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Abstract
We show how to correct an optical surface to transform an arbitrary incident light field into
a desired irradiance pattern on a projection surface. Beam dilation errors and optical surface
corrections are derived from the pullbacks of the actual and desired irradiances. Étendue
effects — the principal obstacle to extended-source tailoring - are factored out by solving a
sparse linear system. The method accommodates nontrivial projection surfaces, transport
phenomena, and incident wavefronts, including those from multiple extended light sources.
Numerical experiments achieve high fidelity and contrast ratios in as little as O(N log N)-time
for a surface represented by N height values.
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Abstract: We show how to correct an optical surface to transform an arbitrary incident light
field into a desired irradiance pattern on a projection surface. Beam dilation errors and optical
surface corrections are derived from the pullbacks of the actual and desired irradiances. Étendue
effects— the principal obstacle to extended-source tailoring—are factored out by solving a sparse
linear system. The method accommodates nontrivial projection surfaces, transport phenomena,
and incident wavefronts, including those from multiple extended light sources. Numerical
experiments achieve high fidelity and contrast ratios in as little as O(N log N)-time for a surface
represented by N height values.

1. Introduction

It is well known that a freeform optical surface can be tailored to convert a zero-étendue beam
into almost any desired irradiance field on a projection plane. The problem has attracted diverse
modeling and numerical solution strategies, exemplified by, but not limited to, use of PDEs [1],
piecewise conic [2] and oval surfaces [3], Monge-Ampère equations [4], shape-from-transport [5],
and paraxial caustics [6]. However, modeling assumptions—usually some combination of
collimated light, shallow surface slopes, and long effective focal lengths—do not comport with
the realities of extended light sources and miniaturized optics. Treatments of the more realistic
non-zero étendue problem generally focus on the modest goal of obtaining a uniform irradiance
field from an idealized LED, e.g., see [7, 8] and all examples in the recent state-of-the-art review
by Wu et al. [9]. As noted by Sorgato et al. [10], “The 3D prescribed intensity problem for
extended sources with no symmetry has no universal solution yet.”

We present a general solution for the irradiance tailoring problem for light fields, a considerably
broader class of sources. This enables the design of freeform optics that produce highly structured
illumination patterns from high-étendue light sources. As demonstrated in §3.3, the method can
produce steeply sloped high-power optics that work at very short effective focal lengths, opening
the door to high-efficiency high-brightness systems with very compact dimensions.
Starting with the zero-étendue case, we derive corrections to the optical surface from beam

dilation errors, as revealed by comparing the target irradiance with the actual irradiance. In
practice, this reduces to a ray-casting and a discrete Fourier transform.
We then generalize to an arbitrary incident light field (plenoptic function). This includes

multiple extended light sources of arbitrary shape and directionality. The historical difficulty is
that the irradiance is a highly nonstationary convolution of the light field and the optical surface
ray-mapping function; this convolution has resisted mathematical characterization that would
enable one to invert it and thereby isolate the effects (and thus defects) of the optical surface.
Attempts to approximate the deconvolution as a stationary deblurring problem have only shown
success in systems with negligible étendue (e.g., [11]). We solve the deconvolution problem
by developing a decomposition of the flux through the optic that connects irradiance errors to
surface corrections through a system of linear equations. The system is often sparse and rapidly
solvable. Where étendue or optical path physics do not allow an exact solution, the method
finds a surface that approximates the target irradiance. The resulting method is simple, fast, and
versatile—accommodating nontrivial wavefronts, optical paths, and transport phenomena.



2. The model

We use italics for scalars, boldface for vectors, and ‖ · ‖ for the Euclidean norm. Most quantities
can be interchangeably treated as points, fields, or functions. All variates are tabulated in
Appendix 4, and their relationships depicted.

