR STEERING
ASSISTANCE

In this section, an iterative learning framework is first
proposed to solve the modified regulator equations (5)-(7) with
unknown driver model matrices Ad and Bd. Then, we present
a data-driven learning strategy to approximate the unknown
optimal values K∗, X∗ and U∗, even when the vehicle system
matrices A and B are also unknown.

A. Solving the Modified Regulator Equations with Unknown
Driver Model

Here, we propose the following iterative learning framework
to solve (5)-(7) with driver’s torque Td being measurable,
under the condition that the human driver system matrices
Ad and Bd are unknown.

By means of the controllable canonical form of (A,B), we
have the following result.

Lemma 3. Let K =
[
k1 k2 k3 k4 k5 k6

]
be a stabi-

lizing control gain for the vehicle system, i.e., σ(A−BK) ∈
C−. Then, k4 > 0.

Proof. See the Appendix.

In this subsection, assume that an approximate optimal
controller Kj∗ is given by Lemma 2, where j∗ is the it-
eration index when Kleinman’s algorithm is stopped, i.e.,
the difference between Kj∗ and K∗ is small enough. Since
σ(A−BKj∗) ∈ C−, we have kj∗,4 > 0.

Now, we can start our learning/adaptation as follows. First,
we collect the driver’s torque T0 = CdZ0ρ0 on any constant-
curvature part of a road, where Z0 ∈ R2 and Z0ρ0 is the
steady state of the driver with u0 = 0, i.e., without any steering
assistance.

Then, on the i-th segment of the road, we let the controller
ui = −Kj∗x+ (Ûi +Kj∗X̂ )ρi help the driver complete lane
keeping, where X̂ and Ûi satisfy

0 = AX̂ +BÛi +D +
B

ρi−1
Ti−1, (22)

0 = CX̂ , (23)

where Ti−1 = CdZi−1ρi−1 is the driver’s applied torque,
Zi−1 ∈ R2 and Zi−1ρi−1 is the steady state of the driver
with ui−1.

Next, we study the steady state of both human driver (2)
and the vehicle (1), when the updated controller ui is applied.
Define ζ̃i = ζ − Ziρi and x̃i = x − Xiρi, with Zi ∈ R2 and
Xi ∈ R6. Then, from (2) we have

˙̃
ζi = Adζ̃i +Bdx̃i + (AdZi +BdXi +Dd)ρi (24)

With (1), we have

˙̃xi =Axi +B(ui + Cdζ) +Dρi

=(A−BKj∗)x̃i +BCdζ̃i

+ [(A−BKj∗)(Xi − X̂ ) +BCd(Zi −Zi−1)]ρi.

Thus, for the steady state, it follows that

0 = AdZi +BdXi +Dd, (25)

0 = (A−BKj∗)(Xi − X̂ ) +BCd(Zi −Zi−1), (26)
Ti = CdZiρi. (27)

By MATLAB and Symbolic Math Toolbox [44], we are able
to study the relationship between X∗ and X̂ as follows. Note
that (22), (23) and (27) imply[

A B
C 0

] [
X̂
Ûi

]
=

[
−D

0

]
+

[
−BCd

0

]
Zi−1. (28)

Likewise, (6) and (7) can be written into[
A B
C 0

] [
X∗

U∗

]
=

[
−D

0

]
+

[
−BCd

0

]
Z∗. (29)

Then, it is checkable that

X∗ = X̂ = diag(1, 1, 1, 1, 1, 1, 0)

[
A B
C 0

]−1 [−D
0

]
, (30)

since
[
A B
C 0

]−1 [−BCd
0

]
=

[
06×1 06×1

0 −1

]
.

Remark 3. From (30), it is remarked that X∗ = X̂ is
independent of driver’s steady state Zi−1, i.e., it only relies
on the vehicle parameters in A and B.