2.1. Givens

We are given an initial base surface described as a height field z(x, y) and a target irradiance field
I mapped onto a projection surface. Typically z = 0 and I is a bitmapped intensity image. On
the radiant side, we assume a wavefront function W(x, y, z) which provides the direction ∇W and
divergence ∇2W of the incident rays at any optical surface point (x, y, z(x, y)). Slightly abusing
terminology, we will refer to ∇2 f as the local curvature of the field f . For notational convenience
we also define w(x, y) as the isosurface of W in the neighborhood of (x, y, z(x, y)). Finally, we
are given a flux density s̄(x, y) along direction ∇W at optical surface point (x, y, z(x, y)), or
equivalently, an incident flux density s = s̄ cos θA, where θA is the angle of the incident ray
with the z-axis. The incident wavefront plays a role in derivations but is cancelled out in the
solutions, so it need not be mathematically characterized for the reduction to practice. We assume
a transport simulator that follows each ray along ∇W through optical surface z to the projection
surface, where it samples the irradiant flux density. A field of these samples, parameterized
by where the rays depart the optical surface, is known as the pullback of the irradiance. We
will denote u(x, y) as the pullback of the desired irradiance I and û(x, y) as the pullback of the
actual irradiance Î produced by z. For each ray the simulator also provides the z-axis-parallel
propagation distance r from the optical surface to the projection surface and the angle of incidence
θB at the projection surface.

2.2. Transport from surface gradients

We recall a simple geometric fact governing ray propagation at an interface between two
homogeneous isotropic media: Given incident ray ri ∈ R3, exitent ray re ∈ R3, and refractive
index ratio n � ni/ne (n = −1 for mirrors), the interface normal n and tangent t satisfy

n ∝ n
ri
‖ri ‖

− re
‖re‖

, equivalently, n〈t, ri〉‖re‖ = 〈t, re〉‖ri ‖ since 〈t, n〉 = 0 . (1)

In our model the surface normal is n = (−∇z, 1) = (−∂x z,−∂y z, 1), the incident direction is
ri = ∇W ∝ sign(n)(−∇w, 1), and an exit ray rooted at interface point (x, y, z)meets the projection
surface at ray terminus (x, y, z) + rre. Expanding the tangent form of Eq. (1) in these terms and
rotating coordinates to the plane of refraction reveals that higher order terms only appear in the
Euclidean norms. Dropping those higher order terms is equivalent to assuming that ‖ri ‖ = ‖re‖,
in which case Eq. (1) is satisfied by exitent direction

re ≈ nri + (1 − n)n = ((n − 1)∇z − n∇w, 1) . (2)

2.3. Dilations from surface Laplacians

We are interested in the bundle of rays that travel from area element dA on the optical surface to
area element dB on the projection surface (Fig. 1). The goal is to tailor the optic such that the
actual flux through dA matches the desired flux through dB:

´
s dA =

´
u dB. In any area small

enough that s and u are essentially constant, we can write the flux constraint as s dA = u dB.
Therefore to achieve a desired intensity dilution we must have an equal geometric dilation:

s/u = dB/dA . (3)

This can be reduced to plane geometry in a local Cartesian coordinate frame, where dA � dx dy is
a square area element with average incident intensity s and dB is a quadrilateral area with average



Fig. 1. Dilation of a ray bundle from optical surface element dA to projection surface
element dB (derived in §2.2–§2.3; see §2.1 for the variable meanings).

irradiant intensity u: The area of quadrilateral dB is half the cross product of its vector diagonals,
1
2 (d1×d2). These vectors are the change in the ray terminus as we move the ray root across the two
diagonals of dA: specifically d1, d2 ≈ dx(ex+r∂xre)∓dy(ey+r∂yre)where ex and ey are the unit
vectors in the x- and y-directions. It is more convenient to calculate the area dQ of a quadrilateral
formed by taking a constant-z cut through the ray bundle where it meets the projection surface,
in which case the diagonals simplify to 2D vectors d1, d2 ≈ dx(e1 + r∂x∇q) ∓ dy(e2 + r∂y∇q),
where ∇q � ∇((n − 1)z − nw) is the exitent ray’s rate of lateral displacement as per Eq. (2). For
small dA, the two quadrilateral areas are related by dQ cos θQ = dB cos θB where θB (resp. θQ)
is the angle between the local normal of the projection surface (resp. constant-z plane) and the
central ray re of the bundle. Putting this all together yields the projective area relation

dB cos θB = (1 + r∇2q + r2((∂xxq)(∂yyq) − (∂xyq)2) cos θQdA . (4)