Next, we explore the connection between the steady states
Zi and Zi−1, i.e., the driver’s adaptation of the cooperative
controller ui. Observe that (26) gives

Xi = X̂ − (A−BKj∗)−1BCd(Zi −Zi−1). (31)

Then, putting (31) into (25), we obtain

Zi = F1Zi−1 + F2X̂ + L1, (32)

where G = Bd(A−BKj∗)−1BCd, E = −(Ad−G)−1, F1 =
EG, F2 = EBd, L1 = EDd. It is verifiable that one of the
eigenvalues of F1 is always zero, and the other one µF1 is
given by

µF1
=

a11db21d − a21db11d

a11db21d − a21db11d + a11da22dkj∗,4 ls

=
Kc

Kc + kj∗,4 ls
. (33)
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From Lemma 3, we have that both eigenvalues of F1 are in
the unit disk, which implies that

lim
i→∞

|Zi −Zi−1| = 0. (34)

In addition, (30) and (31) give that

lim
i→∞

Xi = X̂ = X∗. (35)

Further, from (25), we have

lim
i→∞

Zi = Z∗, (36)

since Ad is of full rank. Therefore, by (28), (29) and (36), the
following holds

lim
i→∞

Ûi = U∗. (37)

Remark 4. By the iterative learning steps (22)-(23), X∗ and
U∗ can be approximated without the accurate driver model
Ad and Bd.

So far, we still rely on the exact knowledge of the vehicle
system (A,B) to solve (22)-(23) and Kj∗ for the shared
controller design. Meanwhile, it is desirable to provide more
personalized service for each driver when he/she is driving
different vehicles, which requires that the parametric variations
of the vehicle do not affect the steering performance. This
necessity motivates the following data-driven methodology to
design the steering assistance system.

B. Data-driven RADP Method for Shared Steering Control
with Unknown Vehicle Parameters

In this subsection, we apply an RADP framework to design
a shared steering controller, i.e., to find the approximate values
for Kj∗ , X∗ and U∗, while the accurate knowledge of vehicle
model matrices A and B is not available.

Now, we revisit the iterative learning framework of X̂ and
Ûi in (22) and (23) for i ≥ 1, given driver’s torque T0 at
steady state. Motivated by [24], it is not difficult to see that
X̂ can be expressed by

X̂ = Y 1 +

6∑
l=2

αlY l (38)

where Y 1 = 06×1, and for l = 2, · · · , 6, αl ∈ R and Y l ∈ R6

such that CY l = 0, i.e., Y l form the null space of C.
Here, an online data-driven learning method is proposed to

find K∗, X̂ and Ûi. Let x̄l = x − Y lρi, for l = 1, · · · , 6. It
follows that

˙̄xl = Ax+B(u+ Td) +Dρi

= Aj x̄
l +B(Kj x̄

l + w) + (D +AY l)ρi (39)

where Aj = A−BKj and w = u+ Td. Then, we have

[x̄l(t+ δt)]TPj x̄
l(t+ δt)− [x̄l(t)]TPj x̄

l(t)

=

∫ t+δt

t

[(x̄l)T (ATj Pj + PjAj)x̄
l + 2(Kj x̄

l + w)BTPj x̄
l

+ 2ρi(D +AY l)TPj x̄
l]dτ

=−
∫ t+δt

t

(x̄l)T (Q+ rKT
j Kj)x̄

ldτ

+ 2

∫ t+δt

t

r(w +Kj x̄
l)Kj+1x̄

ldτ

+ 2

∫ t+δt

t

ρi(D +AY l)TPj x̄
ldτ. (40)

Following Kronecker product representation, we have

(x̄l)T (Q+ rKT
j Kj)x̄

l = [(x̄l)T ⊗ (x̄l)T ]vec(Q+ rKT
j Kj),

ρi(D +AY l)TPj x̄
l = [(x̄l)T ⊗ ρi]vec((D +AY l)TPj),

r(w +Kj x̄
l)Kj+1x̄

l =

[((x̄l)T ⊗ (x̄l)T )(I6⊗rKT
j ) + r((x̄l)T ⊗ w)I6]vec(Kj+1).