If we assume the surface exhibits little curvature inside dA, the coefficient to r2 in Eq. (4) is
negligible, so we drop the r2 term and divide both sides by cos θB dA to obtain the area dilation

dB
dA
=

1 + r∇2q
cos θB/cos θQ

= (1 + r∇2((n − 1)z − nw))/o , (5)

where the second equality uses q = ((n−1)z−nw) from Eq. (2) and the cosine terms are absorbed
into the obliquity term o � cos θB/cos θQ.

3. Tailoring

We now develop Eq. (5) into three tailoring fixpoints: In §3.1 we solve directly for the surface z;
in §3.2 we eliminate the wavefront w and solve for surface corrections c; in §3.3 we leverage
the correction approach into a solution for light-field tailoring. The information flows of these
algorithms are summarized in Fig. 2.

3.1. As a Poisson problem

Recalling that the intensity dilution (l.h.s. Eq. (3)) must equal the beam dilation (r.h.s. Eq. (5)),
we equate them and algebraically isolate ∇2z to reveal the Poisson problem

∇2z =
1

n − 1

(m
r
+ n∇2w

)
, (6)



Fig. 2. Algorithmic summary: In the zero-étendue case (left and §3.1–3.2), rays from
the incident wavefront propagate through the optic to determine sampling locations on the
projection surface. In §3.1, sampled target irradiance intensities are pulled back along the
exitent rays to the optical surface and compared with incident intensities from the wavefront
to estimate local curvatures for the optic via Eq. (6). In §3.2, both target and actual irradiances
are pulled back and compared to obtain a field of curvature corrections via Eq. (8). For
positive-étendue light-fields (right and §3.3), the physics are reversed: Pseudo-rays from
test points on the target determine sampling locations and directions on a radiant surface.
The pushforward of energy flows along these rays forms a system of linear equations that
connects irradiance errors to curvature corrections (Eq. (12)).

where m � s̄o/u − 1 is the mismatch between the light incident on the optic from the source
and the light pulled back to the optic from the target. In preparation for future results, we have
switched from incident flux density s at dA to directional flux density s̄ = s/cos θA, consequently
the obliquity term o � cos θA cos θB sec θQ gains an additional projective cosine.
Treating the Poisson equation (Eq. (6)) as a fixpoint yields a simple tailoring algorithm: (1)

Use a provisional surface estimate z to calculate (via simulated transport) the ray-dependent
r.h.s. terms in Eq. (6) (target irradiance pullback u, propagation depths r , obliquities o); (2) solve
the Poisson problem in Eq. (6) via FFT to update z; (3) repeat until convergence. The fixpoint
works well for substantially linear problems where ray bends are modest, and converges quickly
if the rays through the initial surface provide a good sampling of the target irradiance pattern. In
the essentially linear case of uniform collimated light (s̄ = o = 1,∇2w = 0), a long projection
distance (r � 0), and a nearly flat optical surface (z ≈ 0), Eq. (6) contains as special cases
freeform methods that view the irradiance as the Laplacian of z, e.g., [6, 12] .

3.2. Via curvature corrections

A more effective fixpoint is obtained by comparing the desired irradiance u with the irradiance û
actually produced by a provisional surface z. We will seek a field c of corrections to surface z
that satisfies the linear dilation-dilution model,

u = s
dA
dBc
=

s̄o
1 + r∇2((n − 1)(c + z) − nw)

, (7)

in which dBc is simply dB in Eq. (5) with c added to z. We write Eq. (7) for u and û (with and
without c), difference them, and solve for the Laplacian of c to obtain a curvature correction

∇2c =
s̄o

(n − 1)r

(
1
u
− 1

û

)
=

1
u
(û − u)
(n − 1)r

dB
dA

, (8)

where dB/dA is the dilation dB/dA in Eq. (5) without the obliquity terms. Note that once we
have u and û via simulation, we only need the incident intensities (first form) or dilations (second
form) to compute the correction; the wavefront w has been algebraically eliminated.

Algorithmically, we proceed as in §3.1 above, but add calculation of the provisional irradiance
û to the simulator’s duties, and update the provisional surface z ← z + c. Compute time for



Fig. 3. Two mirrors estimated via Eq. (8) to produce the same irradiance, but from different
base surfaces, as per schematic ray transport diagrams. Grayscale shading on the mirror
surfaces indicates local surface curvature.

each correction scales log-linearly with the number of surface height values, since the dominant
calculation is the DFT in the Poisson solver. We typically start with the simplest surface that
provides good coverage of the target; convergence is fastest when most of the rays sample most
of the target density. For example, tailoring a mirror represented by 128 × 64 height values to
accurately reproduce a detailed high-contrast image of a human eye (Fig. 3) took less than one
second on a laptop computer. See Appendix 4 for numerical considerations.
The correction method has some advantages: Most of the nonlinearities of the optical path

are captured on the r.h.s. of Eq. (8) and can be calculated exactly in the simulation of transport,
while the linearizations of §2.2–§2.3 are at play only in the relatively small curvature corrections,
where they are accurate. Our experience is that Eq. (8) converges faster than Eq. (6) for "easy"
problems and yields superior results for harder problems where steep slopes, high curvatures,
short effective focal lengths, Fresnel losses, or high contrast ratios are present. An added utility is
that the tailored optic can inherit some desired properties from a suitably designed base surface,
e.g., demagnifying to increase brightness or crossing all rays to obtain globally convex or concave
surfaces (e.g., the r.h.s. of Fig. 3).

3.3. With light fields, including extended light sources

Thus far we have assumed that the wavefront W associates a single ray vector ∇W to every point
in space. While more general than a collimated or point light source, this falls far short of nature’s
full plenoptic function. For the purposes of tailoring, the plenoptic function can be summarized
as a light field of spatially- and directionally-varying radiances `(µ, ν, φ, θ) sampled at a (possibly
fictive) radiant surface, i.e., ` gives the radiance from surface point (µ, ν) in direction (φ, θ). This
contains multiple/extended/asymmetric light sources as special cases; ` can also incorporate the
effects of other surfaces prior to the freeform in the optical path. We note that the second law
of thermodynamics almost always excludes the possibility of an exact solution for a tailoring
problem with a positive-étendue source, but good approximations have practical utility.
To extend the correction method to incident light fields, we consider both the radiant and

irradiant surfaces, but reverse their roles. We decompose the flux through the optic into
a superposition of "light-collecting" spherical wavefronts that propagate backward from the



projection surface. Adapting the dilation-dilution model (Eq. (7)) to relate light collection in
each wavefront to the freeform’s local curvatures, the superposition becomes a sparse system of
linear equations whose solution isolates and quantifies the freeform’s curvature errors.

To work out the details, it is useful to imagine a camera that views the optical surface through
a small aperture of area dT located at a point p ∈ R3 on the projection surface. The camera
sees a distorted image of the light source(s) on a subset Ω of the optical surface. Ideally, the
total observed flux matches IpdT , where Ip is the desired average irradiant intensity at p. To
wit, we want IpdT =

´
Ω

sp dA for the flux density field sp that the camera at p observes on the
optical surface. We can calculate this quantity from the area dilation (Eq. (5)) by reversing
the roles of the radiant and irradiant surfaces: We imagine projection surface point p emitting
a spherical wavefront wp back through the optical surface z, and calculate a field of dilations
dBp
dT =

dA
dT

dBp
dA of this wavefront as it propagates backward from the projection surface to the

optical surface z and then to the radiant surface, where we take a 2D subset `p of the 4D light
field function ` containing those radiance values destined for p. The radiance pushforward field
`p plays an analogous role to the irradiance pullback field u in previous sections and is similarly
parameterized by the optical surface’s coordinate system. Conservation of energy requires that
each step have the same total flux:

IpdT =
ˆ
Ω

sp dA =
ˆ
Ω

(
`p

( cos θQ,p

rp

)2
cos θB,pdBp

)
cos θA,pdA , (9)

where the integrand on the right-hand side is the standard radiometric calculation of flux from a
radiant patch dBp through an aperture dA, for each dBp and dA pair that deliver light to dT [13].
We now adapt the dilation-dilution model (Eq. (7)) to find the reverse dilation dBp. First, we

are now tracing light backward, so we must negate z + c and invert n. Second, the dilation of
interest is now between the optical surface to the radiant surface; the relationship between the
optical surface "facet" size dA in Eq. (7) and the projection surface "pixel" size dT is arbitrary.
For simplicity of exposition we choose dA = dT . Applying these changes to Eq. (7), solving it
for dB, and substituting the result into the irradiance integral (Eq. (9)) yields a relation between
curvature corrections c and the irradiance at p:

IpdT =
ˆ
Ω

(
`p

op

r2
p
(1 − (n−1 − 1)rp∇2(c + z +

n
n − 1

wp)) dT

)
dA . (10)

Here all projective cosines have been absorbed into the obliquity term op � cos3 θQ,p cos θA,p,
which echoes the cos4 law of the camera equation for Lambertian radiant surfaces (for isotropic
emitters, `pwill contain a cos−1 θB,p term).
Differencing two instances of Eq. (10)—one for a corrected (c , 0) surface that provides

the desired irradiance Ip and one for an uncorrected (c = 0) surface that provides the actual
irradiance Îp (as per the r.h.s. of Eq. (9))—yields the irradiance error:

Ip − Îp =

ˆ
Ω

n − 1
n

`p
op

rp
∇2c dA . (11)

Here we have assumed that the correction is small enough that the change to `pop/rp is negligible.
The r.h.s. of Eq. (11) reminds us that the irradiance error is a convolution of the light field

restriction `p and the curvatures ∇2c of the correction field. That convolution is nonstationary
because the p-subscripted terms are different for each test point. However, unlike the irradiance
convolution, the curvature-correcting deconvolution is straightforward: We set up a least-squares
problem for the Laplacian of the correction ∇2c by discretizing the lens surface into facets with
area dA and choosing test points pi on the projection surface. For each test point pi , Eq. (11)
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Fig. 4. Axonometric view of an “E”-projecting lens tailored via Eq. (11). The radiant
surface (left) simulates two lens-embedded LEDs that subtend between 9◦ and 22◦ when
viewed from points on the tailored exit surface (middle). The total distance from the radiant
to the irradiant surface (right) is 2 lens-widths =

√
2∅. The inset shows the irradiance

obtained from a surface designed for a point source, comparably illuminated by the LEDs.

generates one linear equality constraint, in inner product form〈
vec

(
n − 1

n
`p

op

rp
dA

)
, vec(∇2c)

〉
= Ip − Îp , (12)

where the first vectorized field is nonzero wherever the camera at p sees light coming from the
optical surface z. Iterating over all test points pi , this forms a large but sparse system of linear
equations for the elements of ∇2c. To tailor the surface z we solve the system of linear equalities
for ∇2c, solve the Poisson problem for the correction c, add c to surface z, and repeat until
convergence.
Figure 4 shows a lens with two embedded LEDs that was tailored in this manner to project

a white "E" on a black background. For N = 128 × 128 height values the calculation took 25
seconds, and can be expected to grow at a rate between log-linearly (solution time is dominated
by the Poisson problem) and cubically with N (solution time is dominated by the linear system),
depending on how much of the optical surface is involved in irradiating each test point.
In general, the positive-étendue tailoring problem is a strongly non-convex optimization

problem with no zero-error solution and many local minima. Good results depend on favorable
initializations. We often find that a zero-étendue design is a useful starting point for high-étendue
problems; such is the case in Fig. 4, where a high-fidelity design for a point light source produces
a highly blurred irradiance but serves as a good initial surface for high-étendue tailoring.