Further, for positive integer s, we define

δx̄lx̄l =[vecv(x̄l(t1))− vecv(x̄l(t0)), vecv(x̄l(t2))−
vecv(x̄l(t1)), · · · , vecv(x̄l(ts))− vecv(x̄l(ts−1))]T ,

Γx̄lx̄l =[

∫ t1

t0

x̄l ⊗ x̄ldτ,
∫ t2

t1

x̄l ⊗ x̄ldτ, · · · ,
∫ ts

ts−1

x̄l ⊗ x̄ldτ ]T ,

Γx̄lw =[

∫ t1

t0

x̄l ⊗ wdτ,
∫ t2

t1

x̄l ⊗ wdτ, · · · ,
∫ ts

ts−1

x̄l ⊗ wdτ ]T ,

Γx̄lρi =[

∫ t1

t0

x̄l ⊗ ρidτ,
∫ t2

t1

x̄l ⊗ ρidτ, · · · ,
∫ ts

ts−1

x̄l ⊗ ρidτ ]T ,

where t0 < t1 < · · · < ts are time instants. Thus, (40) can be
written into the following matrix equation

Ψl
j

 vecs(Pj)
vec(Kj+1)

vec((D +AY l)TPj)

 = Φlj , (41)

where

Ψl
j = [δx̄lx̄l ,−2Γx̄lx̄l(I6 ⊗ rKT

j )− 2Γx̄lw(rI6),−2Γx̄lρi ],
(42)

Φlj = Γx̄lx̄lvec(Q+ rKT
j Kj). (43)

Assumption 1. For l = 1, · · · , 6 and j ∈ Z+, there exists
a positive integer s∗ such that for all s > s∗ and for any
t0 < t1 < · · · < ts, Ψl

j has full column rank.

Remark 5. To make Assumption 1 satisfied, an exploration
noise ξ is introduced. In this paper, we choose ξ by adding
sinusoidal functions with different frequencies as in [24], [25].

Under Assumption 1, (41) can be solved by the least-squares
method as follows vecs(Pj)

vec(Kj+1)
vec((D +AY l)TPj)

 = [(Ψl
j)
TΨl

j ]
−1(Ψl

j)
TΦlj . (44)

Observe that D can be computed, since Y 1 = 0. Also, B can
be estimated by B = rP−1

j KT
j+1 and AY l can be determined
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for l = 2, · · · , 6. Thus, from (22) and (38), Ûi and the
sequence α2, · · · , α6 are solved by

S(Y ) +BÛi = −(D +
B

ρi−1
Ti−1), (45)

where S(Y ) =
∑6
l=2 α

lAY l. Accordingly, X̂ can be settled
by (38).

The final algorithm for designing the data-driven shared
steering controller is summarized as follows.

Algorithm 1 Data-driven Shared Steering Control
1: Collect driver’s T0 on the part of the road with curvature
ρ0 when there is no steering assistance.

2: Select K0 satisfying σ(A − BK0) ∈ C−. Choose the
weighting parameters Q = QT ≥ c2I6 and r = 1. Let
Y 1 = 06×1 and compute Y l for l = 2, · · · , 6. j ← 0.
i← 1.

3: repeat
4: Apply an exploratory steering assistance: u = ξ.
5: for l = 1 to 6:
6: Compute Ψl

j and Φlj from (42) and (43)
7: end for
8: until Assumption 1 is satisfied.
9: Solve Pj and Kj+1 from (44)

10: repeat
11: j ← j + 1
12: Update Pj and Kj+1 from (44)
13: until |Pj − Pj−1| < γ
14: j∗ ← j.
15: Find AY l for l = 2, · · · , 6 from (44). Solve α2, · · · , α6,
S(Y ) and Û1 from (45). Obtain X̂ from (38).

16: repeat
17: repeat
18: Apply ui = −Kj∗x+ (Ûi +Kj∗X̂ )ρi
19: until the i-th road segment is finished.
20: i← i+ 1.
21: Update Ûi from (45)
22: until |Ûi − Ûi−1| < ε
23: Ûi∗ ← Ûi.
24: The optimal controller u = −Kj∗x+ (Ûi∗ +Kj∗X̂ )ρi.

Remark 6. Algorithm 1 is proposed for a fixed scenario,
where the unknown parameters of the driver and the vehicle
are constant during learning and application phase. When
the parameters change, the algorithm is restarted so that the
learned shared controller can adapt to the new scenario, such
as a new driver-vehicle system with changed parameters.

Theorem 3. Under Assumption 1, the obtained sequences
{Pj}∞j=0 and {Kj}∞j=1 from (44) satisfy

lim
j→∞

Pj = P ∗, lim
j→∞

Kj = K∗.

Proof. See the Appendix.

Next, we present the main result of this paper on the
cooperative steering problem for semi-autonomous vehicles.

Theorem 4. Considering the vehicle system (1) and the driver
model (2), let the shared steering controller u = −Kj∗x +

(Ûi∗ + Kj∗X̂ )ρi be the result obtained from Algorithm 1.
Then, we have the lane-keeping error converge to zero, i.e.,
lim
t→∞

y(t) = 0.

Proof. See the Appendix.

Remark 7. To avoid the misuse of the proposed algorithm,
i.e., the driver completely releases the control to the shared
controller, we need to constantly measure driver’s steering
torque for safety. When the driver’s torque is not detected
for a duration of time, an alert should be sent to the driver,
such as an audio signal.

V. NUMERICAL SIMULATIONS

TABLE I
NUMERICAL VALUES IN SIMULATIONS

Parameters Numerical Values Parameters Numerical Values
lf 1.0065 [m] Iz 2454 [kg.m2]
lr 1.4625 [m] Is 0.05 [kg.m2]
m 1500 [kg] Rs 16
ls 5 [m] Bs 5.73
ηt 0.185 [m] Cr 56636 [N/rad]
Cf 47135 [N/rad] TN 0.1 [s]
Ka 30 Kc 35
TI 0.3 [s] TL 3 [s]

Several numerical simulations are conducted to demonstrate
the efficacy of our proposed algorithm. The velocity vx is
fixed at 15 [m/s]. First, the driver controls the vehicle,
without any steering assistance (u0 = 0), on the road segment
where the curvature ρ0 = 0.005. It is observed that the
driver’s torque at steady state is: T0 = 8.12 [N · m]. The
other parameters are presented in Table I. We have K0 =[
10 25 100 10 1 0.1

]
, and choose Y l for l = 2, · · · , 6

as follows

Y 2 =


0
0
−1
−5
0
0

 , Y
3 =


1
0
0
0
0
0

 , Y
4 =


0
1
0
0
0
0

 , Y
5 =


0
0
0
0
1
0

 , Y
6 =


0
0
0
0
0
1

 ,

which satisfy that CY l = 0. Set r = 1. We will compare the
performance with 3 different Q values, where Q(1) = 100I6,
Q(2) = 500I6 and Q(3) = 10000I6. By the chosen
weighting parameters, the theoretical optimal controllers
can be solved by (11)-(12), and are characterized by
K(1)∗ =

[
12.05 13.62 143.59 10.00 14.39 1.33

]
,

K(2)∗ =
[
18.02 20.43 187.18 22.36 22.28 1.98

]
,

K(3)∗ =
[
38.20 42.82 194.56 100.00 51.92 4.13

]
.

Based on (5)-(7), we have X∗ =[
3.72 15.00 −5.25 −26.24 3.38 0.00

]T
,

U∗ = 356.97.
We will evaluate our proposed steering assistance system

on a test road. Fig. 3 shows the road curvature profile. In
particular, the driver controls the vehicle with only exploratory
assistance ε in the first 2 seconds. According to line 3-8 in
Algorithm 1, we collect the online state and input data of the
vehicle until Assumption 1 is satisfied. That is, at time t = 2s,
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Fig. 3. Road curvature profile

we compute Pj and Kj+1 as stated in line 9-15 for each Q
value. After several iterations, we obtain three Kj∗ as follows
K

(1)
6 =

[
12.05 13.62 143.59 10.00 14.39 1.33

]
,

K
(2)
6 =

[
18.02 20.43 187.18 22.36 22.28 1.98

]
,

K
(3)
10 =

[
38.29 42.82 194.56 100.00 51.92 4.13

]
.

At the same time, we solve AY l for l = 2, · · · , 6
from (44). Next, the sequence α2, · · · , α6 and Û1

are determined by (45). Thus, we obtain X̂ =[
3.71 15.00 −5.25 −26.24 3.48 −0.62

]T
, Û1 =

0.005. Then, we switch off the exploration noise, and update
the learned shared controller to

ui = −Kj∗x+ (Ûi +Kj∗X̂ )ρi,

which cooperates with the driver on the upcoming road
segment i. Finally, the iterative learning steps begin as sum-
marized in line 16-23, which are depicted in Fig. 3. More
specifically, the update operation (45) on Ûi takes place
whenever the vehicle is on a constant-curvature part of the
road. Therefore, the learning process continues as the vehicle
proceeds. In Fig. 4, we show that Ûi converges to its theoretical
optimal value with different selected Q values.