4. Summary and open questions

Observing an essentially linear relationship between incident wavefront curvature, optical surface
curvature, beam dilation, and irradiant intensity dilution, we formulated zero-étendue freeform
irradiance tailoring as a Poisson problem. Algebraically eliminating the wavefront yielded a
sequence of surface curvature corrections based on pullbacks of the irradiance; these rely on
considerably more modest linearizations than the basic Poisson problem, and perform well in
optical path geometries previously considered difficult. Reversing the roles of the radiant and
irradiant surfaces in this formulation, we found a solution for general positive-étendue light-field
tailoring, e.g., with multiple extended sources. In particular, the problem of discovering what
parts of an optical surface are responsible for flaws in the irradiance—previously a poorly
understood nonstationary deconvolution— is revealed to be a straightforward system of linear
equations in the domain of curvature correction fields. This approach easily accommodates
varied light transport phenomena; beyond the pedagogical examples in this paper, we have used
it to tailor freeforms situated in optical paths with spatially separated extended light sources,
additional optical elements, partial occlusions, internal reflections, and Fresnel losses.

Strictly speaking, all realistic tailoring problems involve positive-étendue sources, and almost
all positive-étendue tailoring problems are infeasible—existence of exact solutions would imply
entropy-reduction. Yet we find that many problems have good approximate solutions. Since
approximation quality can be improved by discarding some radiance to reduce étendue, an open
question of great interest is how to characterize and optimize this trade-off for specific irradiance
targets and optical path geometries.

Appendix A: Numerical considerations

The Poisson problem ∇2c = f , can be solved in O(N log N) time via FFT. On a rectangular
domain, this takes a particularly simple form

K(c) = F−1(F(K( f )) · F(L)−1) .

Here F(·) and F−1(·) are the 2-dimensional DFT and inverse DFT with periodic boundary
conditions; K( f ) reflects a field as

K : f 7→


f ∓ f

∓ f f

 ;

L is the discrete Laplacian operator; F(L)−1 is the pseudo-inverse of the Laplacian in the Fourier
domain (an elementwise inverse of F(L) with a resulting infinity zeroed out); and F−1(·) is the
inverse DFT. All field arithmetic is elementwise. The signs in K(·) are optionally positive to
impose Neuman boundary conditions on the corrections (zero derivative in the direction normal
to the boundary); this fixates the boundary of the projection in the case of a collimated source.
Tailoring can also be done in polar or spherical coordinates using mixed Fourier/Chebyshev
methods for the Poisson problem.

Pulled-back zeroes and near-zeroes in the target irradiance field can imply infinite local
dilation and thus infinite curvature. To prevent numerical instabilities, we recommend the
substitution 1/u→ 1/(u + εt ) with small εt > 0 decreasing in each iteration of the fixpoint.

The linear system in light field tailoring Eq. (11) can have poor numerical condition or be
underconstrained, e.g., if the irradiance is undersampled or if some optical surface area element
is not on any path from a light source to a projection test point. In such cases, instead of Ax = b,
the Tikhanov-regularized problem (A>A + ε2I)x = A>b selects for flatter, smoother corrections.



Appendix B: Variates

Table 1. Variables and their meanings.

Symbol Meaning

c Optical surface correction

dA Lens element

dB Projection plane element, (G = 0)

dBp Radiant area element, (G > 0)

dT Projection plane element, (G > 0)

G Étendue

I, Ip Target irradiance

Îp Actual irradiance at p, (G > 0)

`, `p Radiance

n Refractive index ratio

o, op Obliquity

p Test point location

Symbol Meaning

r , rp z-component of transport

s Incident flux density at z

s̄ Flux density at z along ∇W

u Pullback of target irradiance

û Pullback of actual irradiance

W Wavefront function

w Local wavefront isosurface

z Optical surface height field

θA, θA,p Angle to optical axis at z

θB Angle of incidence at dB

θB,p Angle of exitance at dBp

θQ Ray angle to the z-axis
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