1 2 3 4 5 6

Number of Iteration

0

100

200

300

400

|Ûi − U ∗| with Q(1)

|Ûi − U ∗| with Q(2)

|Ûi − U ∗| with Q(3)

Fig. 4. Convergence of Ûi during driving with different chosen Q values

The lane-keeping error during the whole process is pre-
sented in Fig. 5, where the improved lane-keeping performance
is self-evident with all 3 configurations. The undershoot and
overshoot has been reduced compared to the driver-only sce-
nario. In Fig. 6, we compare the driver’s torque when there is
no shared controller and his/her torque when different shared
controllers are implemented. Driver’s behaviors are influenced
by the cooperative controllers, and larger Q value leads to
larger undershoot and overshoot of driver’s torque.

VI. CONCLUSION

This paper studied a cooperative/shared steering control
framework with human driver in the loop. Applying the state-
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Fig. 5. Lane-keeping performance comparison between driver and cooperative
control strategies with different Q values
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Fig. 6. Comparison of driver’s torques

space small-gain theory to the interconnected system of both
driver and vehicle, the designed shared controller does not rely
on the information of the driver’s internal states. Moreover, us-
ing RADP and output regulation theory, the steering controller
collaborates with the driver to achieve desired lane-keeping
performance, without the perfect knowledge of the driver and
the vehicle. In particular, the shared steering controller can
adapt to the driver’s behavior by an online learning process.
Rigorous analysis and proofs have been presented and the
efficacy of our cooperative steering controller is validated
through numerical simulations. Our future work will focus on
the validation of our proposed algorithm to a hardware-in-the-
loop driving simulator (e.g., CarSim) with real drivers and the
shared control design for other driving tasks, such as collision
avoidance and lane changing.

APPENDIX A
PROOF OF LEMMA 1

The existence and the uniqueness of M are guaranteed,
since Ad is a stable matrix. Then, differentiating W (ζ̄) with
respect to time gives

Ẇ =ζ̄T (ATdM +MAd)ζ̄ + ζ̄TMBdx̄+ x̄TBTdMζ̄

=− 2c1|ζ̄|2 + ζ̄TMBdx̄+ x̄TBTdMζ̄ + c1ζ̄
T ζ̄ − c1ζ̄T ζ̄

+
1

c1
x̄TBTdMMBdx̄−

1

c1
x̄TBTdMMBdx̄

=− c1|ζ̄|2 +
1

c1
x̄TBTdMMBdx̄

−
(

1
√
c1
MBdx̄−

√
c1ζ̄

)T (
1
√
c1
MBdx̄−

√
c1ζ̄

)
≤− c1|ζ̄|2 + c2|x̄|2,
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where c2 ≥ 1
c1
λM (BTdMMBd). The proof is completed.

APPENDIX B
PROOF OF LEMMA 3

The controllability of the pair (A,B) implies that there
exists a similarity transformation G, such that Â = G−1AG,
B̂ = G−1B are the controllable canonical form with controller
K̂ = KG. Let âc6 =

[
âc61 âc62 âc63 âc64 âc65 âc66

]
denote the last row of the closed-loop system Âc = Â− B̂K̂.
It can be checked that

âc61 =
k4CfCr(lf + lr)

mIzIsRs
.

Also, given stable poles {p1, . . . , p6} ⊂ C−, âc6 includes the
coefficients of the closed-loop characteristic polynomial. Thus,
we have âc61 =

∏6
i=1 pi > 0. Therefore, k4 > 0, which

completes the proof.

APPENDIX C
PROOF OF THEOREM 3

Given any stabilizing steering control law Kj , let Pj = PTj
be the unique solution to (20), and Λj = (D + AY l)TPj .
Then, the updated steering controller Kj+1 is determined by

Kj+1 =
1

r
BTPj . From (40), we have Pj , Kj+1 and Λj

are the solutions to (44), which are solved by the measured
data matrices Ψl

j and Φlj . In addition, Pj , Kj+1 and Λj are
unique under Assumption 1. Hence, we have shown that (44)
is equivalent to (20) and (21). Therefore, by Lemma 2, the
convergence of Pj and Kj follows readily, which suggests that
our data-driven algorithm is able to approximate the optimal
control policy K∗ that achieves desired steering performance.

APPENDIX D
PROOF OF THEOREM 4

By Lemma 2 and Theorem 3, it follows that σ(A−BKj∗) ∈
C−. Furthermore, we have lim

i→∞
Zi = Z∗, lim

i→∞
Xi = X∗

and lim
i→∞

Ui = U∗, which satisfy (5)-(7). Thus, we have the
same error dynamics as (8)-(10). By Theorem 2, we have
lim
t→∞

y(t) = 0. Thus, the proof is completed.

APPENDIX E
REVIEW OF ISS AND SMALL-GAIN THEOREM

To make the paper self-contained, we briefly recall basic
notions and results of input-to-state stability (ISS) and small-
gain theorems, from the past literature (see, e.g., [33], [34],
[45], [46]). Let ∇V denote the gradient of a differentiable
function V : Rn → R. ‖u‖ stands for supt≥0 |u(t)|. A
continuous function γ : R+ → R+ belongs to class K if it is
non-decreasing and γ(0) = 0. It is of class K∞ if additionally
γ(s) → ∞ as s → ∞. A function β : R+ × R+ → R+ is
of class KL if for each fixed t, the function β(·, t) is of class
K, and for each fixed s, the function β(s, ·) is non-increasing
and tends to 0 at infinity. The notation γ1 > γ2 means that
γ1(s) > γ2(s), ∀s > 0, while γ1 ◦ γ2 denotes the composition
of two functions, i.e., for all s ≥ 0, γ1 ◦ γ2(s) = γ1(γ2(s)).

Consider the forced dynamical system of the form

ẋ = f(x, u), (46)

where x ∈ Rn is the state, u ∈ Rm is the input, and f :
Rn × Rm → Rn is locally Lipschitz.

The ISS concept as reviewed below is a natural extension of
Lyapunov stability from dynamical systems to control systems.

Definition 1 ( [45]): The system (46) is said to be ISS with
gain γ if, for all any measurable essentially bounded input
u and any initial condition x(0), the solution x(t) exists for
every t ≥ 0 and satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(‖u‖), (47)

where β is of class KL and γ is of class K.

Definition 2 ( [46]): A continuously differentiable function V
is said to be an ISS-Lyapunov function for the system (46) if
V is positive definite and proper, and satisfies the following
implication:

|x| ≥ χ(|u|)⇒ ∇V (x)T f(x, u) ≤ −κ(|x|), (48)

where κ is positive definite and χ is of class K.

Remark 8. As it is well-known, an ISS system is internally
globally asymptotically stable at the origin when u = 0, and
is externally bounded-input bounded-state stable when u 6= 0.
However, for nonlinear systems, the converse may not be true.

Then, consider an interconnected system described by

ẋ1 = f1(x1, x2, v), (49)
ẋ2 = f2(x1, x2, v), (50)

where, for each i = 1, 2, xi ∈ Rni , v ∈ Rnv and fi : Rn1 ×
Rn2 × Rnv → Rni is locally Lipschitz, .

Assumption 2. For each i = 1, 2, there exists an ISS-
Lyapunov function Vi for the xi subsystem such that the
following hold:

1) there exist functions
¯
αi, ᾱi ∈ K∞, such that

¯
αi(|xi|) ≤ Vi(xi) ≤ ᾱi(|xi|) ∀xi ∈ Rni ; (51)

2) there exist class K functions χi and γi and a class K∞
function αi, such that

∇V1(x1)T f1(x1, x2, v) ≤ −α1(V1(x1)) (52)

if V1(x1) ≥ max{χ1(V2(x2)), γ1(|v|)}, and

∇V2(x2)T f2(x1, x2, v) ≤ −α2(V2(x2)) (53)

if V2(x2) ≥ max{χ2(V1(x1)), γ2(|v|)}.

The following theorem presents the nonlinear small-gain
condition, which guarantees the ISS property of interconnected
system (49) and (50).

Theorem 5. ( [34]) Under Assumption 2, if the following
small-gain condition holds:

χ1 ◦ χ2(s) < s ∀s > 0, (54)

then the interconnected system (49) and (50) is ISS with
respect to v as the input.
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